Articles | Volume 16, issue 6
https://doi.org/10.5194/tc-16-2421-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-2421-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Controls on Greenland moulin geometry and evolution from the Moulin Shape model
Lauren C. Andrews
CORRESPONDING AUTHOR
Global Modeling and Assimilation Office, NASA Goddard Space Flight
Center, Greenbelt, MD 20771, USA
Kristin Poinar
Department of Geology, University at Buffalo, Buffalo, NY 14260, USA
Research and Education in eNergy, Environment and Water (RENEW)
Institute, University at Buffalo, Buffalo, NY 14260, USA
Celia Trunz
Geosciences Department, University of Arkansas, Fayetteville, AR
72701, USA
Department of Applied Geomatics, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
Related authors
Alamgir Hossan, Andreas Colliander, Nicole-Jeanne Schlegel, Joel Harper, Lauren Andrews, Jana Kolassa, Julie Z. Miller, and Richard Cullather
EGUsphere, https://doi.org/10.5194/egusphere-2025-2681, https://doi.org/10.5194/egusphere-2025-2681, 2025
Short summary
Short summary
Microwave L-band radiometry offers a promising tool for estimating the total surface-to-subsurface liquid water amount (LWA) in the snow and firn in polar ice sheets. An accurate modelling of wet snow effective permittivity is a key to this. Here, we evaluated the performance of ten commonly used microwave dielectric mixing models for estimating LWA in the percolation zone of the Greenland Ice Sheet to help an appropriate choice of dielectric mixing model for LWA retrieval algorithms.
Celia Trunz, Kristin Poinar, Lauren C. Andrews, Matthew D. Covington, Jessica Mejia, Jason Gulley, and Victoria Siegel
The Cryosphere, 17, 5075–5094, https://doi.org/10.5194/tc-17-5075-2023, https://doi.org/10.5194/tc-17-5075-2023, 2023
Short summary
Short summary
Models simulating water pressure variations at the bottom of glaciers must use large storage parameters to produce realistic results. Whether that storage occurs englacially (in moulins) or subglacially is a matter of debate. Here, we directly simulate moulin volume to constrain the storage there. We find it is not enough. Instead, subglacial processes, including basal melt and input from upstream moulins, must be responsible for stabilizing these water pressure fluctuations.
Elias C. Massoud, Lauren Andrews, Rolf Reichle, Andrea Molod, Jongmin Park, Sophie Ruehr, and Manuela Girotto
Earth Syst. Dynam., 14, 147–171, https://doi.org/10.5194/esd-14-147-2023, https://doi.org/10.5194/esd-14-147-2023, 2023
Short summary
Short summary
In this study, we benchmark the forecast skill of the NASA’s Goddard Earth Observing System subseasonal-to-seasonal (GEOS-S2S version 2) hydrometeorological forecasts in the High Mountain Asia (HMA) region. Hydrometeorological forecast skill is dependent on the forecast lead time, the memory of the variable within the physical system, and the validation dataset used. Overall, these results benchmark the GEOS-S2S system’s ability to forecast HMA hydrometeorology on the seasonal timescale.
Kristin Poinar and Lauren C. Andrews
The Cryosphere, 15, 1455–1483, https://doi.org/10.5194/tc-15-1455-2021, https://doi.org/10.5194/tc-15-1455-2021, 2021
Short summary
Short summary
This study addresses Greenland supraglacial lake drainages. We analyze ice deformation associated with lake drainages over 18 summers to assess whether
precursorstrain-rate events consistently precede lake drainages. We find that currently available remote sensing data products cannot resolve these events, and thus we cannot predict future lake drainages. Thus, future avenues for evaluating this hypothesis will require major field-based GPS or photogrammetry efforts.
Chad A. Greene, Alex S. Gardner, and Lauren C. Andrews
The Cryosphere, 14, 4365–4378, https://doi.org/10.5194/tc-14-4365-2020, https://doi.org/10.5194/tc-14-4365-2020, 2020
Short summary
Short summary
Seasonal variability is a fundamental characteristic of any Earth surface system, but we do not fully understand which of the world's glaciers speed up and slow down on an annual cycle. Such short-timescale accelerations may offer clues about how individual glaciers will respond to longer-term changes in climate, but understanding any behavior requires an ability to observe it. We describe how to use satellite image feature tracking to determine the magnitude and timing of seasonal ice dynamics.
Alamgir Hossan, Andreas Colliander, Nicole-Jeanne Schlegel, Joel Harper, Lauren Andrews, Jana Kolassa, Julie Z. Miller, and Richard Cullather
EGUsphere, https://doi.org/10.5194/egusphere-2025-2681, https://doi.org/10.5194/egusphere-2025-2681, 2025
Short summary
Short summary
Microwave L-band radiometry offers a promising tool for estimating the total surface-to-subsurface liquid water amount (LWA) in the snow and firn in polar ice sheets. An accurate modelling of wet snow effective permittivity is a key to this. Here, we evaluated the performance of ten commonly used microwave dielectric mixing models for estimating LWA in the percolation zone of the Greenland Ice Sheet to help an appropriate choice of dielectric mixing model for LWA retrieval algorithms.
Joseph P. Tulenko, Sophie A. Goliber, Renette Jones-Ivey, Justin Quinn, Abani Patra, Kristin Poinar, Sophie Nowicki, Beata M. Csatho, and Jason P. Briner
EGUsphere, https://doi.org/10.5194/egusphere-2025-894, https://doi.org/10.5194/egusphere-2025-894, 2025
Short summary
Short summary
Ghub is an online platform that hosts tools, datasets and educational resources related to ice sheet science. These resources are provided by ice sheet researchers and allow other researchers, students, educators, and interested members of the general public to analyze, visualize and download datasets that researchers use to study past and present ice sheet behavior. We describe how users can interact with Ghub, showcase some available resources, and describe the future of the Ghub Project.
Jessica Mejia, Jason Gulley, Celia Trunz, Charles Breithaupt, and Matthew Covington
EGUsphere, https://doi.org/10.5194/egusphere-2024-3676, https://doi.org/10.5194/egusphere-2024-3676, 2024
Short summary
Short summary
This study shows that drainage catchments on the Greenland Ice Sheet can change size and shape from year to year. Snow buildup in glacier rivers can reroute meltwater, merging neighboring catchments. Over three years, three catchments combined into one large 32 km2 catchment, increasing in size by 387 %. These findings suggest that seasonal changes in snow and water flow can significantly affect how the ice sheet drains, with potential impacts on ice dynamics.
Benjamin Reynolds, Sophie Nowicki, and Kristin Poinar
EGUsphere, https://doi.org/10.5194/egusphere-2024-2424, https://doi.org/10.5194/egusphere-2024-2424, 2024
Short summary
Short summary
Stress in glaciers, ice sheets, and ice shelves causes crevasses, which are important drivers of retreat and sea level rise. We find that different assumptions found in the literature lead to significantly (up to a factor of two) different crevasse depths and recommend a calculation based on observed ice flow patterns. We find that other stress calculations likely overpredict ice shelf vulnerability to hydrofracture.
Celia Trunz, Kristin Poinar, Lauren C. Andrews, Matthew D. Covington, Jessica Mejia, Jason Gulley, and Victoria Siegel
The Cryosphere, 17, 5075–5094, https://doi.org/10.5194/tc-17-5075-2023, https://doi.org/10.5194/tc-17-5075-2023, 2023
Short summary
Short summary
Models simulating water pressure variations at the bottom of glaciers must use large storage parameters to produce realistic results. Whether that storage occurs englacially (in moulins) or subglacially is a matter of debate. Here, we directly simulate moulin volume to constrain the storage there. We find it is not enough. Instead, subglacial processes, including basal melt and input from upstream moulins, must be responsible for stabilizing these water pressure fluctuations.
Brandon L. Graham, Jason P. Briner, Nicolás E. Young, Allie Balter-Kennedy, Michele Koppes, Joerg M. Schaefer, Kristin Poinar, and Elizabeth K. Thomas
The Cryosphere, 17, 4535–4547, https://doi.org/10.5194/tc-17-4535-2023, https://doi.org/10.5194/tc-17-4535-2023, 2023
Short summary
Short summary
Glacial erosion is a fundamental process operating on Earth's surface. Two processes of glacial erosion, abrasion and plucking, are poorly understood. We reconstructed rates of abrasion and quarrying in Greenland. We derive a total glacial erosion rate of 0.26 ± 0.16 mm per year. We also learned that erosion via these two processes is about equal. Because the site is similar to many other areas covered by continental ice sheets, these results may be applied to many places on Earth.
Elias C. Massoud, Lauren Andrews, Rolf Reichle, Andrea Molod, Jongmin Park, Sophie Ruehr, and Manuela Girotto
Earth Syst. Dynam., 14, 147–171, https://doi.org/10.5194/esd-14-147-2023, https://doi.org/10.5194/esd-14-147-2023, 2023
Short summary
Short summary
In this study, we benchmark the forecast skill of the NASA’s Goddard Earth Observing System subseasonal-to-seasonal (GEOS-S2S version 2) hydrometeorological forecasts in the High Mountain Asia (HMA) region. Hydrometeorological forecast skill is dependent on the forecast lead time, the memory of the variable within the physical system, and the validation dataset used. Overall, these results benchmark the GEOS-S2S system’s ability to forecast HMA hydrometeorology on the seasonal timescale.
Jason P. Briner, Caleb K. Walcott, Joerg M. Schaefer, Nicolás E. Young, Joseph A. MacGregor, Kristin Poinar, Benjamin A. Keisling, Sridhar Anandakrishnan, Mary R. Albert, Tanner Kuhl, and Grant Boeckmann
The Cryosphere, 16, 3933–3948, https://doi.org/10.5194/tc-16-3933-2022, https://doi.org/10.5194/tc-16-3933-2022, 2022
Short summary
Short summary
The 7.4 m of sea level equivalent stored as Greenland ice is getting smaller every year. The uncertain trajectory of ice loss could be better understood with knowledge of the ice sheet's response to past climate change. Within the bedrock below the present-day ice sheet is an archive of past ice-sheet history. We analyze all available data from Greenland to create maps showing where on the ice sheet scientists can drill, using currently available drills, to obtain sub-ice materials.
Kristin Poinar and Lauren C. Andrews
The Cryosphere, 15, 1455–1483, https://doi.org/10.5194/tc-15-1455-2021, https://doi.org/10.5194/tc-15-1455-2021, 2021
Short summary
Short summary
This study addresses Greenland supraglacial lake drainages. We analyze ice deformation associated with lake drainages over 18 summers to assess whether
precursorstrain-rate events consistently precede lake drainages. We find that currently available remote sensing data products cannot resolve these events, and thus we cannot predict future lake drainages. Thus, future avenues for evaluating this hypothesis will require major field-based GPS or photogrammetry efforts.
Chad A. Greene, Alex S. Gardner, and Lauren C. Andrews
The Cryosphere, 14, 4365–4378, https://doi.org/10.5194/tc-14-4365-2020, https://doi.org/10.5194/tc-14-4365-2020, 2020
Short summary
Short summary
Seasonal variability is a fundamental characteristic of any Earth surface system, but we do not fully understand which of the world's glaciers speed up and slow down on an annual cycle. Such short-timescale accelerations may offer clues about how individual glaciers will respond to longer-term changes in climate, but understanding any behavior requires an ability to observe it. We describe how to use satellite image feature tracking to determine the magnitude and timing of seasonal ice dynamics.
Cited articles
Aadnøy, B. S.: A complete elastic model for fluid-induced and in-situ
generated stresses with the presence of a borehole, Energy Sources, 9,
239–259, 1987.
Alley, R. B.: Flow-law hypotheses for ice-sheet modeling, J. Glaciol., 38,
245–256, https://doi.org/10.3189/S0022143000003658, 1992.
Alley, R. B., Dupont, T. K., Parizek, B. R., and Anandakrishnan, S.: Access
of surface meltwater to beds of sub-freezing glaciers: preliminary insights,
Ann. Glaciol., 40, 8–14, https://doi.org/10.3189/172756405781813483, 2005.
Amadei, B.: Rock Anisotropy and the Theory of Stress Measurements,
Springer Berlin, Heidelberg, Germany, ISBN 978-3-540-12388-0, 1983.
Andrews, L. C., Catania, G. A., Hoffman, M. J., Gulley, J. D., Lüthi, M.
P., Ryser, C., Hawley, R. L., and Neumann, T. A.: Direct observations of
evolving subglacial drainage beneath the Greenland Ice Sheet, Nature,
514, 80–83, https://doi.org/10.1038/nature13796, 2014.
Andrews, L. C., Hoffman, M. J., Neumann, T. A., Catania, G. A., Lüthi,
M. P., Hawley, R. L., Schild, K. M., Ryser, C., and Morriss, B. F.: Seasonal
Evolution of the Subglacial Hydrologic System Modified by Supraglacial Lake
Drainage in Western Greenland, J. Geophys. Res.-Earth Surf., 123,
1479–1496, https://doi.org/10.1029/2017JF004585, 2018.
Andrews, L. C., Poinar, K., and Trunz, C.: Moulin Shape model (MouSh-v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.6585291, 2022a.
Andrews, L. C., Poinar, K., and Trunz, C.: Data supporting “Controls on Greenland moulin geometry and evolution from the Moulin Shape model”, Zenodo [data set], https://doi.org/10.5281/zenodo.6585120, 2022b.
Banwell, A. F., Willis, I. C., and Arnold, N. S.: Modeling subglacial water
routing at Paakitsoq, W Greenland, J. Geophys. Res.-Earth Surf., 118,
1282–1295, https://doi.org/10.1002/jgrf.20093, 2013.
Banwell, A. F., Hewitt, I., Willis, I., and Arnold, N.: Moulin density
controls drainage development beneath the Greenland ice sheet, J. Geophys. Res.-Earth Surf., 121, 2248–2269, https://doi.org/10.1002/2015JF003801, 2016.
Bartholomaus, T. C., Anderson, R. S., and Anderson, S. P.: Growth and
collapse of the distributed subglacial hydrologic system of Kennicott
Glacier, Alaska, USA, and its effects on basal motion, J. Glaciol., 57,
985–1002, https://doi.org/10.3189/002214311798843269, 2011.
Bartholomew, I. D., Nienow, P., Sole, A., Mair, D., Cowton, T., and King, M.
A.: Short-term variability in Greenland Ice Sheet motion forced by
time-varying meltwater drainage: Implications for the relationship between
subglacial drainage system behavior and ice velocity, J. Geophys. Res.-Earth
Surf., 117, F03002, https://doi.org/10.1029/2011JF002220, 2012.
Bell, R. E.: The role of subglacial water in ice-sheet mass balance, Nat.
Geosci., 1, 297–304, https://doi.org/10.1038/ngeo186, 2008.
Benn, D. I., Thompson, S., Gulley, J., Mertes, J., Luckman, A., and Nicholson, L.: Structure and evolution of the drainage system of a Himalayan debris-covered glacier, and its relationship with patterns of mass loss, The Cryosphere, 11, 2247–2264, https://doi.org/10.5194/tc-11-2247-2017, 2017.
Boulton, G. S., Lunn, R., Vidstrand, P., and Zatsepin, S.: Subglacial
drainage by groundwater–channel coupling, and the origin of esker systems:
part II – theory and simulation of a modern system, Quaternary Sci. Rev.,
26, 1091–1105, https://doi.org/10.1016/j.quascirev.2007.01.006, 2007.
Catania, G. A. and Neumann, T. A.: Persistent englacial drainage features in
the Greenland Ice Sheet, Geophys. Res. Lett., 37, L02501,
https://doi.org/10.1029/2009GL041108, 2010.
Catania, G. A., Neumann, T. A., and Price, S. F.: Characterizing englacial
drainage in the ablation zone of the Greenland Ice Sheet, J. Glaciol., 54,
567–578, https://doi.org/10.3189/002214308786570854, 2008.
Chandler, D. M., Wadham, J. L., Lis, G. P., Cowton, T., Sole, A.,
Bartholomew, I., Telling, J., Nienow, P., Bagshaw, E. B., Mair, D., Vinen,
S., and Hubbard, A.: Evolution of the subglacial drainage system beneath the
Greenland Ice Sheet revealed by tracers, Nat. Geosci., 6, 195–198,
https://doi.org/10.1038/ngeo1737, 2013.
Christmann, J., Helm, V., Khan, S. A., Kleiner, T., Müller, R.,
Morlighem, M., Neckel, N., Rückamp, M., Steinhage, D., Zeising, O., and
Humbert, A.: Elastic deformation plays a non-negligible role in Greenland's
outlet glacier flow, Commun. Earth Environ., 2, 1–12,
https://doi.org/10.1038/s43247-021-00296-3, 2021.
Chu, V. W.: Greenland Ice Sheet hydrology: A review, Prog. Phys. Geogr.,
38, 19–54, https://doi.org/10.1177/0309133313507075, 2014.
Chudley, T. R., Christoffersen, P., Doyle, S. H., Bougamont, M., Schoonman,
C. M., Hubbard, B., and James, M. R.: Supraglacial lake drainage at a
fast-flowing Greenlandic outlet glacier, P. Natl. Acad. Sci. USA, 116, 25468–25477,
https://doi.org/10.1073/pnas.1913685116, 2019.
Church, G., Grab, M., Schmelzbach, C., Bauder, A., and Maurer, H.: Monitoring the seasonal changes of an englacial conduit network using repeated ground-penetrating radar measurements, The Cryosphere, 14, 3269–3286, https://doi.org/10.5194/tc-14-3269-2020, 2020.
Clarke, G. K. C.: Lumped-element analysis of subglacial hydraulic circuits,
J. Geophys. Res., 101, 17547–17559, https://doi.org/10.1029/96JB01508,
1996.
Clarke, G. K. C.: Hydraulics of subglacial outburst floods: new insights
from the Spring–Hutter formulation, J. Glaciol., 49, 299–313,
https://doi.org/10.3189/172756503781830728, 2003.
Colgan, W. and Steffen, K.: Modelling the spatial distribution of moulins
near Jakobshavn, Greenland, IOP Conf. Ser.: Earth Environ. Sci., 6,
012022, https://doi.org/10.1088/1755-1307/6/1/012022, 2009.
Colgan, W., Rajaram, H., Anderson, R., Steffen, K., Phillips, T., Joughin,
I., Zwally, H. J., and Abdalati, W.: The annual glaciohydrology cycle in the
ablation zone of the Greenland ice sheet: Part 1. Hydrology model, J. Glaciol.,
57, 697–709, https://doi.org/10.3189/002214311797409668, 2011.
Covington, M. D., Banwell, A. F., Gulley, J., Saar, M. O., Willis, I., and
Wicks, C. M.: Quantifying the effects of glacier conduit geometry and
recharge on proglacial hydrograph form, J. Hydrol., 414–415, 59–71,
https://doi.org/10.1016/j.jhydrol.2011.10.027, 2012.
Covington, M. D., Gulley, J. D., Trunz, C., Mejia, J., and Gadd, W.: Moulin
Volumes Regulate Subglacial Water Pressure on the Greenland Ice Sheet,
Geophys. Res. Lett., 47, e2020GL088901,
https://doi.org/10.1029/2020GL088901, 2020.
Cowton, T., Nienow, P., Sole, A., Wadham, J., Lis, G., Bartholomew, I.,
Mair, D., and Chandler, D.: Evolution of drainage system morphology at a
land-terminating Greenlandic outlet glacier, J. Geophys. Res.-Earth Surf.,
118, 29–41, https://doi.org/10.1029/2012JF002540, 2013.
Cowton, T., Nienow, P., Bartholomew, I., and Mair, D.: Variability in ice
motion at a land-terminating Greenlandic outlet glacier: the role of
channelized and distributed drainage systems, J. Glaciol., 62, 451–466,
https://doi.org/10.1017/jog.2016.36, 2016.
Cuffey, K. and Paterson, W. S. B.: The Physics of Glaciers, 4th ed., Butterworth-Heinemann-Elsevier, Burlington, MA, USA, ISBN 978-0-12-369461-4, 2010.
Das, S. B., Joughin, I., Behn, M. D., Howat, I. M., King, M. A., Lizarralde,
D., and Bhatia, M. P.: Fracture Propagation to the base of the Greenland Ice
Sheet during supraglacial lake drainage, Science, 320, 778–781,
https://doi.org/10.1126/science.1153360, 2008.
Dow, C. F., Kulessa, B., Rutt, I. C., Tsai, V. C., Pimentel, S., Doyle, S.
H., van As, D., Lindbäck, K., Pettersson, R., Jones, G. A., and Hubbard,
A.: Modeling of subglacial hydrological development following rapid
supraglacial lake drainage, J. Geophys. Res.-Earth Surf., 120,
2014JF003333, https://doi.org/10.1002/2014JF003333, 2015.
Dow, C. F., Werder, M. A., Nowicki, S., and Walker, R. T.: Modeling Antarctic subglacial lake filling and drainage cycles, The Cryosphere, 10, 1381–1393, https://doi.org/10.5194/tc-10-1381-2016, 2016.
Downs, J. Z., Johnson, J. V., Harper, J. T., Meierbachtol, T., and Werder,
M. A.: Dynamic hydraulic conductivity reconciles mismatch between modeled
and observed winter subglacial water pressure, J. Geophys. Res.-Earth Surf.,
123, 818–836, https://doi.org/10.1002/2017JF004522, 2018.
Flowers, G. E.: Subglacial modulation of the hydrograph from glacierized
basins, Hydrol. Process., 22, 3903–3918,
https://doi.org/10.1002/hyp.7095, 2008.
Flowers, G. E.: Modelling water flow under glaciers and ice sheets, Proc.
Math. Phys., 471, 20140907–20140907, https://doi.org/10.1098/rspa.2014.0907,
2015.
Flowers, G. E.: Hydrology and the future of the Greenland Ice Sheet, Nat.
Commun., 9, 2729, https://doi.org/10.1038/s41467-018-05002-0, 2018.
Flowers, G. E. and Clarke, G. K. C.: A multicomponent coupled model of
glacier hydrology 1. Theory and synthetic examples, J. Geophys. Res.,
107, 2287, https://doi.org/10.1029/2001JB001122, 2002.
Forster, R. R., Box, J. E., van den Broeke, M. R., Miège, C., Burgess,
E. W., van Angelen, J. H., Lenaerts, J. T. M., Koenig, L. S., Paden, J.,
Lewis, C., Gogineni, S. P., Leuschen, C., and McConnell, J. R.: Extensive
liquid meltwater storage in firn within the Greenland ice sheet, Nat.
Geosci., 7, 95–98, https://doi.org/10.1038/ngeo2043, 2014.
Fountain, A. G. and Walder, J. S.: Water flow through temperate glaciers,
Rev. Geophys., 36, 299–328, https://doi.org/10.1029/97RG03579, 1998.
Gajek, W., Gräff, D., Hellmann, S., Rempel, A. W., and Walter, F.:
Diurnal expansion and contraction of englacial fracture networks revealed by
seismic shear wave splitting, Comm. Earth. Environ., 2, 1–8,
https://doi.org/10.1038/s43247-021-00279-4, 2021.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Germain, S. L. S. and Moorman, B. J.: Long-term observations of supraglacial
streams on an Arctic glacier, J. Glaciol., 65, 900–911,
https://doi.org/10.1017/jog.2019.60, 2019.
Goodman, R. E.: Introduction to Rock Mechanics, 2nd ed., Wiley, New York, ISBN 0-471-81200-5, 1989.
Gulley, J. D., Benn, D. I., Screaton, E., and Martin, J.: Mechanisms of
englacial conduit formation and their implications for subglacial recharge,
Quaternary Sci. Rev., 28, 1984–1999,
https://doi.org/10.1016/j.quascirev.2009.04.002, 2009.
Gulley, J. D., Spellman, P. D., Covington, M. D., Martin, J. B., Benn, D. I.,
and Catania, G.: Large values of hydraulic roughness in subglacial conduits
during conduit enlargement: implications for modeling conduit evolution,
Earth Surf. Process. Landforms, 39, 296–310,
https://doi.org/10.1002/esp.3447, 2014.
Hewitt, I. J.: Seasonal changes in ice sheet motion due to melt water
lubrication, EPSL, 371–372, 16–25,
https://doi.org/10.1016/j.epsl.2013.04.022, 2013.
Hoffman, M. J. and Price, S.: Feedbacks between coupled subglacial hydrology
and glacier dynamics, J. Geophys. Res.-Earth Surf., 119, 414–436,
https://doi.org/10.1002/2013JF002943, 2014.
Hoffman, M. J., Catania, G. A., Neumann, T. A., Andrews, L. C., and Rumrill,
J. A.: Links between acceleration, melting, and supraglacial lake drainage
of the western Greenland Ice Sheet, J. Geophys. Res.-Earth Surf., 116,
F04035, https://doi.org/10.1029/2010JF001934, 2011.
Hoffman, M. J., Andrews, L. C., Price, S. A., Catania, G. A., Neumann, T.
A., Lüthi, M. P., Gulley, J., Ryser, C., Hawley, R. L., and Morriss, B.:
Greenland subglacial drainage evolution regulated by weakly connected
regions of the bed, Nat. Commun., 7, 13903,
https://doi.org/10.1038/ncomms13903, 2016.
Holmlund, P.: Internal geometry and evolution of moulins, J. Glaciol., 34,
242–248, 1988.
Iken, A.: Measurements of water pressure in moulins as part of a movement
study of the White Glacier, Axel Heiberg Island, Northwest Territories,
Canada, J. Glaciol., 11, 53–58, 1972.
Iken, A. and Bindschadler, R.: Combined measurements of subglacial water
pressure and surface velocity of Findelengletscher, Switzerland: conclusions
about drainage system and sliding mechanism, J. Glaciol., 32, 101–119,
https://doi.org/10.3189/S0022143000006936, 1986.
Iken, A., Echelmeyer, K., Harrison, W., and Funk, M.: Mechanisms of
fast flow in Jakobshavns Isbræ, West Greenland: Part I. Measurements of
temperature and water level in deep boreholes, J. Glaciol., 39, 15–25,
https://doi.org/10.1017/S0022143000015689, 1993.
Jarosch, A. H. and Gudmundsson, M. T.: A numerical model for meltwater channel evolution in glaciers, The Cryosphere, 6, 493–503, https://doi.org/10.5194/tc-6-493-2012, 2012.
Kirsch, G. E.: Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre, Zeitschrift des Vereines deutscher Ingenieure, 42, 797–807, 1898.
Krawczynski, M. J., Behn, M. D., Das, S. B., and Joughin, I.: Constraints on
the lake volume required for hydro-fracture through ice sheets, Geophys.
Res. Lett., 36, L10501, https://doi.org/10.1029/2008GL036765, 2009.
Lai, C.-Y., Stevens, L. A., Chase, D. L., Creyts, T. T., Behn, M. D., Das,
S. B., and Stone, H. A.: Hydraulic transmissivity inferred from ice-sheet
relaxation following Greenland supraglacial lake drainages, Nat. Commun., 12,
3955, https://doi.org/10.1038/s41467-021-24186-6, 2021.
Lüthi, M. P., Ryser, C., Andrews, L. C., Catania, G. A., Funk, M., Hawley, R. L., Hoffman, M. J., and Neumann, T. A.: Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming, The Cryosphere, 9, 245–253, https://doi.org/10.5194/tc-9-245-2015, 2015.
MacFerrin, M., Machguth, H., van As, D., Charalampidis, C., Stevens, C. M.,
Heilig, A., Vandecrux, B., Langen, P. L., Mottram, R., Fettweis, X., van den Broeke,
M. R., Pfeffer, W. T., Moussavi, M. S., and Abdalati, W.: Rapid
expansion of Greenland's low-permeability ice slabs, Nature, 573,
403–407, https://doi.org/10.1038/s41586-019-1550-3, 2019.
Mair, D., Nienow, P., Willis, I., and Sharp, M.: Spatial patterns of glacier
motion during a high-velocity event: Haut Glacier d'Arolla, Switzerland, J.
Glaciol., 47, 9–20, https://doi.org/10.3189/172756501781832412, 2001.
Mair, D., Nienow, P. W., Sharp, M. J., Wohlleben, T., and Willis, I.:
Influence of subglacial drainage system evolution on glacier surface motion:
Haut Glacier d'Arolla, Switzerland, J. of Geophys Res.-Sol. Ea., 107, 107, EPM 8-1–EPS 8-13,
https://doi.org/10.1029/2001JB000514, 2002.
Mankoff, K. D., Gulley, J. D., Tulaczyk, S. M., Covington, M. D., Liu, X.,
Chen, Y., Benn, D. I., and Głowacki, P. S.: Roughness of a subglacial
conduit under Hansbreen, Svalbard, J. Glaciol., 63, 423–435,
https://doi.org/10.1017/jog.2016.134, 2017.
McGrath, D., Colgan, W., Steffen, K., Lauffenburger, P., and Balog, J.:
Assessing the summer water budget of a moulin basin in the Sermeq Avannarleq
ablation region, Greenland ice sheet, J. Glaciol., 57, 954–964,
https://doi.org/10.3189/002214311798043735, 2011.
McQuillan, M. and Karlstrom, L.: Fluid resonance in elastic-walled englacial
transport networks, J. Glaciol., 67, 999–1012, https://doi.org/10.1017/jog.2021.48,
2021.
Meierbachtol, T. W., Harper, J., and Humphrey, N.: Basal Drainage System
Response to Increasing Surface Melt on the Greenland Ice Sheet, Science,
341, 777–779, https://doi.org/10.1126/science.1235905, 2013.
Mejia, J. Z., Gulley, J. D., Trunz, C., Covington, M. D., Bartholomaus, T.
C., Xie, S., and Dixon, T. H.: Isolated Cavities Dominate Greenland Ice
Sheet Dynamic Response to Lake Drainage, Geophys. Res. Lett., 48,
e2021GL094762, https://doi.org/10.1029/2021GL094762, 2021.
Miège, C., Forster, R. R., Brucker, L., Koenig, L. S., Solomon, D. K.,
Paden, J. D., Box, J. E., Burgess, E. W., Miller, J. Z., McNerney, L.,
Brautigam, N., Fausto, R. S., and Gogineni, S.: Spatial extent and temporal
variability of Greenland firn aquifers detected by ground and airborne
radars, J. Geophys. Res.-Earth Surf., 121, 2016JF003869,
https://doi.org/10.1002/2016JF003869, 2016.
Moon, T., Joughin, I., Smith, B., van den Broeke, M. R., van de Berg, W. J.,
Noël, B., and Usher, M.: Distinct patterns of seasonal Greenland glacier
velocity, Geophys. Res. Lett., 41, 2014GL061836,
https://doi.org/10.1002/2014GL061836, 2014.
Moreau, L.: L'exploration du cryokarst glaciaire et son intérêt
scientifique pour l'étude du drainage des eaux de fonte: porches,
cavités, crevasses, bédières et moulins, Collection EDYTEM,
Cahiers de géographie, 8, 163–170, 2009.
Müller, F. and Iken, A.: Velocity fluctuations and water regime of
Arctic valley glaciers, IAHS, 95, 165–182, 1973.
Naruse, R., Okuhira, F., Ohmae, H., Kawada, K., and Nakawo, M.: Closure Rate
of a 700 m Deep Bore Hole at Mizuho Station, East Antarctica, Ann. Glaciol.,
11, 100–103, https://doi.org/10.3189/S0260305500006406, 1988.
Nossokoff, A.: Using Small Scale Physical Experiments to Improve Enthalpy
Based Models of Ice Sheets, M.S., University of Colorado, Boulder, 2013.
Paterson, W. S. B.: Secondary and tertiary creep of glacier ice as measured
by borehole closure rates, Rev. Geophys., 15, 47–55,
https://doi.org/10.1029/RG015i001p00047, 1977.
Pitcher, L. H. and Smith, L. C.: Supraglacial Streams and Rivers, Ann. Rev.
Earth Planet. Sci., 47, 421–452,
https://doi.org/10.1146/annurev-earth-053018-060212, 2019.
Poinar, K., Joughin, I., Lilien, D., Brucker, L., Kehrl, L., and Nowicki, S.:
Drainage of Southeast Greenland Firn Aquifer Water through Crevasses to the
Bed, Front. Earth Sci., 5, 1–15, https://doi.org/10.3389/feart.2017.00005, 2017.
Priest, S. D.: Discontinuity Analysis for Rock Engineering, 1st edn., Chapman & Hall, London, New York, ISBN 978-0-412-47600-6, 1993.
Reeh, N., Christensen, E. L., Mayer, C., and Olesen, O. B.: Tidal bending of
glaciers: a linear viscoelastic approach, Ann. Glaciol., 37, 83–89,
https://doi.org/10.3189/172756403781815663, 2003.
Röösli, C., Walter, F., Ampuero, J.-P., and Kissling, E.: Seismic
moulin tremor, J. Geophys. Res.-Sol. Ea., 121, 5838–5858,
https://doi.org/10.1002/2015JB012786, 2016.
Ryser, C., Lüthi, M. P., Andrews, L. C., Hoffman, M. J., Catania, G. A.,
Hawley, R. L., Neumann, T. A., and Kristensen, S. S.: Sustained high basal
motion of the Greenland ice sheet revealed by borehole deformation, J.
Glaciol., 60, 647–660, https://doi.org/10.3189/2014JoG13J196, 2014.
Scheingross, J. S. and Lamb, M. P.: A Mechanistic Model of Waterfall Plunge
Pool Erosion into Bedrock, J. Geophys. Res.-Earth Surf., 122,
2079–2104, https://doi.org/10.1002/2017JF004195, 2017.
Schoof, C.: Ice-sheet acceleration driven by melt supply variability,
Nature, 468, 803–806, https://doi.org/10.1038/nature09618, 2010.
Selmes, N., Murray, T., and James, T. D.: Fast draining lakes on the
Greenland Ice Sheet, Geophys. Res. Lett., 38, L15501,
https://doi.org/10.1029/2011GL047872, 2011.
Shreve, R. L.: Movement of water in glaciers, J. Glaciol., 11, 205–214,
https://doi.org/10.1017/S002214300002219X, 1972.
Smith, L. C., Chu, V. W., Yang, K., Gleason, C. J., Pitcher, L. H.,
Rennermalm, A. K., Legleiter, C. J., Behar, A. E., Overstreet, B. T.,
Moustafa, S. E., Tedesco, M., Forster, R. R., LeWinter, A. L., Finnegan, D.
C., Sheng, Y., and Balog, J.: Efficient meltwater drainage through
supraglacial streams and rivers on the southwest Greenland ice sheet, P. Natl. Acad. Sci. USA,
112, 1001–1006, https://doi.org/10.1073/pnas.1413024112, 2015.
Smith, L. C., Yang, K., Pitcher, L. H., Overstreet, B. T., Chu, V. W.,
Rennermalm, Å. K., Ryan, J. C., Cooper, M. G., Gleason, C. J., Tedesco,
M., Jeyaratnam, J., van As, D., van den Broeke, M. R., van de Berg, W. J.,
Noël, B., Langen, P. L., Cullather, R. I., Zhao, B., Willis, M. J.,
Hubbard, A., Box, J. E., Jenner, B. A., and Behar, A. E.: Direct measurements
of meltwater runoff on the Greenland ice sheet surface, P. Natl. Acad. Sci. USA, 114,
E10622–E10631, https://doi.org/10.1073/pnas.1707743114, 2017.
Smith, L. C., Andrews, L. C., Pitcher, L. H., Overstreet, B. T., Rennermalm,
Å. K., Cooper, M. G., Cooley, S. W., Ryan, J. C., Miège, C.,
Kershner, C., and Simpson, C. E.: Supraglacial River Forcing of Subglacial
Water Storage and Diurnal Ice Sheet Motion, Geophys. Res. Lett., 48, e2020GL091418,
https://doi.org/10.1029/2020GL091418, 2021.
Spring, U. and Hutter, K.: Numerical studies of Jökulhlaups, Cold Reg.
Sci. Technol., 4, 227–244, https://doi.org/10.1016/0165-232X(81)90006-9,
1981.
Spring, U. and Hutter, K.: Conduit flow of a fluid through its solid phase
and its application to intraglacial channel flow, Int. J. Eng. Sci., 20,
327–363, https://doi.org/10.1016/0020-7225(82)90029-5, 1982.
Tedstone, A. J., Nienow, P. W., Gourmelen, N., Dehecq, A., Goldberg, D., and
Hanna, E.: Decadal slowdown of a land-terminating sector of the Greenland
Ice Sheet despite warming, Nature, 526, 692–695,
https://doi.org/10.1038/nature15722, 2015.
Trunz, C.: Modeling and Measuring Water Level Fluctuations in the Greenland
Ice Sheet: How Moulin Life Cycle and Shape can Inform us on the Subglacial
Drainage System, PhD, University of Arkansas, Fayetteville, Arkansas, 156
pp., 2021.
Turcotte, D. L. and Schubert, G.: Geodynamics, 2nd edn., Cambridge University Press, Cambridge, ISBN 978-0521661867, 2002.
Vaňková, I., Voytenko, D., Nicholls, K. W., Xie, S., Parizek, B. R.,
and Holland, D. M.: Vertical Structure of Diurnal Englacial Hydrology Cycle
at Helheim Glacier, East Greenland, Geophys. Res. Lett., 45, 8352–8362,
https://doi.org/10.1029/2018GL077869, 2018.
Vaughan, D. G.: Tidal flexure at ice shelf margins, J. Geophys. Res.-Sol.
Ea., 100, 6213–6224, https://doi.org/10.1029/94JB02467, 1995.
Walker, R. T., Parizek, B. R., Alley, R. B., and Nowicki, S. M. J.: A Viscoelastic Model of Ice Stream Flow with Application to Stick-Slip Motion, Front. Earth Sci., 4, https://doi.org/10.3389/feart.2016.00002, 2016.
Weertman, J.: Theory of water-filled crevasses in glaciers applied to
vertical magma transport beneath oceanic ridges, J. Geophys. Res., 76,
1171–1183, https://doi.org/10.1029/JB076i005p01171, 1971.
Weertman, J.: Can a water-filled crevasse reach the bottom surface of a
glacier?, IASH, 95, 139–145, 1973.
Weertman, J.: Dislocation Based Fracture Mechanics, World Scientific Publishing Company, Singapore, ISBN 978-981-02-2620-6, 1996.
Werder, M. A., Schuler, T. V., and Funk, M.: Short term variations of tracer transit speed on alpine glaciers, The Cryosphere, 4, 381–396, https://doi.org/10.5194/tc-4-381-2010, 2010.
Werder, M. A., Hewitt, I. J., Schoof, C. G., and Flowers, G. E.: Modeling
channelized and distributed subglacial drainage in two dimensions, J. Geophys. Res.-Earth Surf., 118, 2140–2158,
https://doi.org/10.1002/jgrf.20146, 2013.
Williams, J. J., Gourmelen, N., and Nienow, P.: Dynamic response of the
Greenland ice sheet to recent cooling, Sci. Rep.-UK, 10, 1647,
https://doi.org/10.1038/s41598-020-58355-2, 2020.
Wright, P. J., Harper, J. T., Humphrey, N. F., and Meierbachtol, T. W.:
Measured basal water pressure variability of the western Greenland Ice
Sheet: Implications for hydraulic potential, J. Geophys. Res.-Earth Surf.,
121, 2016JF003819, https://doi.org/10.1002/2016JF003819, 2016.
Yang, K. and Smith, L. C.: Internally drained catchments dominate
supraglacial hydrology of the southwest Greenland Ice Sheet, J. Geophys. Res.-Earth Surf., 121, 2016JF003927, https://doi.org/10.1002/2016JF003927, 2016.
Yang, K., Smith, L. C., Chu, V. W., Pitcher, L. H., Gleason, C. J.,
Rennermalm, A. K., and Li, M.: Fluvial morphometry of supraglacial river
networks on the southwest Greenland Ice Sheet, GISci. Remote Sens., 53, 459–482,
https://doi.org/10.1080/15481603.2016.1162345, 2016.
Short summary
We introduce a model for moulin geometry motivated by the wide range of sizes and shapes of explored moulins. Moulins comprise 10–14 % of the Greenland englacial–subglacial hydrologic system and act as time-varying water storage reservoirs. Moulin geometry can vary approximately 10 % daily and over 100 % seasonally. Moulin shape modulates the efficiency of the subglacial system that controls ice flow and should thus be included in hydrologic models.
We introduce a model for moulin geometry motivated by the wide range of sizes and shapes of...