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Elastic deformation around a cylindrical hole in ice

Supplement S1 for “Controls on Greenland moulin geometry and evolution from the 
Moulin Shape model”, The Cryosphere.

Contents

S1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

S1.2 Aadnøy’s setup and stress solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

S1.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

S1.2.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

S1.3 Integrated elastic deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

S1.4 Simplest case: Non-varying deviatoric and shear stresses . . . . . . . . . . . . . . . . 5

S1.5 Instantaneous elastic deformation and calculated deformation rates . . . . . . . . . 5

S1.1 Introduction

Here we describe the derivation of the elastic deformation component of the MouSh model. It is 
based on Aadnøy 1987 .

Bernt Aadnøy, a petroleum engineer, derived expressions for the stresses surrounding a bore-

hole (wellbore) through competent rock Aadnøy, 1987 . He applied the Kirsch 1898  solutions 
for a circular hole in a plate, stacking many plates to achieve a borehole. He derives an ana-lytic 
solution for the stress field near a cylindrical borehole through a uniform, solid (non-porous) 
medium. From the stress solution, we derive the resulting strains using an elastic constitutive 
relation (Hooke’s Law) and integrate the strains to get the total elastic deformation at the borehole 
wall. We take this borehole through rock as a direct analogue to a moulin through ice.

We treat the moulin as a stack of independent plates, each with a hole in them, of radius a. The 
radius of the hole in each plate (equivalently, at each elevation z) is independent of the radius in 
the plate above and below, but generally, a(z) is smoothly varying because the forces at each z are 
smoothly varying.
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S1.2 Aadnøy’s setup and stress solutions

Aadnøy 1987  finds the stress field around a borehole by summing the independent stress contri-

butions from three sources: hydrostatic stress (P = Pw �Pi = ⇢wg(hw �z)�⇢ig(Hi �z)), deviatoric 
stresses (�x and �y), and shear stress (⌧xy). The sign of the pressure P is “positive outward”, i.e., 
net water pressure (Pw > Pi) opens the moulin and net ice pressure (Pi > Pw) closes the moulin.

S1.2.1 Assumptions

The Aadnøy 1987  solution is based on the Kirsch 1898  equations, which describe the stresses 
around a hole when the rock is subject to deviatoric stress in one direction, but elaborates from 
them by adding a second deviatoric stress, a shear stress, and pressure. The Kirsch 1898  and 
Aadnøy 1987  equations assume that the rock (ice) is a competent linear elastic material. The 
Kirsch 1898  solution is appropriate for a material stressed below its elastic limit, or roughly one 
half its compressive strength Goodman, 1989 . The compressive strength of ice is 3–10 MPa 
Fransson, 2009 , making the elastic limit 1–5 MPa. This is equivalent to the cryostatic pressure in 

an empty borehole in ice 100–500 m thick, or the cryo/hydrostatic pressure in a borehole in ice 1–6 
km thick that is water-filled to flotation. Because moulin water levels are typically >⇠ 50% the 
flotation level and ice thicknesses are of order ⇠100–1000 m, moulins meet these requirements. We 
note that toward the beginning or end of the melt season (when water levels are lowest), and in 
thick ice (>⇠1000 m), the ice surrounding the moulin likely approaches or may exceed the elastic 
limit.

Aadnøy 1987  assumes plane strain in z, i.e., ✏z=0 (no vertical deformation anywhere). This is 
consistent with the assumptions of our overall MouSh model and is the most basic formulation in 
solid mechanics. The total absence of vertical deformation in the face of finite horizontal de-

formation can be accommodated by an effective infinite domain in the cross-sectional plane of the 
moulin (xy). We happen to make this assumption anyway by summing elastic deformation from 
the point at infinity to the moulin wall (Sect. S1.3).

Alternately, Aadnøy 1987  also presents a plane stress solution. Plane strain is appropriate for 
thin plates with free surfaces (the top and bottom, z-facing surfaces), which differs from our 
“stack of plates” domain because our stacked plates have no free surfaces (excepting the topmost 
and bottommost plates). Aadnøy 1987 ’s plane stress solution differs by a factor of        1+⌫       

from

the plane strain solution Goodman, 1989 ; for ⌫ = 0.3, this is a change of 7%. The difference is 
small and plane stress is a less appropriate formulation than plane strain.

S1.2.2 Solution

The Aadnøy 1987  solution is in cylindrical coordinates (r, ✓, z). The radius of the hole is a. Figure 
S1 shows the problem geometry.
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The Kirsch 1898  equations for stresses around a hole in an infinite plate made of an elastic 
material are as follows:
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Figure S1  Problem setup, adapted from Aadnøy 
(1987), of a borehole in a rock medium. We adapt this 
to a cylindrical moulin through ice. We use the plane 
strain case, although the plane stress case is equiva-
lent within 7%.

Here, �P is the change in pressure around the 
borehole. In the rock mechanics example, �P 
is equivalent to P , the pressure, because it as-

sumes the borehole was recently drilled. For 
the moulin case, where the water level fluctu-

ates by the minute, �P is the change in pres-

sure over the time interval in question. The 
same applies to the deviatoric stresses ��x 

and ��y and the shear stress �⌧xy: these are 
changes in the stress field over a time interval.

Applying Hooke’s Law to these equations 
yields the corresponding strain at any point in 
the domain. Hooke’s Law is just a linear com-

bination of the three stresses in Eq. S1 :

✏r = E
�1 (�r � ⌫ (�✓ + �z))

✏✓ = E
�1 (�✓ � ⌫ (�r + �z))

✏z = E
�1 (�z � ⌫ (�r + �✓))

(S2)

where E is Young’s modulus (⇠1 GPa) and ⌫ is

Poisson’s ratio (⇠0.3 for ice; unitless).

S1.3 Integrated elastic deformation

To calculate the radial expansion or contraction of moulin size, we must know the total elastic

deformation of the moulin wall. This is the spatial integral of ✏r, from the borehole wall (r = a) to

the end of the domain (r = 1). Deformation will be greatest at the borehole wall (r = a) and will

fall off to zero as r ! 1.
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Integrating Eq. S2  over r|a   1  entails integrating each stress from Eq. S1  over the same limits,

1

then summing them together with the appropriate constants involved. So, must simply integrate 
all the r-dependent terms in the Eq. S1  stresses over r|a 

. We ignore any constant (r-independent)

terms in Eq. S1  because these do not contribute to spatially varying deformation.

Eq. S1  with the constants removed are as follows:
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Indefinite integrals of Eq. S3  are as follows:
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These all have dimensions of Pa·m.

Next, we evaluate definite integrals of Eq. S4 , over r|a1. Every term in the r ! 1 expressions

go to zero. Similarly, all tangential variations (coordinate ✓) do not affect moulin size, so we replace

all cos 2✓ or sin 2✓ with its average absolute value,
1
2 . This gives
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Finally, we take a linear combination of Eq . S5 : a sum with the appropriate coefficients from 
Hooke’s Law (Eq. S2) to get the strain in the r, ✓, and z directions, although we discard strain in
the ✓ or z directions. We thus obtain ur, the total radial deformation in r, by ur =

R a
1 ✏rdr.
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In the moulin model, we assume that all pressure changes �P are due to changes in water level 
�hw and that the ice thickness Hi stays constant. Thus, �P = ⇢wg(�hw � z) = �Pw.

As a check, the integrated displacement ur (Eq. S6) increases with moulin radius a. This makes 
sense as a tighter radius of curvature (low a) is more difficult to deform radially (low ur). Inward 
deformation (moulin closure) will have negative ur and outward deformation (moulin expansion) 
will have positive ur.

For a typical Greenland Ice Sheet moulin with radius a ⇠1 meter, the pressure change associ-

ated with �hw ⇠1 meter will induce elastic deformation of a few micrometers. This water level 
change would typically occur over many minutes to a few hours, yielding elastic deformation of 
up to some 10�4 

meters per day.

S1.4 Simplest case: Non-varying deviatoric and shear stresses

The deviatoric and shear stresses �x, �y and ⌧xy are generally not well know and are variable 
from place to place in the ablation zone. The spatial variation typically occurs over scales of a few 
kilometers, and the range may be roughly [–50 kPa +50 kPa]. However, Eq. (S6) uses their changes 
over a time interval, ��x, ��y and �⌧xy. For a moulin advecting through the ablation zone at 
⇠100 m/yr, the stress changes ��x, ��y and �⌧xy are trivial (⇠1 kPa) over a melt season. Thus, we 
make a further simplification that ��x = ��y = �⌧xy = 0, which yields the most basic expression 
for radial elastic deformation ur:

ur =
a

E
(1 + ⌫)�P (S7)

This is the same equation as is commonly used for dilatometer testing in rock mechanics 
(Goodman, 1989, page 190).

S1.5 Instantaneous elastic deformation and calculated deformation rates

Elastic displacement is an instantaneous process that occurs in reaction to a change in stress. In 
the case of a moulin during the melt season, the water level in the moulin changes essentially
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continuously, which induces continuous changes in pressure (�P ), which drives continuous elas-

tic deformation (Eqs. S6 and S7), although we calculate it only once per timestep. To compare 
elastic deformation (instantaneous) to viscous deformation (occurring over a time interval), we 
assume the deformation rate occurs over the entire timestep:

elastic deformation rate =
ur

�t
(S8)

This is analogous to how we calculate a viscous deformation rate or a rate of refreezing.

More precisely, one could express this in terms of the rate of pressure change,
�P
�t :

ur

�t
=

a

E
(1 + ⌫)a

�P

�t
(S9)

This approach assumes that the water pressure varies smoothly over the time interval in question. 
This is generally true: we run the model at 5-minute timesteps, and the most common discontin-

uous variations in pressure are likely sourced from rain storms or other sudden melt events (time 
scales of hours).
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MouSh sensitivity to model choices 
 

Supplement S2 for “Controls on Greenland moulin geometry and evolution from the Moulin 
Shape model”, The Cryosphere. 

 
S2.1 The impact of diurnal supraglacial variability 
 

Under steadily varying conditions, the modeled moulin should reach a quasi-equilibrium state independent of initial 
conditions with melting opposing viscous and elastic deformation below the water line and the only change being 
driven by shear deformation. We examine the quasi-equilibrium state and the impact of supraglacial variability on this 
state. Increasing the amplitude of the diurnal Qin signal results in an increase in the mean water level but very little 
change in the moulin radius at the mean water level apart from an amplitude of zero (Fig. S2). The magnitude of the 
Qin signal impacts both the mean moulin water level and the radius at that water level (Fig. S3). The changes in mean 
moulin water level in response to variations in Qin amplitude and magnitude are non-linear (Fig. S4). Further 
description is included in Sect. 2.5.1 and 3.1. 

 
Figure S2. The impact of the Qin amplitude (a) on moulin water level (b) and the major moulin radius at the mean 
moulin water level over the last 24 h (c) for five different Qin amplitudes, 0 m3 s-1 (red), 0.25 m3 s-1 (orange), 0.5 m3 s-

1 (dark yellow), 1 m3 s-1 (mid-blue), 2 m3 s-1 (dark blue). Mean or quasi-equilibrium water levels indicated in (c). All 
runs have a magnitude of 5 m3 s-1. Ice thickness is 553 m with flotation at approximately 503 m. 
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Figure S3. The impact of the Qin magnitude (a) on moulin water level (b) and the major moulin radius at the mean 
moulin water level over the last 24 h (c) for five different Qin magnitudes, 1 m3 s-1 (blue) 3 m3 s-1 (light blue), 5 m3 s-1 

(dark yellow), 10 m3 s-1 (orange), 20 m3 s-1 (red). Mean water levels indicated in (c). All runs have an amplitude of 0.5 
m3 s-1. Ice thickness is 553 m with flotation at approximately 503 m. 
 

 
Figure S4. Mean moulin water level as a function of Qin magnitude (triangles) and amplitude (circles). Colored as 
indicated in Figures S6 and S7: Qin magnitudes, 1 m3 s-1 (red), 3 m3 s-1 (orange), 5 m3 s-1 (dark yellow), 10 m3 s-1 (light 
blue), 20 m3 s-1 (blue); Qin amplitudes, 0 m3 s-1 (red), 0.25 m3 s-1 (orange), 0.5 m3 s-1 (dark yellow), 1 m3 s-1 (light blue), 
2 m3 s-1 (dark blue). 
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S2.2 Sensitivity to model choices 
 

We perform a set of experiments to examine the impact of various parameterizations and model choices on the MouSh 
modeled moulin water level and moulin capacity, two components of a moulin that can directly impact the englacial 
and subglacial hydrologic systems. In each model run, all characteristics and forcings are kept the same as in the 
control run, except the parameterization or value of interest. Specific details are detailed below, and the results of 
these exploratory runs are in Figure S5 and Figure S6. All moulin water level differences are presented as test – control 
and percentage differences are (test – control) / control. 
 
S2.2.1 Control run 
The control run is the Basin 1 experiment detailed in Sect. 2.5.2 and Table 2, with the exception that diurnal variability 
of Qin is reduced by 30% to prohibit prolonged periods when daily peak water levels overtop the moulin. 
 
S2.2.2 Circular geometry (Experiment 1) 
The circular run prescribes a circular instead of a semi-elliptical cross-sectional area. In practice, this simply means 
that open channel melting above the water line is applied uniformly around the moulin perimeter (instead of only to 
r2 as in the semi-elliptical formulation) such that the moulin plan view cross-sectional area is circular and only one 
radius is evolved. Deformation due to elastic, viscous and turbulent melting below the water line is then only calculated 
for the single radius. This parameterization removes any asymmetry. Both runs have the same initial circular plan 
view cross-sectional area.  
 
The use of a circular geometry has little impact on moulin water level over the course of the melt season (Fig. S5a). 
Compared to the control run, the circular geometry generally exhibits slight increases in moulin water level (< 0.5 m). 
These increases become slightly higher at higher Qin values. The primary difference comes in the moulin capacity: the 
circular geometry can to 31% smaller than the control moulin as the end of the melt season approaches (Fig. S5b). 
This difference is concentrated in regions that are not generally water filled except at high water levels, thus has 
limited impact on moulin water level. This difference is the result of the control moulin run becoming more elliptical. 
 
S2.2.3 Elastic deformation (Experiment 2) 
For completeness, we include elastic deformation within the moulin model. Our formulation is dependent on the 
change in moulin water level and moulin radii (Supplement Sect. 1). Thus, elastic deformation within MouSh is 
substantially smaller than viscous deformation due to the relatively small moulin radii modeled here. We examine 
whether the inclusion of elastic deformation impacts moulin water level and capacity by performing a run without 
elastic deformation.  
 
In its current formulation, the exclusion of elastic deformation has almost no impact on moulin water level and capacity 
(Fig. S5c and d). This comparison suggests that the simplifying case (no elastic deformation) has minimal impact on 
the model results. 
 
S2.2.4 Distance from terminus (Experiment 3) 
In our parameterization of the subglacial model, the hydraulic gradient is set by the water level in the moulin and the 
distance from the terminus. Because the hydraulic gradient exerts an important control over both the subglacial channel 
and moulin evolution, we examine the impact of different subglacial lengths (L). We compare the control run, L = 
13.6 km, to model runs with one half, L = 6.8 km, and one and one half, L =20.4 km, while using the same ice thickness 
(553 m). This change directly impacts the hydraulic gradient calculated in Eq. (24).  
 
Modifying the distance from terminus and the associated hydraulic gradient can result in substantial changes to both 
the moulin water level (+/– ~100m) and moulin capacity (+/– ~30%; Fig. S5e and f). Shortening L reduces both moulin 
water level and moulin capacity. Lower water levels reduce water velocities and allows viscous and elastic 
deformation to increase, resulting in a smaller moulin. While increasing L results in higher moulin water levels and a 
larger moulin. Higher moulin water levels increase turbulent melting linearly and reduce viscous and elastic 
deformation non-linearly. In addition, with a longer L, the moulin has more instances of water level being above 
floatation, which permits viscous and elastic deformation to open the moulin. The difference in moulin water levels 
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tends to be exacerbated during higher Qin values (Fig. S5e), resulting in larger differences from the control run during 
the middle of the melt season and less impact during the onset and cessation of melting. 
 
S2.2.5 Base flow (Experiment 4) 
Our simple parameterization of the subglacial system means that the model represents only a single moulin and a long 
channel. This is an oversimplification of what is generally a complex arborescent network (e.g., Werder et al., 2013) 
with multiple moulins along a single channel (Andrews et al., 2014). To parameterize this connectivity, we prescribe 
a base flow term to be five times the 5-day lagged moving average moulin input directly into the subglacial channel 
(Fig. 6a). This definition removes diurnal signals but preserves melt events and the seasonal pattern of melt. Without 
baseflow, MouSh can produce unrealistically high-water levels with realistic meltwater inputs. While an alternative 
would be to either substantially dampen the diurnal variability or increase moulin inputs, we believe that our current 
approach best approximates the natural system. Unfortunately, prescribing a larger initial subglacial cross-sectional 
area does not mitigate the above problem because moulin and subglacial channel size are not dependent on the initial 
conditions after the first few weeks. Here we examine the impact of reducing the base flow to two times the 5-day 
lagged moving average.  
 
The prescribed base flow acts to maintain a larger subglacial channel and permits more rapid growth due to melting; 
this behavior is non-linear. Therefore, reducing the amount of base flow into the subglacial system reduces the ability 
of the subglacial channel to accommodate the large diurnal swings in Qin. Therefore, a reduction in base flow results 
in higher moulin water levels for much of the model run (Fig. S5g). Interestingly, during diurnal minimums, the water 
levels are lower in the low base flow run relative to the control (negative values in Fig S5g). This is likely due to 
greater moulin growth (increased turbulent melting and reduced or negative viscous and elastic deformation) 
associated with higher water levels. The moulin capacity difference displays a clear seasonal pattern (Fig. S5h). During 
the tails of the melt season, the lower base flow run exhibits a similar capacity to the control, but as diurnal variability 
and maximum daily water levels increase, the low baseflow moulin begins to grow relative to the control moulin.  
 
S2.2.6 Static subglacial geometry (Experiment 5) 
The MouSh model is meant to model moulin geometry. However, to permit water flow through the moulin, we include 
a simple time-evolving subglacial channel (Sect. 2.4.2). A fixed subglacial channel would, in essence, provide the 
simplest subglacial component. However, a fixed subglacial channel results in both extremely low and extremely high 
moulin water levels when Qin values are both high and low, respectively; therefore, during an experiment with 
seasonally evolving Qin, the subglacial channel size must be chosen very carefully to produce vaguely realistic moulin 
water levels and capacities. Therefore, we examine the impact of fixing the subglacial cross-sectional area S using a 
co-sinusoidal supraglacial of 40 days,as described in Eq. (22). For this comparison, we fix S = 1.95 m2 (Fixed S), 
which is equal to the mean value of the subglacial channel cross-sectional area in the control experiment; this 
minimizes differences between the runs.  
 
The moulin with a fixed subglacial cross-sectional area has similar quasi-equilibrium water levels but less diurnal 
variability (Fig. 6b). The model run with a fixed subglacial channel also displays a slightly lower radius at the mean 
water level of the last 10 experiment days. The primary conclusion here is that the moulin geometry and variability is, 
at least in part, driven by the characteristics of the subglacial hydrologic model used. Such dependency is not 
uncommon in models of the glacial hydrologic system. For example, the presence of modeled channels is dependent 
on the prescribed location of supraglacial inputs and prescribed conductivity of the surrounding system. Therefore, 
the subglacial model used with the MouSh model should be carefully considered. 
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Figure S5. Moulin water level and capacity differences relative to the Basin 1 (Hi = 553 m) control run for a circular 
geometry (a-b); elastic deformation (c-d); varying distances from the terminus or subglacial path length (L; e-f); and 
a reduced baseflow (g-h). In all panels on the left-hand side, the differences are experiment minus control. In all panels 
on the right-hand side, moulin capacity is plotted as a percent difference from the control run such that positive values 
indicate a capacity larger than the control run and negative values indicate a capacity smaller than the control run. 
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Figure S6. Moulin water level (a) and moulin radius at the mean water level (b) from experiments with variable 
subglacial S (Control; black) and a fixed subglacial cross-sectional area of 1.95 m2 (Fixed S; purple).  
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