Articles | Volume 16, issue 5
https://doi.org/10.5194/tc-16-1997-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-1997-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A quantitative method of resolving annual precipitation for the past millennia from Tibetan ice cores
Wangbin Zhang
School of Geography and Ocean Science, Nanjing University, Nanjing
210023, China
Shugui Hou
CORRESPONDING AUTHOR
School of Geography and Ocean Science, Nanjing University, Nanjing
210023, China
Collaborative Innovation Center of Climate Change, Jiangsu Province, Nanjing, China
School of Oceanography, Shanghai Jiao Tong University, Shanghai
200240, China
Shuang-Ye Wu
Department of Geology and Environmental Geosciences, University of
Dayton, Dayton, OH 45469, USA
Hongxi Pang
School of Geography and Ocean Science, Nanjing University, Nanjing
210023, China
Collaborative Innovation Center of Climate Change, Jiangsu Province, Nanjing, China
Sharon B. Sneed
Climate Change Institute, University of Maine, Orono, ME 04469, USA
Elena V. Korotkikh
Climate Change Institute, University of Maine, Orono, ME 04469, USA
Paul A. Mayewski
Climate Change Institute, University of Maine, Orono, ME 04469, USA
Theo M. Jenk
Laboratory of Environmental Chemistry, Paul Scherrer Institute,
5232 Villigen PSI, Switzerland
Oeschger Centre for Climate Change Research, University of Bern,
Sidlerstrasse 5, 3012 Bern, Switzerland
Margit Schwikowski
Laboratory of Environmental Chemistry, Paul Scherrer Institute,
5232 Villigen PSI, Switzerland
Oeschger Centre for Climate Change Research, University of Bern,
Sidlerstrasse 5, 3012 Bern, Switzerland
Related authors
Tao Xu, Hongxi Pang, Zhaojun Zhan, Wangbin Zhang, Huiwen Guo, Shuangye Wu, and Shugui Hou
Hydrol. Earth Syst. Sci., 26, 117–127, https://doi.org/10.5194/hess-26-117-2022, https://doi.org/10.5194/hess-26-117-2022, 2022
Short summary
Short summary
In this study, we presented stable isotopes in atmospheric water vapor and precipitation for five extreme winter precipitation events in Nanjing, southeastern China, from December 2018 to February 2019. Our results imply that multiple moisture sources and the rapid shift among them are important conditions for sustaining extreme precipitation events, especially in the relatively cold and dry winter.
Shugui Hou, Wangbin Zhang, Ling Fang, Theo M. Jenk, Shuangye Wu, Hongxi Pang, and Margit Schwikowski
The Cryosphere, 15, 2109–2114, https://doi.org/10.5194/tc-15-2109-2021, https://doi.org/10.5194/tc-15-2109-2021, 2021
Short summary
Short summary
We present ages for two new ice cores reaching bedrock, from the Zangser Kangri (ZK) glacier in the northwestern Tibetan Plateau and the Shulenanshan (SLNS) glacier in the western Qilian Mountains. We estimated bottom ages of 8.90±0.57/0.56 ka and 7.46±1.46/1.79 ka for the ZK and SLNS ice core respectively, constraining the time range accessible by Tibetan ice cores to the Holocene.
David Wachs, Azzurra Spagnesi, Pascal Bohleber, Andrea Fischer, Martin Stocker-Waldhuber, Alexander Junkermann, Carl Kindermann, Linus Langenbacher, Niclas Mandaric, Joshua Marks, Florian Meienburg, Theo Jenk, Markus Oberthaler, and Werner Aeschbach
EGUsphere, https://doi.org/10.5194/egusphere-2025-3681, https://doi.org/10.5194/egusphere-2025-3681, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
This study presents an age profile of the summit glacier of Weißseespitze in the Austrian Alps. The ages were obtained by combining 14C dating with the novel atom trap trace analysis for 39Ar. The data was used to constrain glacier age models. The results show that the surface ice is ~400 a old due to recent ice loss. The remaining ice continuously covers ages up to 6000 a. This work underscores the utility of 39Ar dating in glaciology, enabling precise reconstruction of age-depth relationships.
Paolo Gabrielli, Theo M. Jenk, Michele Bertó, Giuliano Dreossi, Daniela Festi, Werner Kofler, Mai Winstrup, Klaus Oeggl, Margit Schwikowski, Barbara Stenni, and Carlo Barbante
EGUsphere, https://doi.org/10.5194/egusphere-2025-2174, https://doi.org/10.5194/egusphere-2025-2174, 2025
Short summary
Short summary
A low latitude-high altitude Alpine ice core record was obtained in 2011 from the glacier Alto dell’Ortles (Eastern Alps, Italy) and provided evidence of one of the oldest Alpine ice core records spanning the last ~7000 years, back to the last Northern Hemisphere Climatic Optimum. Here we provide a new Alto dell’Ortles chronology of improved accuracy that will allow to constrain Holocene climatic and environmental histories emerging from this high-altitude glacial archive of Central Europe.
Johanna Schäfer, Anja Beschnitt, François Burgay, Thomas Singer, Margit Schwikowski, and Thorsten Hoffmann
Atmos. Meas. Tech., 18, 421–430, https://doi.org/10.5194/amt-18-421-2025, https://doi.org/10.5194/amt-18-421-2025, 2025
Short summary
Short summary
Glaciers preserve organic compounds from atmospheric aerosols, which can serve as markers for emission sources. Most studies overlook the enantiomers of chiral compounds. We developed a two-dimensional liquid chromatography method to determine the chiral ratios of the monoterpene oxidation products cis-pinic acid and cis-pinonic acid in ice-core samples. Applied to samples from the Belukha Glacier (1870–1970 CE), the method revealed fluctuating chiral ratios for the analytes.
Di Wang, Camille Risi, Lide Tian, Di Yang, Gabriel Bowen, Siteng Fan, Yang Su, Hongxi Pang, and Laurent Li
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-151, https://doi.org/10.5194/amt-2024-151, 2024
Preprint under review for AMT
Short summary
Short summary
We developed and validated a theoretical model for water vapor diffusion through sampling bags. This model accurately reconstructs the initial isotopic composition of the vapor samples. When applied to upper troposphere samples, the corrected data aligned closely with IASI satellite observations, enhancing the accuracy of drone-based measurements.
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024, https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
Short summary
An integrated cryospheric–hydrologic model, FLEX-Cryo, was developed that considers glaciers, snow cover, and frozen soil and their dynamic impacts on hydrology. We utilized it to simulate future changes in cryosphere and hydrology in the Hulu catchment. Our projections showed the two glaciers will melt completely around 2050, snow cover will reduce, and permafrost will degrade. For hydrology, runoff will decrease after the glacier has melted, and permafrost degradation will increase baseflow.
Elena Di Stefano, Giovanni Baccolo, Massimiliano Clemenza, Barbara Delmonte, Deborah Fiorini, Roberto Garzonio, Margit Schwikowski, and Valter Maggi
The Cryosphere, 18, 2865–2874, https://doi.org/10.5194/tc-18-2865-2024, https://doi.org/10.5194/tc-18-2865-2024, 2024
Short summary
Short summary
Rising temperatures are impacting the reliability of glaciers as environmental archives. This study reports how meltwater percolation affects the distribution of tritium and cesium, which are commonly used as temporal markers in dating ice cores, in a temperate glacier. Our findings challenge the established application of radionuclides for dating mountain ice cores and indicate tritium as the best choice.
Horst Machguth, Anja Eichler, Margit Schwikowski, Sabina Brütsch, Enrico Mattea, Stanislav Kutuzov, Martin Heule, Ryskul Usubaliev, Sultan Belekov, Vladimir N. Mikhalenko, Martin Hoelzle, and Marlene Kronenberg
The Cryosphere, 18, 1633–1646, https://doi.org/10.5194/tc-18-1633-2024, https://doi.org/10.5194/tc-18-1633-2024, 2024
Short summary
Short summary
In 2018 we drilled an 18 m ice core on the summit of Grigoriev ice cap, located in the Tien Shan mountains of Kyrgyzstan. The core analysis reveals strong melting since the early 2000s. Regardless of this, we find that the structure and temperature of the ice have changed little since the 1980s. The probable cause of this apparent stability is (i) an increase in snowfall and (ii) the fact that meltwater nowadays leaves the glacier and thereby removes so-called latent heat.
Emma Nilsson, Carmen Paulina Vega, Dmitry Divine, Anja Eichler, Tonu Martma, Robert Mulvaney, Elisabeth Schlosser, Margit Schwikowski, and Elisabeth Isaksson
EGUsphere, https://doi.org/10.5194/egusphere-2023-3156, https://doi.org/10.5194/egusphere-2023-3156, 2024
Preprint withdrawn
Short summary
Short summary
To project future climate change it is necessary to understand paleoclimate including past sea ice conditions. We have investigated methane sulphonic acid (MSA) in Antarctic firn and ice cores to reconstruct sea ice extent (SIE) and found that the MSA – SIE as well as the MSA – phytoplankton biomass relationship varies across the different firn and ice cores. These inconsistencies in correlations across records suggest that MSA in Fimbul Ice Shelf cores does not reliably indicate regional SIE.
Ling Fang, Theo M. Jenk, Dominic Winski, Karl Kreutz, Hanna L. Brooks, Emma Erwin, Erich Osterberg, Seth Campbell, Cameron Wake, and Margit Schwikowski
The Cryosphere, 17, 4007–4020, https://doi.org/10.5194/tc-17-4007-2023, https://doi.org/10.5194/tc-17-4007-2023, 2023
Short summary
Short summary
Understanding the behavior of ocean–atmosphere teleconnections in the North Pacific during warm intervals can aid in predicting future warming scenarios. However, majority ice core records from Alaska–Yukon region only provide data for the last few centuries. This study introduces a continuous chronology for Denali ice core from Begguya, Alaska, using multiple dating methods. The early-Holocene-origin Denali ice core will facilitate future investigations of hydroclimate in the North Pacific.
Anja Eichler, Michel Legrand, Theo M. Jenk, Susanne Preunkert, Camilla Andersson, Sabine Eckhardt, Magnuz Engardt, Andreas Plach, and Margit Schwikowski
The Cryosphere, 17, 2119–2137, https://doi.org/10.5194/tc-17-2119-2023, https://doi.org/10.5194/tc-17-2119-2023, 2023
Short summary
Short summary
We investigate how a 250-year history of the emission of air pollutants (major inorganic aerosol constituents, black carbon, and trace species) is preserved in ice cores from four sites in the European Alps. The observed uniform timing in species-dependent longer-term concentration changes reveals that the different ice-core records provide a consistent, spatially representative signal of the pollution history from western European countries.
Yetang Wang, Xueying Zhang, Wentao Ning, Matthew A. Lazzara, Minghu Ding, Carleen H. Reijmer, Paul C. J. P. Smeets, Paolo Grigioni, Petra Heil, Elizabeth R. Thomas, David Mikolajczyk, Lee J. Welhouse, Linda M. Keller, Zhaosheng Zhai, Yuqi Sun, and Shugui Hou
Earth Syst. Sci. Data, 15, 411–429, https://doi.org/10.5194/essd-15-411-2023, https://doi.org/10.5194/essd-15-411-2023, 2023
Short summary
Short summary
Here we construct a new database of Antarctic automatic weather station (AWS) meteorological records, which is quality-controlled by restrictive criteria. This dataset compiled all available Antarctic AWS observations, and its resolutions are 3-hourly, daily and monthly, which is very useful for quantifying spatiotemporal variability in weather conditions. Furthermore, this compilation will be used to estimate the performance of the regional climate models or meteorological reanalysis products.
Jiajia Wang, Hongxi Pang, Shuangye Wu, Spruce W. Schoenemann, Ryu Uemura, Alexey Ekaykin, Martin Werner, Alexandre Cauquoin, Sentia Goursaud Oger, Summer Rupper, and Shugui Hou
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-384, https://doi.org/10.5194/essd-2022-384, 2022
Revised manuscript not accepted
Short summary
Short summary
Stable water isotopic observations in surface snow over Antarctica provide a basis for validating isotopic models and interpreting Antarctic ice core records. This study presents a new compilation of Antarctic surface snow isotopic dataset based on published and unpublished sources. The database has a wide range of potential applications in studying spatial distribution of water isotopes, model validation, and reconstruction and interpretation of Antarctic ice core records.
Lenneke M. Jong, Christopher T. Plummer, Jason L. Roberts, Andrew D. Moy, Mark A. J. Curran, Tessa R. Vance, Joel B. Pedro, Chelsea A. Long, Meredith Nation, Paul A. Mayewski, and Tas D. van Ommen
Earth Syst. Sci. Data, 14, 3313–3328, https://doi.org/10.5194/essd-14-3313-2022, https://doi.org/10.5194/essd-14-3313-2022, 2022
Short summary
Short summary
Ice core records from Law Dome in East Antarctica, collected over the the last 3 decades, provide high-resolution data for studies of the climate of Antarctica, Australia and the Southern and Indo-Pacific oceans. Here, we present a set of annually dated records from Law Dome covering the last 2000 years. This dataset provides an update and extensions both forward and back in time of previously published subsets of the data, bringing them together into a coherent set with improved dating.
Paolo Gabrielli, Theo Manuel Jenk, Michele Bertó, Giuliano Dreossi, Daniela Festi, Werner Kofler, Mai Winstrup, Klaus Oeggl, Margit Schwikowski, Barbara Stenni, and Carlo Barbante
Clim. Past Discuss., https://doi.org/10.5194/cp-2022-20, https://doi.org/10.5194/cp-2022-20, 2022
Revised manuscript not accepted
Short summary
Short summary
We present a methodology that reduces the chronological uncertainty of an Alpine ice core record from the glacier Alto dell’Ortles, Italy. This chronology will allow the constraint of the Holocene climatic and environmental histories emerging from this archive of Central Europe. This method will allow to obtain accurate chronologies also from other ice cores from-low latitude/high-altitude glaciers that typically suffer from larger dating uncertainties compared with well dated polar records.
Tao Xu, Hongxi Pang, Zhaojun Zhan, Wangbin Zhang, Huiwen Guo, Shuangye Wu, and Shugui Hou
Hydrol. Earth Syst. Sci., 26, 117–127, https://doi.org/10.5194/hess-26-117-2022, https://doi.org/10.5194/hess-26-117-2022, 2022
Short summary
Short summary
In this study, we presented stable isotopes in atmospheric water vapor and precipitation for five extreme winter precipitation events in Nanjing, southeastern China, from December 2018 to February 2019. Our results imply that multiple moisture sources and the rapid shift among them are important conditions for sustaining extreme precipitation events, especially in the relatively cold and dry winter.
Yuzhen Yan, Nicole E. Spaulding, Michael L. Bender, Edward J. Brook, John A. Higgins, Andrei V. Kurbatov, and Paul A. Mayewski
Clim. Past, 17, 1841–1855, https://doi.org/10.5194/cp-17-1841-2021, https://doi.org/10.5194/cp-17-1841-2021, 2021
Short summary
Short summary
Here we reconstruct the rate of snow accumulation during the Last Interglacial period in an East Antarctic ice core located near the present-day northern edge of the Ross Ice Shelf. We find an order-of-magnitude increase in the accumulation rate during the peak warming in the Last Interglacial. This large increase in mass accumulation is compatible with less ice cover in the Ross Sea, perhaps created by a partly collapsed West Antarctic Ice Sheet, whose stability in a warming world is uncertain.
Daniela Festi, Margit Schwikowski, Valter Maggi, Klaus Oeggl, and Theo Manuel Jenk
The Cryosphere, 15, 4135–4143, https://doi.org/10.5194/tc-15-4135-2021, https://doi.org/10.5194/tc-15-4135-2021, 2021
Short summary
Short summary
In our study we dated a 46 m deep ice core retrieved from the Adamello glacier (Central Italian Alps). We obtained a timescale combining the results of radionuclides 210Pb and 137Cs with annual layer counting derived from pollen and refractory black carbon concentrations. Our results indicate that the surface of the glacier is older than the drilling date of 2016 by about 20 years, therefore revealing that the glacier is at high risk of collapsing under current climate warming conditions.
Rafael S. dos Reis, Rafael da Rocha Ribeiro, Barbara Delmonte, Edson Ramirez, Norberto Dani, Paul A. Mayewski, and Jefferson C. Simões
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-186, https://doi.org/10.5194/tc-2021-186, 2021
Revised manuscript not accepted
Short summary
Short summary
The ice-core recovered in Peruvian Andes depicts the 12 years of dust particles data in snow accumulation. The seasonality of the dry and wet season, respectively, are represented by high and low dust concentration in profile. Our observations period show the differences between fine and larger particles concentrations over the years and their correlation with oceanic oscillations phenomena. Also, we introduce the link of the dust groupings with Madeira River in the Amazon basin context.
Yetang Wang, Minghu Ding, Carleen H. Reijmer, Paul C. J. P. Smeets, Shugui Hou, and Cunde Xiao
Earth Syst. Sci. Data, 13, 3057–3074, https://doi.org/10.5194/essd-13-3057-2021, https://doi.org/10.5194/essd-13-3057-2021, 2021
Short summary
Short summary
Accurate observation of surface mass balance (SMB) under climate change is essential for the reliable present and future assessment of Antarctic contribution to global sea level. This study presents a new quality-controlled dataset of Antarctic SMB observations at different temporal resolutions and is the first ice-sheet-scale compilation of multiple types of measurements. The dataset can be widely applied to climate model validation, remote sensing retrievals, and data assimilation.
Shugui Hou, Wangbin Zhang, Ling Fang, Theo M. Jenk, Shuangye Wu, Hongxi Pang, and Margit Schwikowski
The Cryosphere, 15, 2109–2114, https://doi.org/10.5194/tc-15-2109-2021, https://doi.org/10.5194/tc-15-2109-2021, 2021
Short summary
Short summary
We present ages for two new ice cores reaching bedrock, from the Zangser Kangri (ZK) glacier in the northwestern Tibetan Plateau and the Shulenanshan (SLNS) glacier in the western Qilian Mountains. We estimated bottom ages of 8.90±0.57/0.56 ka and 7.46±1.46/1.79 ka for the ZK and SLNS ice core respectively, constraining the time range accessible by Tibetan ice cores to the Holocene.
Ling Fang, Theo M. Jenk, Thomas Singer, Shugui Hou, and Margit Schwikowski
The Cryosphere, 15, 1537–1550, https://doi.org/10.5194/tc-15-1537-2021, https://doi.org/10.5194/tc-15-1537-2021, 2021
Short summary
Short summary
The interpretation of the ice-core-preserved signal requires a precise chronology. Radiocarbon (14C) dating of the water-insoluble organic carbon (WIOC) fraction has become an important dating tool. However, this method is restricted by the low concentration in the ice. In this work, we report first 14C dating results using the dissolved organic carbon (DOC) fraction. The resulting ages are comparable in both fractions, but by using the DOC fraction the required ice mass can be reduced.
Filipe G. L. Lindau, Jefferson C. Simões, Barbara Delmonte, Patrick Ginot, Giovanni Baccolo, Chiara I. Paleari, Elena Di Stefano, Elena Korotkikh, Douglas S. Introne, Valter Maggi, Eduardo Garzanti, and Sergio Andò
The Cryosphere, 15, 1383–1397, https://doi.org/10.5194/tc-15-1383-2021, https://doi.org/10.5194/tc-15-1383-2021, 2021
Short summary
Short summary
Information about the past climate variability in tropical South America is stored in the snow layers of the tropical Andean glaciers. Here we show evidence that the presence of very large aeolian mineral dust particles at Nevado Illimani (Bolivia) is strictly controlled by the occurrence of summer storms in the Bolivian Altiplano. Therefore, based on the snow dust content and its composition of stable water isotopes, we propose a new proxy for information on previous summer storms.
Sebastian Hellmann, Johanna Kerch, Ilka Weikusat, Andreas Bauder, Melchior Grab, Guillaume Jouvet, Margit Schwikowski, and Hansruedi Maurer
The Cryosphere, 15, 677–694, https://doi.org/10.5194/tc-15-677-2021, https://doi.org/10.5194/tc-15-677-2021, 2021
Short summary
Short summary
We analyse the orientation of ice crystals in an Alpine glacier and compare this orientation with the ice flow direction. We found that the crystals orient in the direction of the largest stress which is in the flow direction in the upper parts of the glacier and in the vertical direction for deeper zones of the glacier. The grains cluster around this maximum stress direction, in particular four-point maxima, most likely as a result of recrystallisation under relatively warm conditions.
Abhijith U. Venugopal, Nancy A. N. Bertler, Rebecca L. Pyne, Helle A. Kjær, V. Holly L. Winton, Paul A. Mayewski, and Giuseppe Cortese
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-151, https://doi.org/10.5194/cp-2020-151, 2020
Manuscript not accepted for further review
Short summary
Short summary
We present a new and highly resolved glacial record of nitrate and calcium from a deep ice core obtained from Roosevelt Island, West Antarctica. Our data show a dependent association among nitrate and non-sea salt calcium (mineral dust) as observed previously in East Antarctica. The spatial pattern indicates that mineral dust is scavenging nitrate from the atmosphere and the westerlies are dispersing the dust-bound nitrate across Antarctica, making nitrate a potential paleo-westerly wind proxy.
Guillaume Jouvet, Stefan Röllin, Hans Sahli, José Corcho, Lars Gnägi, Loris Compagno, Dominik Sidler, Margit Schwikowski, Andreas Bauder, and Martin Funk
The Cryosphere, 14, 4233–4251, https://doi.org/10.5194/tc-14-4233-2020, https://doi.org/10.5194/tc-14-4233-2020, 2020
Short summary
Short summary
We show that plutonium is an effective tracer to identify ice originating from the early 1960s at the surface of a mountain glacier after a long time within the ice flow, giving unique information on the long-term former ice motion. Combined with ice flow modelling, the dating can be extended to the entire glacier, and we show that an airplane which crash-landed on the Gauligletscher in 1946 will likely soon be released from the ice close to the place where pieces have emerged in recent years.
Dimitri Osmont, Sandra Brugger, Anina Gilgen, Helga Weber, Michael Sigl, Robin L. Modini, Christoph Schwörer, Willy Tinner, Stefan Wunderle, and Margit Schwikowski
The Cryosphere, 14, 3731–3745, https://doi.org/10.5194/tc-14-3731-2020, https://doi.org/10.5194/tc-14-3731-2020, 2020
Short summary
Short summary
In this interdisciplinary case study, we were able to link biomass burning emissions from the June 2017 wildfires in Portugal to their deposition in the snowpack at Jungfraujoch, Swiss Alps. We analysed black carbon and charcoal in the snowpack, calculated backward trajectories, and monitored the fire evolution by remote sensing. Such case studies help to understand the representativity of biomass burning records in ice cores and how biomass burning tracers are archived in the snowpack.
Cited articles
An, W., Hou, S., Zhang, W., Wu, S., Xu, H., Pang, H., Wang, Y., and Liu, Y.: Possible recent warming hiatus on the northwestern Tibetan Plateau derived from ice core records, Sci. Rep., 6, 32813,
https://doi.org/10.1038/srep32813, 2016.
Bohleber, P., Erhardt, T., Spaulding, N., Hoffmann, H., Fischer, H., and Mayewski, P.: Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium, Clim. Past, 14, 21–37, https://doi.org/10.5194/cp-14-21-2018, 2018.
Bolzan, J. F.: Ice flow at the Dome C ice divide based on a deep temperature
profile, J. Geophys. Res., 90, 8111–8124,
https://doi.org/10.1029/JD090iD05p08111, 1985.
Breitenbach, S. F. M., Rehfeld, K., Goswami, B., Baldini, J. U. L., Ridley, H. E., Kennett, D. J., Prufer, K. M., Aquino, V. V., Asmerom, Y., Polyak, V. J., Cheng, H., Kurths, J., and Marwan, N.: COnstructing Proxy Records from Age models (COPRA), Clim. Past, 8, 1765–1779, https://doi.org/10.5194/cp-8-1765-2012, 2012.
Cai, Y., Zhang, H., Cheng, H., An, Z., Edwards, R. L., Wang, X., Tan, L., Liang, F., Wang, J., and Kelly, M.: The Holocene Indian monsoon variability over the southern Tibetan Plateau and its teleconnections, Earth Planet. Sci. Lett., 335–336, 135–144, https://doi.org/10.1016/j.epsl.2012.04.035, 2012.
Clifford, H. M., Spaulding, N. E., Kurbatov, A. V., More, A., Korotkikh, E.
V., Sneed, S. B., Handley, M., Maasch, K. A., Loveluck, C. P., Chaplin, J.,
McCormick, M., and Mayewski, P. A.: A 2000 year Saharan dust event proxy
record from an ice core in the European Alps, J. Geophys. Res.-Atmos., 124,
12882–12900, https://doi.org/10.1029/2019JD030725, 2019.
Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C.
S., Carton, J. A., Chang, P., Doney, S. C., Hack, J. J., Henderson, T.
B., Kiehl, J. T., Large, W. G., McKenna, D. S., Santer, B. D., and Smith, R.
D.: The community climate system model version 3 (CCSM3), J.
Climate, 19, 2122–2143, https://doi.org/10.1175/JCLI3761.1, 2006.
Duan, K., Xu, B., and Wu, G.: Snow accumulation variability at altitude of
7010 m a.s.l. in Muztag Ata Mountain in Pamir Plateau during 1958–2002, J.
Hydrol., 531, 912–918, https://doi.org/10.1016/j.jhydrol.2015.10.013, 2015.
Gabrielli, P., Barbante, C., Bertagna, G., Bertó, M., Binder, D., Carton, A., Carturan, L., Cazorzi, F., Cozzi, G., Dalla Fontana, G., Davis, M., De Blasi, F., Dinale, R., Dragà, G., Dreossi, G., Festi, D., Frezzotti, M., Gabrieli, J., Galos, S. P., Ginot, P., Heidenwolf, P., Jenk, T. M., Kehrwald, N., Kenny, D., Magand, O., Mair, V., Mikhalenko, V., Lin, P. N., Oeggl, K., Piffer, G., Rinaldi, M., Schotterer, U., Schwikowski, M., Seppi, R., Spolaor, A., Stenni, B., Tonidandel, D., Uglietti, C., Zagorodnov, V., Zanoner, T., and Zennaro, P.: Age of the Mt. Ortles ice cores, the Tyrolean Iceman and glaciation of the highest summit of South Tyrol since the Northern Hemisphere Climatic Optimum, The Cryosphere, 10, 2779–2797, https://doi.org/10.5194/tc-10-2779-2016, 2016.
GLIMS and NSIDC: Global Land Ice Measurements from Space glacier database, International GLIMS community and the National Snow and Ice Data Center, Boulder CO, USA [data set], https://doi.org/10.7265/N5V98602, 2015 (updated 2018).
Haines, S. A., Mayewski, P. A., Kurbatov, A. V., Maasch, K. A., Sneed, S.
B., and Spaulding, N.: Ultra-high resolution snapshots of three
multi-decadal periods in Antarctic ice core, J. Glaciol., 62, 31–36,
https://doi.org/10.1017/jog.2016.5, 2016.
Hardy, D. R., Vuille, M., and Bradley, R. S.: Variability of snow
accumulation and isotopic composition on Nevado Sajama, Bolivia, J. Geophys.
Res, 108, 4693, https://doi.org/10.1029/2003JD003623, 2003.
Henderson, K., Laube, A., Gäggeler, H. W., Olivier, S., Papina, T., and
Schwikowski, M.: Temporal variations of accumulation and temperature during
the past two centuries from Belukha ice core, Siberian Altai, J. Geophys.
Res., 111, D03104, https://doi.org/10.1029/2005JD005819, 2006.
Hou, S., Qin, D., Yao, T., Zhang, D., and Chen, T.: Recent change of the ice
core accumulation rates on the Qinghai-Tibetan Plateau, Chinese Sci. Bull.,
47, 1746–1749, https://doi.org/10.1360/02tb9382, 2002.
Hou, S., Jenk, T. M., Zhang, W., Wang, C., Wu, S., Wang, Y., Pang, H., and Schwikowski, M.: Age ranges of the Tibetan ice cores with emphasis on the Chongce ice cores, western Kunlun Mountains, The Cryosphere, 12, 2341–2348, https://doi.org/10.5194/tc-12-2341-2018, 2018.
Hou, S., Zhang, W., Pang, H., Wu, S.-Y., Jenk, T. M., Schwikowski, M., and Wang, Y.: Apparent discrepancy of Tibetan ice core δ18O records may be attributed to misinterpretation of chronology, The Cryosphere, 13, 1743–1752, https://doi.org/10.5194/tc-13-1743-2019, 2019.
Hou, S., Zhang, W., Fang, L., Jenk, T. M., Wu, S., Pang, H., and Schwikowski, M.: Brief communication: New evidence further constraining Tibetan ice core chronologies to the Holocene, The Cryosphere, 15, 2109–2114, https://doi.org/10.5194/tc-15-2109-2021, 2021.
Kaspari, S., Hooke, R. L., Mayewski, P. A., Kang, S., Hou, S., and Qin, D.:
Snow accumulation rate on Qomolangma (Mount Everest), Himalaya: synchroneity
with sites across the Tibetan Plateau on 50–100 year timescale, J.
Glaciol., 54, 343–352, https://doi.org/10.3189/002214308784886126, 2008.
Kidd, C. and Huffman, G.: Global precipitation measurement, Meteorol.
Appl., 18, 334–353, https://doi.org/10.1002/met.284, 2011.
Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P.
U., Carlson, A. E., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D.,
Jacob, R., Kutzbach, J., and Cheng, J.: Transient simulation of last
deglaciation with a new mechanism for Bølling-Allerød warming,
Science, 325, 310–314, https://doi.org/10.1126/science.1171041, 2009.
Licciulli, C., Bohleber, P., Lier, J., Gagliardini, O., Hoelzle, M., and
Eisen, O.: A full Stokes ice-flow model to assist the interpretation of
millennial-scale ice cores at the high-Alpine drilling site Colle Gnifetti,
Swiss/Italian Alps, J. Glaciol., 66, 35–48,
https://doi.org/10.1017/jog.2019.82, 2020.
Massam, A., Sneed, S. B., Lee, G. P., Tuckwell, R. R., Mulvaney, R.,
Mayewski, P. A., and Whitehouse, P. L.: A comparison of annual layer
thickness model estimates with observational measurements using the Berkner
Island ice core, Antarctica, Antarct. Sci., 29, 382–393,
https://doi.org/10.1017/S0954102017000025, 2017.
Maussion, F., Scherer, D., Mölg, T., Collier, E., Curio, J., and
Finkelnburg, R.: Precipitation seasonality and variability over the Tibetan
Plateau as resolved by the High Asia Reanalysis, J. Climate, 27,
1910–1927, https://doi.org/10.1175/JCLI-D-13-00282.1, 2014.
More, A. F., Spaulding, N. E., Bohleber, P., Handley, M. J., Hoffmann,
H., Korotkikh, E. V., Kurbatov, A. V., Loveluck, C. P., Sneed, S.
B., McCormick, M., and Mayewski, P. A.: Next generation ice core technology
reveals true minimum natural levels of lead (Pb) in the atmosphere: Insights
from the black death, GeoHealth, 1, 211–219, https://doi.org/10.1002/2017GH000064, 2017.
Nye, J. F.: Correction factor for accumulation measured by the thickness of
the annual layers in an ice sheet, J. Glaciol., 4, 785–788,
https://doi.org/10.3189/S0022143000028367, 1963.
Pang, H., Hou, S., Zhang, W., Wu, S., Jenk, T. M., Schwikowski, M., and
Jouzel, J.: Temperature trends in the northwestern Tibetan Plateau
constrained by ice core water isotopes over the past 7,000 years, J.
Geophys. Res.-Atmos., 125, e2020JD032560, https://doi.org/10.1029/2020JD032560, 2020.
Paterson, W. S. B. and Waddington, E. D.: Past precipitation rates derived
from ice core measurements: Methods and data analysis, Rev. Geophys., 22,
123–130, https://doi.org/10.1029/RG022i002p00123, 1984.
Ramsey, C. B. and Lee, S.: Recent and planned developments of the program
Oxcal, Radiocarbon, 55, 720–730, https://doi.org/10.1017/S0033822200057878, 2013.
Rapp, D.: Ice Ages and Interglacials: Measurement, Interpretation and
Models, Berlin, https://doi.org/10.1007/978-3-642-30029-5, 2012.
Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P.,
Vinther, B. M., Clausen, H. B., Siggaard-Andersen, M. L., Johnsen, S. J.,
Larsen, L. B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer,
H., Goto-Azuma, K., Hansson, M. E., and Ruth, U.: A new Greenland ice core
chronology for the last glacial termination, J. Geophys. Res.-Atmos., 111,
1–16, https://doi.org/10.1029/2005JD006079, 2006.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey,
C. B., Buck, C. E., Cheng, H., Lawrence Edwards, R., Friedrich, M., Grootes,
P. M., Guilderson, T. P., Haflidason, H., Irka Hajdas, I., Hatté, C.,
Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F.,
Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott,
E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht,
J.: IntCal13 and marine13 radiocarbon age calibration curve 0–50 000 years
cal BP, Radiocarbon, 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947,
2013.
Roberts, J., Plummer, C., Vance, T., van Ommen, T., Moy, A., Poynter, S., Treverrow, A., Curran, M., and George, S.: A 2000-year annual record of snow accumulation rates for Law Dome, East Antarctica, Clim. Past, 11, 697–707, https://doi.org/10.5194/cp-11-697-2015, 2015.
Shi, Y. (Ed.): Concise glacier inventory of China, Shanghai Popular Science
Press, China, ISBN 9787542731173 , 2008.
Sigl, M., Jenk, T. M., Kellerhals, T., Szidat, S., Gäggeler, H. W.,
Wacker, L., Synal, H.-A., Boutron, C., Barbante, C., Gabrieli, J., and
Schwikowski, M.: Instruments and methods towards radiocarbon dating of ice
cores, J. Glaciol., 55, 985–996, https://doi.org/10.3189/002214309790794922, 2009.
Sneed, S. B., Mayewski, P. A., Sayre, W. G., Handley, M. J., Kurbatov, A.
V., Taylor, K. C., Bohleber, P., Wagenbach, D., Erhardt, T., and Spaulding,
N. E.: New LA-ICP-MS cryocell and calibration technique for sub-millimeter
analysis of ice cores, J. Glaciol., 61, 233– 242,
https://doi.org/10.3189/2015JoG14J139, 2015.
Spaulding, N. E., Sneed, S. B., Handley, M. J., Bohleber, P., Kurbatov, A.
V., Pearce, N. J., Erhardt, T., and Mayewski, P. A.: A new multielement
method for LA-ICP-MS data acquisition from glacier ice cores, Environ. Sci.
Technol., 51, 13282–13287, https://doi.org/10.1021/acs.est.7b03950, 2017.
Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., and Hsu, K.-L.: A
review of global precipitation data sets: Data sources, estimation, and
intercomparisons, Rev. Geophys., 56, 79–107, https://doi.org/10.1002/2017RG000574, 2018.
Thompson, L., Mosley-Thompson, E., Brecher, H., Davis, M., León, B.,
Les, D., Lin, P.-N., Mashiotta, T., and Mountain, K.: Abrupt tropical climate
change: Past and present, P. Natl. Acad. Sci. USA, 103, 10536–10543,
https://doi.org/10.1073/pnas.0603900103, 2006.
Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Lin, P. N., Dai, J., and
Bolzan, J. F.: A 1000 year climate ice-core record from the Guliya ice cap,
China: its relationship to global climate variability, Ann. Glaciol., 21,
175–181, https://doi.org/10.1017/S0260305500015780, 1995.
Thompson, L. G., Yao, T., Davis, M. E., Mosley-Thompson, E., Wu, G., Porter,
S. E., Xu, B., Lin, P. N., Wang, N., Beaudon, E., Duan, K.,
Sierra-Hernández, M. R., and Kenny, D. V.: Ice core records of climate
variability on the Third Pole with emphasis on the Guliya ice cap, western
Kunlun Mountains, Quaternary Sci. Rev., 188, 1–14,
https://doi.org/10.1016/j.quascirev.2018.03.003, 2018.
Tozer, C. R., Vance, T. R., Roberts, J. L., Kiem, A. S., Curran, M. A. J., and Moy, A. D.: An ice core derived 1013-year catchment-scale annual rainfall reconstruction in subtropical eastern Australia, Hydrol. Earth Syst. Sci., 20, 1703–1717, https://doi.org/10.5194/hess-20-1703-2016, 2016.
Uglietti, C., Zapf, A., Jenk, T. M., Sigl, M., Szidat, S., Salazar, G., and Schwikowski, M.: Radiocarbon dating of glacier ice: overview, optimisation, validation and potential, The Cryosphere, 10, 3091–3105, https://doi.org/10.5194/tc-10-3091-2016, 2016.
Winstrup, M.: StratiCounter: A layer counting algorithm (version 1.2.3), GitHub repository [code],
http://www.github.com/maiwinstrup/StratiCounter (last access: 14 September 2020) 2015 (updated 18 April 2016).
Winstrup, M., Svensson, A. M., Rasmussen, S. O., Winther, O., Steig, E. J., and Axelrod, A. E.: An automated approach for annual layer counting in ice cores, Clim. Past, 8, 1881–1895, https://doi.org/10.5194/cp-8-1881-2012, 2012.
Winstrup, M., Vallelonga, P., Kjær, H. A., Fudge, T. J., Lee, J. E., Riis, M. H., Edwards, R., Bertler, N. A. N., Blunier, T., Brook, E. J., Buizert, C., Ciobanu, G., Conway, H., Dahl-Jensen, D., Ellis, A., Emanuelsson, B. D., Hindmarsh, R. C. A., Keller, E. D., Kurbatov, A. V., Mayewski, P. A., Neff, P. D., Pyne, R. L., Simonsen, M. F., Svensson, A., Tuohy, A., Waddington, E. D., and Wheatley, S.: A 2700-year annual timescale and accumulation history for an ice core from Roosevelt Island, West Antarctica, Clim. Past, 15, 751–779, https://doi.org/10.5194/cp-15-751-2019, 2019.
Xu, T., Zhu, Lü, X., Ma, Q., Wang, J., Ju, J., and Huang, L.: Mid- to
late-Holocene paleoenvironmental changes and glacier fluctuations
reconstructed from the sediments of proglacial lake Buruo Co, northern
Tibetan Plateau, Palaeogeogr. Palaeocl., 517, 74–85,
https://doi.org/10.1016/j.palaeo.2018.12.023, 2019.
Yang, B., Qin, C., Wang, J., He, M., Melvin, T. M., Osborn, T. J., and
Briffa, K. R.: A 3500-year tree-ring record of annual precipitation
on the northeastern Tibetan Plateau, P. Natl. Acad. Sci. USA, 111,
2903–2908, https://doi.org/10.1073/pnas.1319238111, 2014.
Yao, T., Duan, K., Xu, B., Wang, N., Guo, X., and Yang, X.: Precipitation record since AD 1600 from ice cores on the central Tibetan Plateau, Clim. Past, 4, 175–180, https://doi.org/10.5194/cp-4-175-2008, 2008.
Zhang, W.: LA-ICP-MS data of the Chongce ice core (Version 1), Zenodo [data set], https://doi.org/10.5281/zenodo.4387022, 2020.
Zhang, Y., Kang, S., Zhang, Q., Grigholm, B., Kaspari, S., You, Q., Qin, D.,
Mayewski, P. A., Cong, Z., Huang, J., Sillanpää, M., and Chen, F.: A 500 year atmospheric dust deposition retrieved from a Mt. Geladaindong ice core in the central Tibetan Plateau, Atmos. Res., 166, 1–9,
https://doi.org/10.1016/j.atmosres.2015.06.007, 2015.
Zhang, Z., Hou, S., and Yi, S.: The first luminescence dating of Tibetan glacier basal sediment, The Cryosphere, 12, 163–168, https://doi.org/10.5194/tc-12-163-2018, 2018.
Download
- Article
(5013 KB) - Full-text XML
Short summary
This study proposes a quantitative method to reconstruct annual precipitation records at the millennial timescale from the Tibetan ice cores through combining annual layer identification based on LA-ICP-MS measurement with an ice flow model. The reliability of this method is assessed by comparing our results with other reconstructed and modeled precipitation series for the Tibetan Plateau. The assessment shows that the method has a promising performance.
This study proposes a quantitative method to reconstruct annual precipitation records at the...