Articles | Volume 16, issue 5
https://doi.org/10.5194/tc-16-1845-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-1845-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Towards accurate quantification of ice content in permafrost of the Central Andes – Part 1: Geophysics-based estimates from three different regions
Christin Hilbich
CORRESPONDING AUTHOR
Department of Geosciences, University of Fribourg, Fribourg, 1700,
Switzerland
Christian Hauck
Department of Geosciences, University of Fribourg, Fribourg, 1700,
Switzerland
Coline Mollaret
Department of Geosciences, University of Fribourg, Fribourg, 1700,
Switzerland
Pablo Wainstein
BGC Engineering Inc., Calgary, AB, T2E 7W6, Canada
Lukas U. Arenson
BGC Engineering Inc., Vancouver, BC, V6Z 0C8, Canada
Related authors
Alexandru Onaca, Flavius Sîrbu, Valentin Poncoş, Christin Hilbich, Tazio Strozzi, Petru Urdea, Răzvan Popescu, Oana Berzescu, Bernd Etzelmüller, Alfred Vespremeanu-Stroe, Mirela Vasile, Delia Teleagă, Dan Birtaş, Iosif Lopătiţă, Simon Filhol, Alexandru Hegyi, and Florina Ardelean
Earth Surf. Dynam., 13, 981–1001, https://doi.org/10.5194/esurf-13-981-2025, https://doi.org/10.5194/esurf-13-981-2025, 2025
Short summary
Short summary
This study establishes a methodology for the study of slow-moving rock glaciers in marginal permafrost and provides the basic knowledge for understanding rock glaciers in South East Europe. By using a combination of different methods (remote sensing, geophysical survey, thermal measurements), we found out that, on the transitional rock glaciers, low ground ice content (i.e. below 20 %) produces horizontal displacements of up to 3 cm per year.
Cassandra E. M. Koenig, Christin Hilbich, Christian Hauck, Lukas U. Arenson, and Pablo Wainstein
The Cryosphere, 19, 2653–2676, https://doi.org/10.5194/tc-19-2653-2025, https://doi.org/10.5194/tc-19-2653-2025, 2025
Short summary
Short summary
This study presents the first regional compilation of borehole temperature data from high-altitude permafrost sites in the Andes, providing a baseline of ground thermal conditions. Data from 53 boreholes show thermal characteristics similar to other mountain permafrost areas, but uniquely shaped by Andean topo-climatic conditions. The study emphasizes the need for ongoing monitoring and is a notable collaboration between industry, academia, and regulators in advancing climate change research.
Tamara Mathys, Muslim Azimshoev, Zhoodarbeshim Bektursunov, Christian Hauck, Christin Hilbich, Murataly Duishonakunov, Abdulhamid Kayumov, Nikolay Kassatkin, Vassily Kapitsa, Leo C. P. Martin, Coline Mollaret, Hofiz Navruzshoev, Eric Pohl, Tomas Saks, Intizor Silmonov, Timur Musaev, Ryskul Usubaliev, and Martin Hoelzle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2795, https://doi.org/10.5194/egusphere-2024-2795, 2024
Short summary
Short summary
This study provides a comprehensive geophysical dataset on permafrost in the data-scarce Tien Shan and Pamir mountain regions of Central Asia. It also introduces a novel modeling method to quantify ground ice content across different landforms. The findings indicate that this approach is well-suited for characterizing ice-rich permafrost, which is crucial for evaluating future water availability and assessing risks associated with thawing permafrost.
Theresa Maierhofer, Adrian Flores Orozco, Nathalie Roser, Jonas K. Limbrock, Christin Hilbich, Clemens Moser, Andreas Kemna, Elisabetta Drigo, Umberto Morra di Cella, and Christian Hauck
The Cryosphere, 18, 3383–3414, https://doi.org/10.5194/tc-18-3383-2024, https://doi.org/10.5194/tc-18-3383-2024, 2024
Short summary
Short summary
In this study, we apply an electrical method in a high-mountain permafrost terrain in the Italian Alps, where long-term borehole temperature data are available for validation. In particular, we investigate the frequency dependence of the electrical properties for seasonal and annual variations along a 3-year monitoring period. We demonstrate that our method is capable of resolving temporal changes in the thermal state and the ice / water ratio associated with seasonal freeze–thaw processes.
Bernd Etzelmüller, Ketil Isaksen, Justyna Czekirda, Sebastian Westermann, Christin Hilbich, and Christian Hauck
The Cryosphere, 17, 5477–5497, https://doi.org/10.5194/tc-17-5477-2023, https://doi.org/10.5194/tc-17-5477-2023, 2023
Short summary
Short summary
Permafrost (permanently frozen ground) is widespread in the mountains of Norway and Iceland. Several boreholes were drilled after 1999 for long-term permafrost monitoring. We document a strong warming of permafrost, including the development of unfrozen bodies in the permafrost. Warming and degradation of mountain permafrost may lead to more natural hazards.
Johannes Buckel, Jan Mudler, Rainer Gardeweg, Christian Hauck, Christin Hilbich, Regula Frauenfelder, Christof Kneisel, Sebastian Buchelt, Jan Henrik Blöthe, Andreas Hördt, and Matthias Bücker
The Cryosphere, 17, 2919–2940, https://doi.org/10.5194/tc-17-2919-2023, https://doi.org/10.5194/tc-17-2919-2023, 2023
Short summary
Short summary
This study reveals permafrost degradation by repeating old geophysical measurements at three Alpine sites. The compared data indicate that ice-poor permafrost is highly affected by temperature warming. The melting of ice-rich permafrost could not be identified. However, complex geomorphic processes are responsible for this rather than external temperature change. We suspect permafrost degradation here as well. In addition, we introduce a new current injection method for data acquisition.
Karianne S. Lilleøren, Bernd Etzelmüller, Line Rouyet, Trond Eiken, Gaute Slinde, and Christin Hilbich
Earth Surf. Dynam., 10, 975–996, https://doi.org/10.5194/esurf-10-975-2022, https://doi.org/10.5194/esurf-10-975-2022, 2022
Short summary
Short summary
In northern Norway we have observed several rock glaciers at sea level. Rock glaciers are landforms that only form under the influence of permafrost, which is frozen ground. Our investigations show that the rock glaciers are probably not active under the current climate but most likely were active in the recent past. This shows how the Arctic now changes due to climate changes and also how similar areas in currently colder climates will change in the future.
Tamara Mathys, Christin Hilbich, Lukas U. Arenson, Pablo A. Wainstein, and Christian Hauck
The Cryosphere, 16, 2595–2615, https://doi.org/10.5194/tc-16-2595-2022, https://doi.org/10.5194/tc-16-2595-2022, 2022
Short summary
Short summary
With ongoing climate change, there is a pressing need to understand how much water is stored as ground ice in permafrost. Still, field-based data on permafrost in the Andes are scarce, resulting in large uncertainties regarding ground ice volumes and their hydrological role. We introduce an upscaling methodology of geophysical-based ground ice quantifications at the catchment scale. Our results indicate that substantial ground ice volumes may also be present in areas without rock glaciers.
Theresa Maierhofer, Christian Hauck, Christin Hilbich, Andreas Kemna, and Adrián Flores-Orozco
The Cryosphere, 16, 1903–1925, https://doi.org/10.5194/tc-16-1903-2022, https://doi.org/10.5194/tc-16-1903-2022, 2022
Short summary
Short summary
We extend the application of electrical methods to characterize alpine permafrost using the so-called induced polarization (IP) effect associated with the storage of charges at the interface between liquid and solid phases. We investigate different field protocols to enhance data quality and conclude that with appropriate measurement and processing procedures, the characteristic dependence of the IP response of frozen rocks improves the assessment of thermal state and ice content in permafrost.
Bernd Etzelmüller, Justyna Czekirda, Florence Magnin, Pierre-Allain Duvillard, Ludovic Ravanel, Emanuelle Malet, Andreas Aspaas, Lene Kristensen, Ingrid Skrede, Gudrun D. Majala, Benjamin Jacobs, Johannes Leinauer, Christian Hauck, Christin Hilbich, Martina Böhme, Reginald Hermanns, Harald Ø. Eriksen, Tom Rune Lauknes, Michael Krautblatter, and Sebastian Westermann
Earth Surf. Dynam., 10, 97–129, https://doi.org/10.5194/esurf-10-97-2022, https://doi.org/10.5194/esurf-10-97-2022, 2022
Short summary
Short summary
This paper is a multi-authored study documenting the possible existence of permafrost in permanently monitored rockslides in Norway for the first time by combining a multitude of field data, including geophysical surveys in rock walls. The paper discusses the possible role of thermal regime and rockslide movement, and it evaluates the possible impact of atmospheric warming on rockslide dynamics in Norwegian mountains.
Christian Halla, Jan Henrik Blöthe, Carla Tapia Baldis, Dario Trombotto Liaudat, Christin Hilbich, Christian Hauck, and Lothar Schrott
The Cryosphere, 15, 1187–1213, https://doi.org/10.5194/tc-15-1187-2021, https://doi.org/10.5194/tc-15-1187-2021, 2021
Short summary
Short summary
In the semi-arid to arid Andes of Argentina, rock glaciers contain invisible and unknown amounts of ground ice that could become more important in future for the water availability during the dry season. The study shows that the investigated rock glacier represents an important long-term ice reservoir in the dry mountain catchment and that interannual changes of ground ice can store and release significant amounts of annual precipitation.
Alexandru Onaca, Flavius Sîrbu, Valentin Poncoş, Christin Hilbich, Tazio Strozzi, Petru Urdea, Răzvan Popescu, Oana Berzescu, Bernd Etzelmüller, Alfred Vespremeanu-Stroe, Mirela Vasile, Delia Teleagă, Dan Birtaş, Iosif Lopătiţă, Simon Filhol, Alexandru Hegyi, and Florina Ardelean
Earth Surf. Dynam., 13, 981–1001, https://doi.org/10.5194/esurf-13-981-2025, https://doi.org/10.5194/esurf-13-981-2025, 2025
Short summary
Short summary
This study establishes a methodology for the study of slow-moving rock glaciers in marginal permafrost and provides the basic knowledge for understanding rock glaciers in South East Europe. By using a combination of different methods (remote sensing, geophysical survey, thermal measurements), we found out that, on the transitional rock glaciers, low ground ice content (i.e. below 20 %) produces horizontal displacements of up to 3 cm per year.
Mehriban Aliyeva, Michael Angelopoulos, Julia Boike, Moritz Langer, Frederieke Miesner, Scott Dallimore, Dustin Whalen, Lukas U. Arenson, and Pier Paul Overduin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2675, https://doi.org/10.5194/egusphere-2025-2675, 2025
Short summary
Short summary
In this study, we investigate the ongoing transformation of terrestrial permafrost into subsea permafrost on a rapidly eroding Arctic island using electrical resistivity tomography and numerical modelling. We draw on 60 years of shoreline data to support our findings. This work is important for understanding permafrost loss in Arctic coastal areas and for guiding future efforts to protect vulnerable shorelines.
Cassandra E. M. Koenig, Christin Hilbich, Christian Hauck, Lukas U. Arenson, and Pablo Wainstein
The Cryosphere, 19, 2653–2676, https://doi.org/10.5194/tc-19-2653-2025, https://doi.org/10.5194/tc-19-2653-2025, 2025
Short summary
Short summary
This study presents the first regional compilation of borehole temperature data from high-altitude permafrost sites in the Andes, providing a baseline of ground thermal conditions. Data from 53 boreholes show thermal characteristics similar to other mountain permafrost areas, but uniquely shaped by Andean topo-climatic conditions. The study emphasizes the need for ongoing monitoring and is a notable collaboration between industry, academia, and regulators in advancing climate change research.
Clemens Moser, Umberto Morra di Cella, Christian Hauck, and Adrián Flores Orozco
The Cryosphere, 19, 143–171, https://doi.org/10.5194/tc-19-143-2025, https://doi.org/10.5194/tc-19-143-2025, 2025
Short summary
Short summary
We use electrical conductivity and induced polarization in an imaging framework to quantify hydrogeological parameters in the active Gran Sometta rock glacier. The results show high spatial variability in the hydrogeological parameters across the rock glacier and are validated by saltwater tracer tests coupled with 3D electrical conductivity imaging. Hydrogeological information was linked to kinematic data to further investigate its role in rock glacier movement.
Julie Wee, Sebastián Vivero, Tamara Mathys, Coline Mollaret, Christian Hauck, Christophe Lambiel, Jan Beutel, and Wilfried Haeberli
The Cryosphere, 18, 5939–5963, https://doi.org/10.5194/tc-18-5939-2024, https://doi.org/10.5194/tc-18-5939-2024, 2024
Short summary
Short summary
This study highlights the importance of a multi-method and multi-disciplinary approach to better understand the influence of the internal structure of the Gruben glacier-forefield-connected rock glacier and adjacent debris-covered glacier on their driving thermo-mechanical processes and associated surface dynamics. We were able to discriminate glacial from periglacial processes as their spatio-temporal patterns of surface dynamics and geophysical signatures are (mostly) different.
Tamara Mathys, Muslim Azimshoev, Zhoodarbeshim Bektursunov, Christian Hauck, Christin Hilbich, Murataly Duishonakunov, Abdulhamid Kayumov, Nikolay Kassatkin, Vassily Kapitsa, Leo C. P. Martin, Coline Mollaret, Hofiz Navruzshoev, Eric Pohl, Tomas Saks, Intizor Silmonov, Timur Musaev, Ryskul Usubaliev, and Martin Hoelzle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2795, https://doi.org/10.5194/egusphere-2024-2795, 2024
Short summary
Short summary
This study provides a comprehensive geophysical dataset on permafrost in the data-scarce Tien Shan and Pamir mountain regions of Central Asia. It also introduces a novel modeling method to quantify ground ice content across different landforms. The findings indicate that this approach is well-suited for characterizing ice-rich permafrost, which is crucial for evaluating future water availability and assessing risks associated with thawing permafrost.
Mohammad Farzamian, Teddi Herring, Gonçalo Vieira, Miguel Angel de Pablo, Borhan Yaghoobi Tabar, and Christian Hauck
The Cryosphere, 18, 4197–4213, https://doi.org/10.5194/tc-18-4197-2024, https://doi.org/10.5194/tc-18-4197-2024, 2024
Short summary
Short summary
An automated electrical resistivity tomography (A-ERT) system was developed and deployed in Antarctica to monitor permafrost and active-layer dynamics. The A-ERT, coupled with an efficient processing workflow, demonstrated its capability to monitor real-time thaw depth progression, detect seasonal and surficial freezing–thawing events, and assess permafrost stability. Our study showcased the potential of A-ERT to contribute to global permafrost monitoring networks.
Theresa Maierhofer, Adrian Flores Orozco, Nathalie Roser, Jonas K. Limbrock, Christin Hilbich, Clemens Moser, Andreas Kemna, Elisabetta Drigo, Umberto Morra di Cella, and Christian Hauck
The Cryosphere, 18, 3383–3414, https://doi.org/10.5194/tc-18-3383-2024, https://doi.org/10.5194/tc-18-3383-2024, 2024
Short summary
Short summary
In this study, we apply an electrical method in a high-mountain permafrost terrain in the Italian Alps, where long-term borehole temperature data are available for validation. In particular, we investigate the frequency dependence of the electrical properties for seasonal and annual variations along a 3-year monitoring period. We demonstrate that our method is capable of resolving temporal changes in the thermal state and the ice / water ratio associated with seasonal freeze–thaw processes.
Wilfried Haeberli, Lukas U. Arenson, Julie Wee, Christian Hauck, and Nico Mölg
The Cryosphere, 18, 1669–1683, https://doi.org/10.5194/tc-18-1669-2024, https://doi.org/10.5194/tc-18-1669-2024, 2024
Short summary
Short summary
Rock glaciers in ice-rich permafrost can be discriminated from debris-covered glaciers. The key physical phenomenon relates to the tight mechanical coupling between the moving frozen body at depth and the surface layer of debris in the case of rock glaciers, as opposed to the virtually inexistent coupling in the case of surface ice with a debris cover. Contact zones of surface ice with subsurface ice in permafrost constitute diffuse landforms beyond either–or-type landform classification.
Bernd Etzelmüller, Ketil Isaksen, Justyna Czekirda, Sebastian Westermann, Christin Hilbich, and Christian Hauck
The Cryosphere, 17, 5477–5497, https://doi.org/10.5194/tc-17-5477-2023, https://doi.org/10.5194/tc-17-5477-2023, 2023
Short summary
Short summary
Permafrost (permanently frozen ground) is widespread in the mountains of Norway and Iceland. Several boreholes were drilled after 1999 for long-term permafrost monitoring. We document a strong warming of permafrost, including the development of unfrozen bodies in the permafrost. Warming and degradation of mountain permafrost may lead to more natural hazards.
Johannes Buckel, Jan Mudler, Rainer Gardeweg, Christian Hauck, Christin Hilbich, Regula Frauenfelder, Christof Kneisel, Sebastian Buchelt, Jan Henrik Blöthe, Andreas Hördt, and Matthias Bücker
The Cryosphere, 17, 2919–2940, https://doi.org/10.5194/tc-17-2919-2023, https://doi.org/10.5194/tc-17-2919-2023, 2023
Short summary
Short summary
This study reveals permafrost degradation by repeating old geophysical measurements at three Alpine sites. The compared data indicate that ice-poor permafrost is highly affected by temperature warming. The melting of ice-rich permafrost could not be identified. However, complex geomorphic processes are responsible for this rather than external temperature change. We suspect permafrost degradation here as well. In addition, we introduce a new current injection method for data acquisition.
Adrian Wicki, Peter Lehmann, Christian Hauck, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 23, 1059–1077, https://doi.org/10.5194/nhess-23-1059-2023, https://doi.org/10.5194/nhess-23-1059-2023, 2023
Short summary
Short summary
Soil wetness measurements are used for shallow landslide prediction; however, existing sites are often located in flat terrain. Here, we assessed the ability of monitoring sites at flat locations to detect critically saturated conditions compared to if they were situated at a landslide-prone location. We found that differences exist but that both sites could equally well distinguish critical from non-critical conditions for shallow landslide triggering if relative changes are considered.
Karianne S. Lilleøren, Bernd Etzelmüller, Line Rouyet, Trond Eiken, Gaute Slinde, and Christin Hilbich
Earth Surf. Dynam., 10, 975–996, https://doi.org/10.5194/esurf-10-975-2022, https://doi.org/10.5194/esurf-10-975-2022, 2022
Short summary
Short summary
In northern Norway we have observed several rock glaciers at sea level. Rock glaciers are landforms that only form under the influence of permafrost, which is frozen ground. Our investigations show that the rock glaciers are probably not active under the current climate but most likely were active in the recent past. This shows how the Arctic now changes due to climate changes and also how similar areas in currently colder climates will change in the future.
Tamara Mathys, Christin Hilbich, Lukas U. Arenson, Pablo A. Wainstein, and Christian Hauck
The Cryosphere, 16, 2595–2615, https://doi.org/10.5194/tc-16-2595-2022, https://doi.org/10.5194/tc-16-2595-2022, 2022
Short summary
Short summary
With ongoing climate change, there is a pressing need to understand how much water is stored as ground ice in permafrost. Still, field-based data on permafrost in the Andes are scarce, resulting in large uncertainties regarding ground ice volumes and their hydrological role. We introduce an upscaling methodology of geophysical-based ground ice quantifications at the catchment scale. Our results indicate that substantial ground ice volumes may also be present in areas without rock glaciers.
Theresa Maierhofer, Christian Hauck, Christin Hilbich, Andreas Kemna, and Adrián Flores-Orozco
The Cryosphere, 16, 1903–1925, https://doi.org/10.5194/tc-16-1903-2022, https://doi.org/10.5194/tc-16-1903-2022, 2022
Short summary
Short summary
We extend the application of electrical methods to characterize alpine permafrost using the so-called induced polarization (IP) effect associated with the storage of charges at the interface between liquid and solid phases. We investigate different field protocols to enhance data quality and conclude that with appropriate measurement and processing procedures, the characteristic dependence of the IP response of frozen rocks improves the assessment of thermal state and ice content in permafrost.
Martin Hoelzle, Christian Hauck, Tamara Mathys, Jeannette Noetzli, Cécile Pellet, and Martin Scherler
Earth Syst. Sci. Data, 14, 1531–1547, https://doi.org/10.5194/essd-14-1531-2022, https://doi.org/10.5194/essd-14-1531-2022, 2022
Short summary
Short summary
With ongoing climate change, it is crucial to understand the interactions of the individual heat fluxes at the surface and within the subsurface layers, as well as their impacts on the permafrost thermal regime. A unique set of high-altitude meteorological measurements has been analysed to determine the energy balance at three mountain permafrost sites in the Swiss Alps, where data have been collected since the late 1990s in collaboration with the Swiss Permafrost Monitoring Network (PERMOS).
Bernd Etzelmüller, Justyna Czekirda, Florence Magnin, Pierre-Allain Duvillard, Ludovic Ravanel, Emanuelle Malet, Andreas Aspaas, Lene Kristensen, Ingrid Skrede, Gudrun D. Majala, Benjamin Jacobs, Johannes Leinauer, Christian Hauck, Christin Hilbich, Martina Böhme, Reginald Hermanns, Harald Ø. Eriksen, Tom Rune Lauknes, Michael Krautblatter, and Sebastian Westermann
Earth Surf. Dynam., 10, 97–129, https://doi.org/10.5194/esurf-10-97-2022, https://doi.org/10.5194/esurf-10-97-2022, 2022
Short summary
Short summary
This paper is a multi-authored study documenting the possible existence of permafrost in permanently monitored rockslides in Norway for the first time by combining a multitude of field data, including geophysical surveys in rock walls. The paper discusses the possible role of thermal regime and rockslide movement, and it evaluates the possible impact of atmospheric warming on rockslide dynamics in Norwegian mountains.
Adrian Wicki, Per-Erik Jansson, Peter Lehmann, Christian Hauck, and Manfred Stähli
Hydrol. Earth Syst. Sci., 25, 4585–4610, https://doi.org/10.5194/hess-25-4585-2021, https://doi.org/10.5194/hess-25-4585-2021, 2021
Short summary
Short summary
Soil moisture information was shown to be valuable for landslide prediction. Soil moisture was simulated at 133 sites in Switzerland, and the temporal variability was compared to the regional occurrence of landslides. We found that simulated soil moisture is a good predictor for landslides, and that the forecast goodness is similar to using in situ measurements. This encourages the use of models for complementing existing soil moisture monitoring networks for regional landslide early warning.
Christian Halla, Jan Henrik Blöthe, Carla Tapia Baldis, Dario Trombotto Liaudat, Christin Hilbich, Christian Hauck, and Lothar Schrott
The Cryosphere, 15, 1187–1213, https://doi.org/10.5194/tc-15-1187-2021, https://doi.org/10.5194/tc-15-1187-2021, 2021
Short summary
Short summary
In the semi-arid to arid Andes of Argentina, rock glaciers contain invisible and unknown amounts of ground ice that could become more important in future for the water availability during the dry season. The study shows that the investigated rock glacier represents an important long-term ice reservoir in the dry mountain catchment and that interannual changes of ground ice can store and release significant amounts of annual precipitation.
Cited articles
Archie, G. E.: The Electrical Resistivity Log as an Aid in Determining Some
Reservoir Characteristics., Pet. Trans. AIME, 146, 54–62, 1942.
Arenson, L. U. and Jakob, M.: The significance of rock glaciers in the dry
Andes – A discussion of Azócar and Brenning (2010) and Brenning and
Azócar (2010), Permafrost Periglac., 21, 282–285,
https://doi.org/10.1002/ppp.693, 2010.
Arenson, L. U. and Springman, S. M.: Triaxial constant stress and constant
strain rate tests on ice-rich permafrost samples, Can. Geotech. J., 42,
412–430, https://doi.org/10.1139/t04-111, 2005.
Arenson, L. U., Pastore, S., Trombotto Liaudat, D., Bolling, S., Quiroz, M.
A., and Ochoa, X. L.: Characteristics of two Rock Glaciers in the Dry
Argentinean Andes Based on Initial Surface Investigations, Geo
2010 – Proceedings 62nd Can. Geotech. Conf., Calgary, AB, 12–16 September, 20101996, 1501–1508, 2010.
Arenson, L. U., Jakob, M., and Wainstein, P. A.: Hydrological contribution from degrading permafrost and rock glaciers in the northern Argentinian Andes, Mine Water Solutions in Extreme Environments, Lima, Peru, 15–17 April, 171–181, 2013.
Arenson, L. U., Harrington, J. S., Koenig, C. E. M., and Wainstein, P. A.:
Mountain Permafrost Hydrology – A Practical Review Following Studies from
the Andes, Geosciences, 12, 48, https://doi.org/10.3390/GEOSCIENCES12020048, 2022.
Azócar, G. F. and Brenning, A.: Hydrological and geomorphological
significance of rock glaciers in the dry Andes,
Chile (27∘-33∘ s), Permafrost Periglac., 21, 42–53,
https://doi.org/10.1002/ppp.669, 2010.
Azócar, G. F., Brenning, A., and Bodin, X.: Permafrost distribution modelling in the semi-arid Chilean Andes, The Cryosphere, 11, 877–890, https://doi.org/10.5194/tc-11-877-2017, 2017.
Barsch, D.: Rockglaciers, Indicators for the Present and Former Geoecology in High Mountain Environments, 1st Edn., Springer Berlin, Heidelberg, 331 pp., https://doi.org/10.1007/978-3-642-80093-1, 1996.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G.,
Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H.,
Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G.,
Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson,
M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P.,
Kröger, T., Lambiel, C., Lanckman, J. P., Luo, D., Malkova, G.,
Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel,
A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q.,
Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a
global scale, Nat. Commun., 10, 1–11, https://doi.org/10.1038/s41467-018-08240-4,
2019.
Bradley, R. S., Vuille, M., Diaz, H. F. and Vergara, W.: Threads to water
supplies in the tropical Andes, Science, 312, 1755–1757, https://doi.org/10.1126/science.1128087, 2006.
Brardinoni, F., Scotti, R., Sailer, R., and Mair, V.: Evaluating sources of
uncertainty and variability in rock glacier inventories, Earth Surf.
Proc. Land., 44, 2450–2466, https://doi.org/10.1002/esp.4674, 2019.
Brenning, A.: Climatic and geomorphological controls of rock glaciers in the
Andes of Central Chile, Humboldt-Universität zu
Berlin, https://www.researchgate.net/publication/279829240_Climatic_ and_geomorphological_controls_of_rock_glaciers_in_ the_Andes_of_Central_Chile
(last access: 9 June 2021), 2005.
Brenning, A.: The impact of mining on rock glaciers and glaciers: Examples from Central Chile, in: Darkening peaks: Glacier retreat, science and society, edited by: Orlove, B., Wiegandt, E., and Luckman, B. H., University of California Press, Berkeley, chap. 14, 196–205, 2008.
Croce, F. A. and Milana, J. P.: Internal structure and behaviour of a rock
glacier in the arid Andes of Argentina, Permafrost Periglac., 13,
289–299, https://doi.org/10.1002/ppp.431, 2002.
Day-Lewis, F. D., Singha, K., and Binley, A. M.: Applying petrophysical
models to radar travel time and electrical resistivity tomograms:
Resolution-dependent limitations, J. Geophys. Res.-Sol. Ea., 110,
1–17, https://doi.org/10.1029/2004JB003569, 2005.
de Pasquale, G., Valois, R., Schaffer, N., and MacDonell, S.: Active and inactive Andean rock glacier geophysical signatures by comparing 2D joint inversion routines of electrical resistivity and refraction seismic tomography, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2020-306, in review, 2020.
Duguay, M. A., Edmunds, A., Arenson, L. U., and Wainstein, P. A.: Quantifying
the significance of the hydrological contribution of a rock glacier – A
review, GEOQuébec 2015, 68th Can. Geotech. Conf. 7th Can. Permafr.
Conf., CD-Rom, Québec, QC, 20–23 September 2015.
Duvillard, P. A., Revil, A., Qi, Y., Soueid Ahmed, A., Coperey, A., and
Ravanel, L.: Three-Dimensional Electrical Conductivity and Induced
Polarization Tomography of a Rock Glacier, J. Geophys. Res.-Sol. Ea.,
123, 9528–9554, https://doi.org/10.1029/2018JB015965, 2018.
Etzelmüller, B., Guglielmin, M., Hauck, C., Hilbich, C., Hoelzle, M., Isaksen, K., Noetzli, J., Oliva, M., and Ramos, M.: Twenty years of European mountain permafrost dynamics – the PACE legacy, Environ. Res. Lett. 15, 10, https://doi.org/10.1088/1748-9326/abae9d, 2020.
Ferri, L., Dussaillant, I., Zalazar, L., Masiokas, M. H., Ruiz, L., Pitte,
P., Gargantini, H., Castro, M., Berthier, E., and Villalba, R.: Ice Mass Loss
in the Central Andes of Argentina Between 2000 and 2018 Derived From a New
Glacier Inventory and Satellite Stereo-Imagery, Front. Earth Sci.,
8, 530997, https://doi.org/10.3389/feart.2020.530997, 2020.
García, A., Ulloa, C., Amigo, G., Milana, J. P., and Medina, C.: An
inventory of cryospheric landforms in the arid diagonal of South America
(high Central Andes, Atacama region, Chile), Quatern. Int., 438, 4–19,
https://doi.org/10.1016/j.quaint.2017.04.033, 2017.
Haeberli, W.: Creep of Mountain Permafrost: Internal Structure and Flow of Alpine Rock Glaciers, in: Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, edited by: Vischer, D., ETH Zürich, 77, 142 pp., 1985.
Haeberli, W., Huder, J., Keusen, H., Pika, J., and Röthlisberger, H.:
Core drilling through rock glacier permafrost, in Proceedings of the Fifth
International Conference on Permafrost, Tapir Publishers,
Trondheim, 937–944, https://www.researchgate.net/publication/245800726_Core_drilling_through_rock_glacier_permafrost (last access: 11 June
2021), 1988.
Halla, C., Blöthe, J. H., Tapia Baldis, C., Trombotto Liaudat, D., Hilbich, C., Hauck, C., and Schrott, L.: Ice content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina, The Cryosphere, 15, 1187–1213, https://doi.org/10.5194/tc-15-1187-2021, 2021.
Harrington, J. S., Mozil, A., Hayashi, M., and Bentley, L. R.: Groundwater
flow and storage processes in an inactive rock glacier, Hydrol. Process.,
32, 3070–3088, https://doi.org/10.1002/hyp.13248, 2018.
Hauck, C. and Kneisel, C.: Applied geophysics in periglacial environments,
Cambridge University Press, https://doi.org/10.1017/CBO9780511535628, 2008.
Hauck, C., Vieira, G., Gruber, S., Blanco, J., and Ramos, M.: Geophysical
identification of permafrost in Livingston Island, Maritime Antarctica, J.
Geophys. Res.-Earth, 112, F02S19, https://doi.org/10.1029/2006JF000544, 2007.
Hauck, C., Böttcher, M., and Maurer, H.: A new model for estimating subsurface ice content based on combined electrical and seismic data sets, The Cryosphere, 5, 453–468, https://doi.org/10.5194/tc-5-453-2011, 2011.
Hauck, C., Hilbich, C., and Mollaret, C.: Geophysical Surveys Alturas, Chile,
2017, internal report, Fribourg, 2017.
Hausmann, H., Krainer, K., Brückl, E., and Mostler, W.: Internal
structure and ice content of Reichenkar rock glacier (Stubai Alps, Austria)
assessed by geophysical investigations, Permafrost Periglac., 18,
351–367, https://doi.org/10.1002/ppp.601, 2007.
Hedding, D. W.: Pronival rampart and protalus rampart: A review of
terminology, J. Glaciol., 57, 1179–1180,
https://doi.org/10.3189/002214311798843241, 2011.
Hilbich, C. and Hauck, C.: Geophysical Surveys in Filo Del Sol,
internal report, Fribourg, 2018a.
Hilbich, C. and Hauck, C.: Geophysical Surveys on Barriales Rock Glacier,
Argentina, internal report, Fribourg, 2018b.
Hilbich, C. and Hauck, C.: Geophysical Surveys in Josemaria, Argentina,
internal report, Fribourg, 2019.
Hilbich, C., Hauck, C., Hoelzle, M., Scherler, M., Schudel, L., Völksch,
I., Vonder Mühll, D., and Mäusbacher, R.: Monitoring mountain
permafrost evolution using electrical resistivity tomography: A 7-year study
of seasonal, annual, and long-term variations at Schilthorn, Swiss Alps, J.
Geophys. Res. Earth Surf., 113, 1–12, https://doi.org/10.1029/2007JF000799, 2008.
Hilbich, C., Marescot, L., Hauck, C., Loke, M. H., and Mäusbacher, R.:
Applicability of electrical resistivity tomography monitoring to coarse
blocky and ice-rich permafrost landforms, Permafrost. Periglac.,
20, 269–284, https://doi.org/10.1002/ppp.652, 2009.
Hilbich, C., Mollaret, C., and Hauck, C.: Geophysical Surveys Mineras Los
Pelambres (2016) and Rio Blanco (2017), Chile, internal report,
Fribourg, 2018.
Hilbich, C., Hauck, C., Mollaret, C., Wainstein, P., and Arenson, L. U.: Towards accurate quantification of ice content in permafrost of the Central Andes, part I: geophysics-based estimates from three different regions, Zenodo [data set], https://doi.org/10.5281/zenodo.6543493, 2022.
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi,
Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau,
U., Morin, S., Orlove, B. ,and Steltzer, H. I.: Chapter 2: High Mountain
Areas, IPCC Special Report on the Ocean and Cryosphere in a Changing
Climate, 131–202, 2019.
Janke, J. R., Ng, S. and Bellisario, A.: An inventory and estimate of water
stored in firn fields, glaciers, debris-covered glaciers, and rock glaciers
in the Aconcagua River Basin, Chile, Geomorphology, 296, 142–152,
https://doi.org/10.1016/j.geomorph.2017.09.002, 2017.
Jones, D. B., Harrison, S., Anderson, K., and Betts, R. A.: Mountain rock
glaciers contain globally significant water stores, Sci. Rep., 8, 1–10,
https://doi.org/10.1038/s41598-018-21244-w, 2018a.
Jones, D. B., Harrison, S., Anderson, K., Selley, H. L., Wood, J. L., and
Betts, R. A.: The distribution and hydrological significance of rock
glaciers in the Nepalese Himalaya, Glob. Planet. Change, 160,
123–142, https://doi.org/10.1016/j.gloplacha.2017.11.005, 2018b.
Jones, D. B., Harrison, S., Anderson, K., and Whalley, W. B.: Rock glaciers
and mountain hydrology: A review, Earth-Sci. Rev., 193, 66–90,
https://doi.org/10.1016/j.earscirev.2019.04.001, 2019.
Kneisel, C., Hauck, C., Fortier, R., and Moorman, B.: Advances in geophysical
methods for permafrost investigations, Permafrost Periglac., 19,
157–178, https://doi.org/10.1002/ppp.616, 2008.
Krainer, K., Bressan, D., Dietre, B., Haas, J. N., Hajdas, I., Lang, K.,
Mair, V., Nickus, U., Reidl, D., Thies, H., and Tonidandel, D.: A
10,300-year-old permafrost core from the active rock glacier Lazaun,
southern Ötztal Alps (South Tyrol, northern Italy), Quaternary Res., 83, 324–335, https://doi.org/10.1016/j.yqres.2014.12.005, 2015.
Loke, M. H.: RES2DINVx64 ver. 4.10.3 Rapid 2-D Resistivity and IP inversion
using the least squares method, 2020.
Marmy, A., Rajczak, J., Delaloye, R., Hilbich, C., Hoelzle, M., Kotlarski, S., Lambiel, C., Noetzli, J., Phillips, M., Salzmann, N., Staub, B., and Hauck, C.: Semi-automated calibration method for modelling of mountain permafrost evolution in Switzerland, The Cryosphere, 10, 2693–2719, https://doi.org/10.5194/tc-10-2693-2016, 2016.
Masiokas, M. H., Rabatel, A., Rivera, A., Ruiz, L., Pitte, P., Ceballos, J.
L., Barcaza, G., Soruco, A., Bown, F., Berthier, E., Dussaillant, I., and
MacDonell, S.: A Review of the Current State and Recent Changes of the
Andean Cryosphere, Front. Earth Sci., 8, 99, https://doi.org/10.3389/feart.2020.00099,
2020.
Mathys, T., Hilbich, C., Arenson, L. U., Wainstein, P. A., and Hauck, C.: Towards accurate quantification of ice content in permafrost of the Central Andes – Part II: an upscaling strategy of geophysical measurements to the catchment scale at two study sites, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2021-251, in review, 2021.
Mewes, B., Hilbich, C., Delaloye, R., and Hauck, C.: Resolution capacity of geophysical monitoring regarding permafrost degradation induced by hydrological processes, The Cryosphere, 11, 2957–2974, https://doi.org/10.5194/tc-11-2957-2017, 2017.
Mollaret, C., Hilbich, C., Pellet, C., Flores-Orozco, A., Delaloye, R., and Hauck, C.: Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites, The Cryosphere, 13, 2557–2578, https://doi.org/10.5194/tc-13-2557-2019, 2019.
Mollaret, C., Wagner, F. M., Hilbich, C., Scapozza, C., and Hauck, C.:
Petrophysical Joint Inversion Applied to Alpine Permafrost Field Sites to
Image Subsurface Ice, Water, Air, and Rock Contents, Front. Earth Sci.,
8, 85, https://doi.org/10.3389/feart.2020.00085, 2020.
Monnier, S. and Kinnard, C.: Internal structure and composition of a rock
glacier in the Andes (upper Choapa valley, Chile) using borehole information
and ground-penetrating radar, Ann. Glaciol., 54, 61–72,
https://doi.org/10.3189/2013AoG64A107, 2013.
Mühll, D. S. V. and Holub, P.: Borehole logging in alpine permafrost,
upper Engadin, Swiss Alps, Permafrost Periglac., 3, 125–132,
https://doi.org/10.1002/ppp.3430030209, 1992.
Muller, S. W.: Permafrost or permanently frozen ground and related engineering problems, U.S. Engineers Office, Strategic Engineering Study, Special Report No. 62, 136 pp. (Reprinted in 1947, J.W. Edwards, Ann Arbor, Michigan, 231 pp.), 1943.
Noetzli, J., Pellet, C., and Staub, B.: Permafrost in Switzerland 2014/2015 to 2017/2018. Glaciological Report Permafrost No. 16–19 of the Cryospheric Commission of the Swiss Academy of Sciences, 104 pp., https://doi.org/10.13093/permos-rep-2019-16-19, 2019.
Obu, J.: How Much of the Earth's Surface is Underlain by Permafrost?, J.
Geophys. Res.-Earth, 126, e2021JF006123, https://doi.org/10.1029/2021jf006123, 2021.
Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H. H.,
Dashtseren, A., Delaloye, R., Elberling, B., Etzelmüller, B., Kholodov,
A., Khomutov, A., Kääb, A., Leibman, M. O., Lewkowicz, A. G., Panda,
S. K., Romanovsky, V., Way, R. G., Westergaard-Nielsen, A., Wu, T., Yamkhin,
J., and Zou, D.: Northern Hemisphere permafrost map based on TTOP modelling
for 2000–2016 at 1 km2 scale, Earth-Sci. Rev., 193, 299–316,
https://doi.org/10.1016/j.earscirev.2019.04.023, 2019.
Oldenborger, G. A. and LeBlanc, A. M.: Monitoring changes in unfrozen water
content with electrical resistivity surveys in cold continuous permafrost,
Geophys. J. Int., 215, 965–977, https://doi.org/10.1093/GJI/GGY321, 2018.
Pellet, C., Hilbich, C., Marmy, A., and Hauck, C.: Soil moisture data for the
validation of permafrost models using direct and indirect measurement
approaches at three alpine sites, Front. Earth Sci., 3, 91,
https://doi.org/10.3389/feart.2015.00091, 2016.
Perucca, L. and Angillieri, M. Y. E.: Glaciers and rock glaciers'
distribution at 28∘ SL, Dry Andes of Argentina, and some
considerations about their hydrological significance, Environ. Earth Sci.,
64, 2079–2089, https://doi.org/10.1007/s12665-011-1030-z, 2011.
Pruessner, L., Huss, M., Phillips, M., and Farinotti, D.: A Framework for
Modeling Rock Glaciers and Permafrost at the Basin-Scale in High Alpine
Catchments, J. Adv. Model. Earth Sy., 13, e2020MS002361, https://doi.org/10.1029/2020ms002361,
2021.
Rangecroft, S., Harrison, S., Anderson, K., Magrath, J., Castel, A. P. and
Pacheco, P.: A first rock glacier inventory for the Bolivian Andes, Permafrost
Periglac., 25, 333–343, https://doi.org/10.1002/ppp.1816, 2014.
Rangecroft, S., Harrison, S., and Anderson, K.: Rock glaciers as water stores
in the Bolivian Andes: An assessment of their hydrological importance,
Arctic, Antarct. Alp. Res., 47, 89–98, https://doi.org/10.1657/AAAR0014-029, 2015.
RGIK: Towards standard guidelines for inventorying rock glaciers: baseline
concepts (v. 4.1), edited by: Delaloye, R. and Echelard, T.,
https://www3.unifr.ch/geo/geomorphology/en/research/ipa-action-group-rock-glacier
(last access: 11 June 2021), 2020.
Rivera, J. A., Penalba, O. C., Villalba, R., and Araneo, D. C.:
Spatio-temporal patterns of the 2010–2015 extreme hydrological drought
across the Central Andes, Argentina, Water, 9, 652,
https://doi.org/10.3390/w9090652, 2017.
Rücker, C., Günther, T., and Wagner, F. M.: pyGIMLi: An open-source
library for modelling and inversion in geophysics, Comput. Geosci.,
109, 106–123, https://doi.org/10.1016/j.cageo.2017.07.011, 2017.
Sandmeier, K.-J.: REFLEXW Version 9.1.3. Windows™ XP/7/8/10-program
for the processing of seismic, acoustic or electromagnetic reflection,
refraction and transmission data, 2020.
Schaffer, N., MacDonell, S., Réveillet, M., Yáñez, E., and
Valois, R.: Rock glaciers as a water resource in a changing climate in the
semiarid Chilean Andes, Reg. Environ. Chang., 19, 1263–1279,
https://doi.org/10.1007/s10113-018-01459-3, 2019.
Scherler, M., Hauck, C., Hoelzle, M., and Salzmann, N.: Modeled sensitivity
of two alpine permafrost sites to RCM-based climate scenarios, J. Geophys.
Res.-Earth Surf., 118, 780–794, https://doi.org/10.1002/jgrf.20069, 2013.
Schneider, S., Daengeli, S., Hauck, C., and Hoelzle, M.: A spatial and temporal analysis of different periglacial materials by using geoelectrical, seismic and borehole temperature data at Murtèl–Corvatsch, Upper Engadin, Swiss Alps, Geogr. Helv., 68, 265–280, https://doi.org/10.5194/gh-68-265-2013, 2013.
Sen, P. N., Scala, C., and Cohen, M. H.: A self-similar model for sedimentary
rocks with application to the dielectric constant of fused glass beads,
Geophysics, 46, 781–795, https://doi.org/10.1190/1.1441215, 1981.
Timur, A.: Velocity of Compressional Waves in Porous Media At Permafrost
Temperatures, Geophysics, 33, 584–595, https://doi.org/10.1190/1.1439954, 1968.
Trombotto, D. L., Sileo, N., and Dapeña, C.: Periglacial water paths
within a rock glacier-dominated catchment in the Stepanek area, Central
Andes, Mendoza, Argentina, Permafrost Periglac., 31, 311–323,
https://doi.org/10.1002/PPP.2044, 2020.
Villarroel, C. D., Beliveau, G. T., Forte, A. P., Monserrat, O., and
Morvillo, M.: DInSAR for a regional inventory of active rock glaciers in the
Dry Andes Mountains of Argentina and Chile with sentinel-1 data, Remote
Sens., 10, 1588, https://doi.org/10.3390/rs10101588, 2018.
Wagner, F. M., Mollaret, C., Günther, T., Kemna, A., and Hauck, C.:
Quantitative imaging of water, ice and air in permafrost systems through
petrophysical joint inversion of seismic refraction and electrical
resistivity data, Geophys. J. Int., 219, 1866–1875,
https://doi.org/10.1093/gji/ggz402, 2019.
Short summary
In view of water scarcity in the Andes, the significance of permafrost as a future water resource is often debated focusing on satellite-detected features such as rock glaciers. We present data from > 50 geophysical surveys in Chile and Argentina to quantify the ground ice volume stored in various permafrost landforms, showing that not only rock glacier but also non-rock-glacier permafrost contains significant ground ice volumes and is relevant when assessing the hydrological role of permafrost.
In view of water scarcity in the Andes, the significance of permafrost as a future water...