Articles | Volume 16, issue 5
The Cryosphere, 16, 1765–1778, 2022
https://doi.org/10.5194/tc-16-1765-2022
The Cryosphere, 16, 1765–1778, 2022
https://doi.org/10.5194/tc-16-1765-2022
Research article
06 May 2022
Research article | 06 May 2022

Divergence of apparent and intrinsic snow albedo over a season at a sub-alpine site with implications for remote sensing

Edward H. Bair et al.

Related authors

Improving snow albedo modeling in E3SM land model (version 2.0) and assessing its impacts on snow and surface fluxes over the Tibetan Plateau
Dalei Hao, Gautam Bisht, Cenlin He, Edward Bair, Huilin Huang, Cheng Dang, Karl Rittger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-67,https://doi.org/10.5194/gmd-2022-67, 2022
Preprint under review for GMD
Short summary
Comparison of modeled snow properties in Afghanistan, Pakistan, and Tajikistan
Edward H. Bair, Karl Rittger, Jawairia A. Ahmad, and Doug Chabot
The Cryosphere, 14, 331–347, https://doi.org/10.5194/tc-14-331-2020,https://doi.org/10.5194/tc-14-331-2020, 2020
Short summary
Using machine learning for real-time estimates of snow water equivalent in the watersheds of Afghanistan
Edward H. Bair, Andre Abreu Calfa, Karl Rittger, and Jeff Dozier
The Cryosphere, 12, 1579–1594, https://doi.org/10.5194/tc-12-1579-2018,https://doi.org/10.5194/tc-12-1579-2018, 2018
Short summary
Hourly mass and snow energy balance measurements from Mammoth Mountain, CA USA, 2011–2017
Edward H. Bair, Robert E. Davis, and Jeff Dozier
Earth Syst. Sci. Data, 10, 549–563, https://doi.org/10.5194/essd-10-549-2018,https://doi.org/10.5194/essd-10-549-2018, 2018
Short summary
The influence of edge effects on crack propagation in snow stability tests
E. H. Bair, R. Simenhois, A. van Herwijnen, and K. Birkeland
The Cryosphere, 8, 1407–1418, https://doi.org/10.5194/tc-8-1407-2014,https://doi.org/10.5194/tc-8-1407-2014, 2014

Related subject area

Discipline: Snow | Subject: Energy Balance Obs/Modelling
GABLS4 intercomparison of snow models at Dome C in Antarctica
Patrick Le Moigne, Eric Bazile, Anning Cheng, Emanuel Dutra, John M. Edwards, William Maurel, Irina Sandu, Olivier Traullé, Etienne Vignon, Ayrton Zadra, and Weizhong Zheng
The Cryosphere, 16, 2183–2202, https://doi.org/10.5194/tc-16-2183-2022,https://doi.org/10.5194/tc-16-2183-2022, 2022
Short summary
Modelling surface temperature and radiation budget of snow-covered complex terrain
Alvaro Robledano, Ghislain Picard, Laurent Arnaud, Fanny Larue, and Inès Ollivier
The Cryosphere, 16, 559–579, https://doi.org/10.5194/tc-16-559-2022,https://doi.org/10.5194/tc-16-559-2022, 2022
Short summary
Snow model comparison to simulate snow depth evolution and sublimation at point scale in the semi-arid Andes of Chile
Annelies Voordendag, Marion Réveillet, Shelley MacDonell, and Stef Lhermitte
The Cryosphere, 15, 4241–4259, https://doi.org/10.5194/tc-15-4241-2021,https://doi.org/10.5194/tc-15-4241-2021, 2021
Short summary
Brief communication: Evaluation of multiple density-dependent empirical snow conductivity relationships in East Antarctica
Minghu Ding, Tong Zhang, Diyi Yang, Ian Allison, Tingfeng Dou, and Cunde Xiao
The Cryosphere, 15, 4201–4206, https://doi.org/10.5194/tc-15-4201-2021,https://doi.org/10.5194/tc-15-4201-2021, 2021
Short summary
Effect of small-scale snow surface roughness on snow albedo and reflectance
Terhikki Manninen, Kati Anttila, Emmihenna Jääskeläinen, Aku Riihelä, Jouni Peltoniemi, Petri Räisänen, Panu Lahtinen, Niilo Siljamo, Laura Thölix, Outi Meinander, Anna Kontu, Hanne Suokanerva, Roberta Pirazzini, Juha Suomalainen, Teemu Hakala, Sanna Kaasalainen, Harri Kaartinen, Antero Kukko, Olivier Hautecoeur, and Jean-Louis Roujean
The Cryosphere, 15, 793–820, https://doi.org/10.5194/tc-15-793-2021,https://doi.org/10.5194/tc-15-793-2021, 2021
Short summary

Cited articles

Adams, J. B., Smith, M. O., and Johnson, P. E.: Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 Site, J. Geophys. Res.-Sol. Ea., 91, 8098–8112, https://doi.org/10.1029/JB091iB08p08098, 1986. 
Bair, E. H.: The CRREL UCSB Energy Site, CUES data [code], https://doi.org/10.21424/R4159Q, 2021. 
Bair, E. H., Davis, R. E., Finnegan, D. C., LeWinter, A. L., Guttmann, E., and Dozier, J.: Can we estimate precipitation rate during snowfall using a scanning terrestrial LiDAR?, Proc. 2012 Intl. Snow Sci. Workshop, Anchorage, AK, http://arc.lib.montana.edu/snow-science/item/1671 (last access: 24 August 2021), 2012. 
Bair, E. H., Dozier, J., Davis, R. E., Colee, M. T., and Claffey, K. J.: CUES – A study site for measuring snowpack energy balance in the Sierra Nevada, Front. Earth Sci., 3, 58, https://doi.org/10.3389/feart.2015.00058, 2015. 
Bair, E. H., Rittger, K., Davis, R. E., Painter, T. H., and Dozier, J.: Validating reconstruction of snow water equivalent in California's Sierra Nevada using measurements from the NASA Airborne Snow Observatory, Water Resour. Res., 52, 8437–8460, https://doi.org/10.1002/2016WR018704, 2016. 
Download
Short summary
Understanding how snow and ice reflect solar radiation (albedo) is important for global climate. Using high-resolution topography, darkening from surface roughness (apparent albedo) is separated from darkening by the composition of the snow (intrinsic albedo). Intrinsic albedo is usually greater than apparent albedo, especially during melt. Such high-resolution topography is often not available; thus the use of a shade component when modeling mixtures is advised.