Articles | Volume 16, issue 5
https://doi.org/10.5194/tc-16-1765-2022
https://doi.org/10.5194/tc-16-1765-2022
Research article
 | 
06 May 2022
Research article |  | 06 May 2022

Divergence of apparent and intrinsic snow albedo over a season at a sub-alpine site with implications for remote sensing

Edward H. Bair, Jeff Dozier, Charles Stern, Adam LeWinter, Karl Rittger, Alexandria Savagian, Timbo Stillinger, and Robert E. Davis

Related authors

Brief communication: Not as dirty as they look, flawed airborne and satellite snow spectra
Edward H. Bair, Dar A. Roberts, David R. Thompson, Philip G. Brodrick, Brenton A. Wilder, Niklas Bohn, Chris J. Crawford, Nimrod Carmon, Carrie M. Vuyovich, and Jeff Dozier
EGUsphere, https://doi.org/10.5194/egusphere-2024-1681,https://doi.org/10.5194/egusphere-2024-1681, 2024
Short summary
The pitfalls of ignoring topography in snow retrievals: a case study with EMIT
Niklas Bohn, Edward H. Bair, Philip G. Brodrick, Nimrod Carmon, Robert O. Green, Thomas H. Painter, and David R. Thompson
EGUsphere, https://doi.org/10.2139/ssrn.4671920,https://doi.org/10.2139/ssrn.4671920, 2024
Short summary
How do tradeoffs in satellite spatial and temporal resolution impact snow water equivalent reconstruction?
Edward H. Bair, Jeff Dozier, Karl Rittger, Timbo Stillinger, William Kleiber, and Robert E. Davis
The Cryosphere, 17, 2629–2643, https://doi.org/10.5194/tc-17-2629-2023,https://doi.org/10.5194/tc-17-2629-2023, 2023
Short summary
Evaluation of E3SM land model snow simulations over the western United States
Dalei Hao, Gautam Bisht, Karl Rittger, Timbo Stillinger, Edward Bair, Yu Gu, and L. Ruby Leung
The Cryosphere, 17, 673–697, https://doi.org/10.5194/tc-17-673-2023,https://doi.org/10.5194/tc-17-673-2023, 2023
Short summary
Landsat, MODIS, and VIIRS snow cover mapping algorithm performance as validated by airborne lidar datasets
Timbo Stillinger, Karl Rittger, Mark S. Raleigh, Alex Michell, Robert E. Davis, and Edward H. Bair
The Cryosphere, 17, 567–590, https://doi.org/10.5194/tc-17-567-2023,https://doi.org/10.5194/tc-17-567-2023, 2023
Short summary

Related subject area

Discipline: Snow | Subject: Energy Balance Obs/Modelling
Modeling snowpack dynamics and surface energy budget in boreal and subarctic peatlands and forests
Jari-Pekka Nousu, Matthieu Lafaysse, Giulia Mazzotti, Pertti Ala-aho, Hannu Marttila, Bertrand Cluzet, Mika Aurela, Annalea Lohila, Pasi Kolari, Aaron Boone, Mathieu Fructus, and Samuli Launiainen
The Cryosphere, 18, 231–263, https://doi.org/10.5194/tc-18-231-2024,https://doi.org/10.5194/tc-18-231-2024, 2024
Short summary
Estimating degree-day factors of snow based on energy flux components
Muhammad Fraz Ismail, Wolfgang Bogacki, Markus Disse, Michael Schäfer, and Lothar Kirschbauer
The Cryosphere, 17, 211–231, https://doi.org/10.5194/tc-17-211-2023,https://doi.org/10.5194/tc-17-211-2023, 2023
Short summary
Understanding wind-driven melt of patchy snow cover
Luuk D. van der Valk, Adriaan J. Teuling, Luc Girod, Norbert Pirk, Robin Stoffer, and Chiel C. van Heerwaarden
The Cryosphere, 16, 4319–4341, https://doi.org/10.5194/tc-16-4319-2022,https://doi.org/10.5194/tc-16-4319-2022, 2022
Short summary
An 11-year record of wintertime snow-surface energy balance and sublimation at 4863 m a.s.l. on the Chhota Shigri Glacier moraine (western Himalaya, India)
Arindan Mandal, Thupstan Angchuk, Mohd Farooq Azam, Alagappan Ramanathan, Patrick Wagnon, Mohd Soheb, and Chetan Singh
The Cryosphere, 16, 3775–3799, https://doi.org/10.5194/tc-16-3775-2022,https://doi.org/10.5194/tc-16-3775-2022, 2022
Short summary
Sensitivity of modeled snow grain size retrievals to solar geometry, snow particle asphericity, and snowpack impurities
Zachary Fair, Mark Flanner, Adam Schneider, and S. McKenzie Skiles
The Cryosphere, 16, 3801–3814, https://doi.org/10.5194/tc-16-3801-2022,https://doi.org/10.5194/tc-16-3801-2022, 2022
Short summary

Cited articles

Adams, J. B., Smith, M. O., and Johnson, P. E.: Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 Site, J. Geophys. Res.-Sol. Ea., 91, 8098–8112, https://doi.org/10.1029/JB091iB08p08098, 1986. 
Bair, E. H.: The CRREL UCSB Energy Site, CUES data [code], https://doi.org/10.21424/R4159Q, 2021. 
Bair, E. H., Davis, R. E., Finnegan, D. C., LeWinter, A. L., Guttmann, E., and Dozier, J.: Can we estimate precipitation rate during snowfall using a scanning terrestrial LiDAR?, Proc. 2012 Intl. Snow Sci. Workshop, Anchorage, AK, http://arc.lib.montana.edu/snow-science/item/1671 (last access: 24 August 2021), 2012. 
Bair, E. H., Dozier, J., Davis, R. E., Colee, M. T., and Claffey, K. J.: CUES – A study site for measuring snowpack energy balance in the Sierra Nevada, Front. Earth Sci., 3, 58, https://doi.org/10.3389/feart.2015.00058, 2015. 
Bair, E. H., Rittger, K., Davis, R. E., Painter, T. H., and Dozier, J.: Validating reconstruction of snow water equivalent in California's Sierra Nevada using measurements from the NASA Airborne Snow Observatory, Water Resour. Res., 52, 8437–8460, https://doi.org/10.1002/2016WR018704, 2016. 
Download
Short summary
Understanding how snow and ice reflect solar radiation (albedo) is important for global climate. Using high-resolution topography, darkening from surface roughness (apparent albedo) is separated from darkening by the composition of the snow (intrinsic albedo). Intrinsic albedo is usually greater than apparent albedo, especially during melt. Such high-resolution topography is often not available; thus the use of a shade component when modeling mixtures is advised.