Articles | Volume 16, issue 5
https://doi.org/10.5194/tc-16-1765-2022
https://doi.org/10.5194/tc-16-1765-2022
Research article
 | 
06 May 2022
Research article |  | 06 May 2022

Divergence of apparent and intrinsic snow albedo over a season at a sub-alpine site with implications for remote sensing

Edward H. Bair, Jeff Dozier, Charles Stern, Adam LeWinter, Karl Rittger, Alexandria Savagian, Timbo Stillinger, and Robert E. Davis

Data sets

Snow albedo dataset for "Divergence of apparent and intrinsic snow albedo over a season at a sub-alpine site with implications for remote sensing" Jeff Dozier and Edward Bair https://doi.org/10.5281/zenodo.6458451

Model code and software

The CRREL UCSB Energy Site Edward H. Bair https://doi.org/10.21424/R4159Q

Download
Short summary
Understanding how snow and ice reflect solar radiation (albedo) is important for global climate. Using high-resolution topography, darkening from surface roughness (apparent albedo) is separated from darkening by the composition of the snow (intrinsic albedo). Intrinsic albedo is usually greater than apparent albedo, especially during melt. Such high-resolution topography is often not available; thus the use of a shade component when modeling mixtures is advised.