Articles | Volume 16, issue 4
https://doi.org/10.5194/tc-16-1483-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-1483-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influences of changing sea ice and snow thicknesses on simulated Arctic winter heat fluxes
Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
Marika M. Holland
Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
Related authors
Laura L. Landrum, Alice K. DuVivier, Marika M. Holland, Kristen Krumhardt, and Zephyr Sylvester
EGUsphere, https://doi.org/10.5194/egusphere-2024-3490, https://doi.org/10.5194/egusphere-2024-3490, 2024
Short summary
Short summary
Antarctic polynyas – areas of open water surrounded by sea ice or sea ice and land – are key players in Antarctic marine ecosystems. Changes in the physical characteristics of polynyas will influence how these ecosystems respond to a changing climate. This work explores how to best compare polynyas identified in satellite data and climate model data to verify that the model captures important features of Antarctic sea ice and marine ecosystems, and we show how polynyas may change.
Marika M. Holland, David Clemens-Sewall, Laura Landrum, Bonnie Light, Donald Perovich, Chris Polashenski, Madison Smith, and Melinda Webster
The Cryosphere, 15, 4981–4998, https://doi.org/10.5194/tc-15-4981-2021, https://doi.org/10.5194/tc-15-4981-2021, 2021
Short summary
Short summary
As the most reflective and most insulative natural material, snow has important climate effects. For snow on sea ice, its high reflectivity reduces ice melt. However, its high insulating capacity limits ice growth. These counteracting effects make its net influence on sea ice uncertain. We find that with increasing snow, sea ice in both hemispheres is thicker and more extensive. However, the drivers of this response are different in the two hemispheres due to different climate conditions.
Laura L. Landrum, Alice K. DuVivier, Marika M. Holland, Kristen Krumhardt, and Zephyr Sylvester
EGUsphere, https://doi.org/10.5194/egusphere-2024-3490, https://doi.org/10.5194/egusphere-2024-3490, 2024
Short summary
Short summary
Antarctic polynyas – areas of open water surrounded by sea ice or sea ice and land – are key players in Antarctic marine ecosystems. Changes in the physical characteristics of polynyas will influence how these ecosystems respond to a changing climate. This work explores how to best compare polynyas identified in satellite data and climate model data to verify that the model captures important features of Antarctic sea ice and marine ecosystems, and we show how polynyas may change.
Marika M. Holland, Cecile Hannay, John Fasullo, Alexandra Jahn, Jennifer E. Kay, Michael Mills, Isla R. Simpson, William Wieder, Peter Lawrence, Erik Kluzek, and David Bailey
Geosci. Model Dev., 17, 1585–1602, https://doi.org/10.5194/gmd-17-1585-2024, https://doi.org/10.5194/gmd-17-1585-2024, 2024
Short summary
Short summary
Climate evolves in response to changing forcings, as prescribed in simulations. Models and forcings are updated over time to reflect new understanding. This makes it difficult to attribute simulation differences to either model or forcing changes. Here we present new simulations which enable the separation of model structure and forcing influence between two widely used simulation sets. Results indicate a strong influence of aerosol emission uncertainty on historical climate.
Stephen G. Yeager, Nan Rosenbloom, Anne A. Glanville, Xian Wu, Isla Simpson, Hui Li, Maria J. Molina, Kristen Krumhardt, Samuel Mogen, Keith Lindsay, Danica Lombardozzi, Will Wieder, Who M. Kim, Jadwiga H. Richter, Matthew Long, Gokhan Danabasoglu, David Bailey, Marika Holland, Nicole Lovenduski, Warren G. Strand, and Teagan King
Geosci. Model Dev., 15, 6451–6493, https://doi.org/10.5194/gmd-15-6451-2022, https://doi.org/10.5194/gmd-15-6451-2022, 2022
Short summary
Short summary
The Earth system changes over a range of time and space scales, and some of these changes are predictable in advance. Short-term weather forecasts are most familiar, but recent work has shown that it is possible to generate useful predictions several seasons or even a decade in advance. This study focuses on predictions over intermediate timescales (up to 24 months in advance) and shows that there is promising potential to forecast a variety of changes in the natural environment.
Madison M. Smith, Marika Holland, and Bonnie Light
The Cryosphere, 16, 419–434, https://doi.org/10.5194/tc-16-419-2022, https://doi.org/10.5194/tc-16-419-2022, 2022
Short summary
Short summary
Climate models represent the atmosphere, ocean, sea ice, and land with equations of varying complexity and are important tools for understanding changes in global climate. Here, we explore how realistic variations in the equations describing how sea ice melt occurs at the edges (called lateral melting) impact ice and climate. We find that these changes impact the progression of the sea-ice–albedo feedback in the Arctic and so make significant changes to the predicted Arctic sea ice.
Marika M. Holland, David Clemens-Sewall, Laura Landrum, Bonnie Light, Donald Perovich, Chris Polashenski, Madison Smith, and Melinda Webster
The Cryosphere, 15, 4981–4998, https://doi.org/10.5194/tc-15-4981-2021, https://doi.org/10.5194/tc-15-4981-2021, 2021
Short summary
Short summary
As the most reflective and most insulative natural material, snow has important climate effects. For snow on sea ice, its high reflectivity reduces ice melt. However, its high insulating capacity limits ice growth. These counteracting effects make its net influence on sea ice uncertain. We find that with increasing snow, sea ice in both hemispheres is thicker and more extensive. However, the drivers of this response are different in the two hemispheres due to different climate conditions.
Cited articles
Batrak, Y. and Müller, M.: On the warm bias in atmospheric
reanalyses induced by the missing snow over Arctic sea-ice, Nat. Commun., 10,
4170, https://doi.org/10.1038/s41467-019-11975-3, 2019.
Bitz, C. M. and Lipscomb, W. H.: An energy-conserving thermodynamic sea ice
model for climate study, J. Geophys. Res.-Oceans, 104, 15669–15677, https://doi.org/10.1029/1999JC900100, 1999.
Bromwich, D. A., Wilson, A. B., Bai, L., Liu, Z., Barlage, M., Shih, C.-F., Maldonado, S., Hines, K. M., Wang, S.-H., Woollen, J., Kuo, B., Lin, H.-C., Wee, T.-K., Serreze, M. C., and Walsh, J. E.: The Arctic System Reanalysis, version 2, Bull. Amer. Meteor. Soc., 99, 805–828,
https://doi.org/10.1175/BAMS-D-16-0215.1, 2018.
Cavalieri, D. J. and Parkinson, C. L.: Antarctic Sea Ice Variability and
Trends, 1979–2006, J. Geophys. Res., 113, C07004, https://doi.org/10.1029/2007JC004564, 2008.
Cavalieri, D. J. and Parkinson, C. L.: Arctic sea ice variability and trends, 1979–2010, The Cryosphere, 6, 881–889, https://doi.org/10.5194/tc-6-881-2012, 2012.
Chung, E., Ha, K., Timmermann, A., Stuecker, M., Bodai, T., and Lee, S.:
Cold-season Arctic Amplification driven by Arctic Ocean-mediated seasonal
energy transfer, Earths Future, 9, e2020EF001898, https://doi.org/10.1029/2020EF001898, 2021.
Dai, A., Luo, D., Song, M., and Liu, J.: Arctic amplification is caused by
sea-ice loss under increasing CO2, Nat. Commun., 10, 121, https://doi.org/10.1038/s41467-018-07954-9, 2019.
Danabasoglu, G.: NCAR CESM2 model output prepared for CMIP6 PAMIP pdSST-pdSIC, Version 20210323, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.7696, 2019a.
Danabasoglu, G.: NCAR CESM2 model output prepared for CMIP6 PAMIP futSST-pdSIC, Version 20210323, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.7592, 2019b.
Danabasoglu, G.: NCAR CESM2 model output prepared for CMIP6 PAMIP pdSST-futArcSIC, Version 20210323, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.7692, 2019c.
DeRepentigny, P., Jahn, A., Holland, M. M., and Smith, A.: Arctic sea ice in
two configurations of the Community Earth System Model Version 2 (CESM2)
during the 20th and 21st centuries, J. Geophys. Res.-Oceans, https://doi.org/10.1029/2020JC016133, 2020.
Deser, C. and Kay, J. E.: CESM Large Ensemble Community Project [data set], http://www.cesm.ucar.edu/projects/community-projects/LENS/, last access: 7 April, 2020.
Feldl, N., Po-Chedley, S., Singh, H. K. A., Hay, S., and Kushner, P. J.: Sea
ice and atmospheric circulation shape the high-latitude lapse rate feedback,
Nature Partner Jounals, Clim. Atmos. Sci., 3, 41, doi.org/10.1038/s41612-020-00146-7, 2020.
Gerdes, R.: Atmospheric response to changes in Arctic sea ice thickness, Geophys. Res. Lett., 33, L18709, https://doi.org/10.1029/2006GL027146, 2006.
Graham, R. M., Rinke, A., Cohen, L., Hudson, S. R., Von Walden, P., Granskog, M. A., Dorn, W., Kayser, M., Maturilli, M.: A comparison of the two Arctic atmospheric winter states observed during N-ICE2015 and SHEBA, J. Geophys. Res.-Atmos., 122, 5716–5737, https://doi.org/10.1002/2016JD025475, 2017.
Graham, R. M., Cohen, L., Ritzhaupt, N., Segger, B., Graverson, R. R.,
Rinke, A., Walden, V. P., Granskog, M. A., and Hudson, S. R.: Evaluation of
Six Atmospheric Reanalysis over Arctic Sea Ice from Winter to Early Summer,
J. Climate, 32, 4121–4143, https://doi.org/10.1175/JCLI-D-18-0643.1, 2019.
Graversen, R. G. and Wang, M.: Polar amplification in a coupled climate
model with locked albedo, Clim. Dynam., 33, 629–643, 2009.
Hall, A.: The role of surface albedo feedback in climate, J. Climate, 17,
1550–1568, 2004.
Hezel, P. J., Zhang, X., BItz, C. M., Kelly, B. P., and Massonnet, F.:
Projected decline in spring snow depth on Arctic sea ice caused by
progressively later autumn open ocean freeze-up this century, Geophys. Res.
Lett., 39, L17505, https://doi.org/10.1029/2012GL052794, 2012.
Holland, M. M., Bitz, C. M., Hunke, E. C., Lipscomb, W. H., and Schramm, J. L.: Influence of the sea ice thickness distribution on polar climate in CCSM3, J. Clim., 19, 2398–2414, 2006.
Holland, M. M. and Landrum, L.: The emergence and transient nature of
Arctic amplification in coupled climate models, Front. Earth Sci., 9, 2296–6463, https://doi.org/10.3389/feart.2021.719024, 2021.
Hunke, E., Lipscomb, W., Jones, P., Turner, A., Jeffery, N., and Elliott, S.: CICE, The Los Alamos Sea Ice Model, Computer software, https://www.osti.gov//servlets/purl/1364126. Vers. 00. USDOE, last access: 12 May 2017.
Hurrell, J. W., Hack, J. J., Shea, D., Caron, J. M., and Rosinski, J.: A new
sea surface temperature and sea ice boundary dataset for the Community
Atmosphere Model, J. Climate, 21, 5145–5153, 2008.
Huwald H., Tremblay, L. B., and Blatter, H.: Reconciling different
observational data sets from Surface Heat Budget of the Arctic Ocean (SHEBA)
for model validation purposes, J. Geophys. Res. 110, C05009,
https://doi.org/10.1029/2003JC002221, 2005.
Jakobson, E., Vihma, T., Palo, T., Jakobson, L., Keernik, H., and Jaagus,
J.: Validation of atmospheric reanalysis over the center Arctic Ocean, Geophys. Res. Lett., 39, L10802, https://doi.org/10.1029/2012GL051591, 2012.
Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J., Bates, S., Danabasoglu, G., Edwards, J., Holland, M. Kushner, P., Lamarque, J.-F., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., and Vertenstein, M.: The Community Earth System Model (CESM) Large
Ensemble Project: a community resource for studying climate change in the
presence of internal climate variability, Bull. Am. Meteorol. Soc., 96, 1333–1349, https://doi.org/10.1175/BAMS-D-13-00255.1, data available at: http://www.cesm.ucar.edu/projects/community-projects/LENS/ (last access: 7 April 2020), 2015.
Keen, A., Blockley, E., Bailey, D. A., Boldingh Debernard, J., Bushuk, M., Delhaye, S., Docquier, D., Feltham, D., Massonnet, F., O'Farrell, S., Ponsoni, L., Rodriguez, J. M., Schroeder, D., Swart, N., Toyoda, T., Tsujino, H., Vancoppenolle, M., and Wyser, K.: An inter-comparison of the mass budget of the Arctic sea ice in CMIP6 models, The Cryosphere, 15, 951–982, https://doi.org/10.5194/tc-15-951-2021, 2021.
Krinner, G., Rinke, A., Dethloff, K., and Gorodetskaya, I. V.: Impact of prescribed Arctic sea ice thickness in simulations of the present and future climate, Clim. Dyn., 35, 619–633, https://doi.org/10.1007/s00382-009-0587-7, 2010.
Kumar, A., Perlwitz, J., Eischeid, J., Quan, X., Xu, T., Zhang, T.,
Hoerling, M., Jha, B., and Wang, W.: Contribution of sea ice loss to Arctic
amplification, Geophys. Res. Lett., 37, L21701, https://doi.org/10.1029/2010GL045022, 2010.
Kwok, R.: Arctic sea ice thickness, volume, and multiyear ice coverage:
losses and coupled variability (1958–2018), Environ. Res. Lett., 13, 105005, https://doi.org/10.1088/1748-9326/aae3ec, 2018.
Kwok, R. and Rothrock, D. A.: Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008, Geophys. Res. Lett., 36, L15501, https://doi.org/10.1029/2009GL039035, 2009.
Labe, Z., Magnusdottir, G., and Stern, H.: Variability of Arctic sea ice
thickness using PIOMAS and the CESM large ensemble, J. Climate, 31, 3233–3247,
https://10.1175/ JCLI-D-17-0436.1, 2018a.
Labe, Z. M., Peings, Y., and Magnusdottir, G.: Contributions of ice thickness
to the atmospheric response from projected Arctic sea ice loss, Geophys. Res. Lett., 45, 5635–5642, https://doi.org/10.1029/2018GL078158, 2018b.
Landrum, L.: Scripts for figures and analysis for “Influences of changing
sea ice and snow thicknesses on winter Arctic heat fluxes” in The Cryosphere, Zenodo [code],
https://doi.org/10.5281/zenodo.6336145, 2021.
Lang, A., Yang, S. and Kaas, E.: Sea ice thickness and recent Arctic warming, Geophys. Res. Lett., 44, 409–418, https://doi.org/10.1002/2016GL071274, 2017.
Lindsay, R. and Schweiger, A.: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations, The Cryosphere, 9, 269–283, https://doi.org/10.5194/tc-9-269-2015, 2015.
Lindsay, R., Wensnahan, M., Schweiger, A., and Zhang, J.: Evaluation of
seven different atmospheric reanalysis products in the Arctic, J. Climate,
27, 2588–2606, https://doi.org/10.1175/JCLI-D-13-00014.1, 2014.
Massonnet, F., Vancoppenolle, M., Goosse, H., Docquier, D., Fichefet, T., and Blanchard-Wrigglesworth, E.: Arctic sea-ice
change tied to its mean state through thermodynamic processes, Nat. Clim. Change, 8, 599–603, https://doi.org/10.1038/s41558-018-0204-z, 2018.
Meinshausen, M., Smith, S. J., Calvin, K. Daniel, J. S., Kainuma, M. L. T., Lamarque, J.-F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K., Thomson, A., Velders, G. J. M., and van Vuuren, D. P. P.: The RCP greenhouse
gas concentrations and their extensions from 1765 to 2300, Clim. Change, 109, 213, https://doi.org/10.1007/s10584-011-0156-z, 2011.
NCAR: The NCAR Command Language (NCL), Version 6.6.2, NCAR [code], Boulder, Colorado, UCAR/NCAR/CISL/TDD, https://doi.org/10.5065/D6WD3XH5, 2019.
Parkinson, C. L., Cavalieri, D. J., Gloersen, P., Zwally, H. J., and Comiso,
J. C.: Arctic sea ice extents, areas, and trends, 1978–1996, J. Geophys. Res., 104, 20837–20856, https://doi.org/10.1029/1999JC900082, 1999.
Peings, Y. and G. Magnusdottir, G.: Response of the wintertime Northern
Hemisphere atmospheric circulation to current and projected Arctic sea ice
decline: A numerical study with CAM5, J. Climate, 27, 244–264 https://doi.org/10.1175/JCLI-D-13-00272.1, 2014.
Petty, A. A., Holland, M. M., Bailey, D. A., and Kurtz, N. T.: Warm Arctic,
increased winter sea ice growth?, Geophys. Res. Lett., 45, 12922–12930,
https://doi.org/10.1029/2018GL079223, 2018.
Pithan, F. and Mauritsen, T.: Arctic amplification dominated by temperature
feedbacks in contemporary climate models, Nat. Geosci., 7, 181–184, 2014.
Screen, J. A., Simmonds, I., Deser, C., and Tomas, R.: The atmospheric
response to three decades of observed Arctic sea ice loss, J. Climate, 26,
1230–1248, https://doi.org/10.1175/JCLI-D-12-00063.1, 2013.
Semtner, A. J.: A Model for the Thermodynamic Growth of Sea Ice in Numerical
Investigations of Climate, J. Phys. Oceanogr. 6, 379–389, 1976.
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic
amplification: A research synthesis, Global Planet. Change, 77, 85–96,
https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011.
Simpson, I. R., Bacmeister, J., Neale, R. B., Hannay, C., Gettelman, A.,
Garcia, R. R., and coauthors: An evaluation of the large-scale atmospheric
circulation and its variability in CESM2 and other CMIP models, J. Geophys. Res.-Atmos., 125, e2020JD032835, https://doi.org/10.1029/2020JD032835, 2020.
Smith, D. M., Screen, J. A., Deser, C., Cohen, J., Fyfe, J. C., García-Serrano, J., Jung, T., Kattsov, V., Matei, D., Msadek, R., Peings, Y., Sigmond, M., Ukita, J., Yoon, J.-H., and Zhang, X.: The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: investigating the causes and consequences of polar amplification, Geosci. Model Dev., 12, 1139–1164, https://doi.org/10.5194/gmd-12-1139-2019, 2019.
Sun, L., Deser, C., and Tomas, R. A.: Mechanisms of stratospheric and
tropospheric circulation response to projected Arctic sea ice loss, J. Climate, 28, 7824–7845, https://doi.org/10.1175/JCLI-D-15-0169.1, 2015.
Sun, L., Allured, D., Hoerling, M., Smith, L., Perlwitz, J., Murray, D., and
Eischeid, J.: Drivers of 2016 record Arctic warmth assessed using climate
simulations subjected to Factual and Counterfactual forcing, Weather and Climate Extremes, 19, 1-9,
https://doi.org/10.1016/j.wace.2017.11.001, 2018.
Sun, L., Deser, C., Simpson I., and Sigmond, M.: Uncertainty in the winter
tropospheric response to Arctic Sea ice loss: the role of stratospheric
polar vortex internal variability, J. Climate, 35, 1–58, https://doi.org/10.1175/JCLI-D-21-0543.1, 2022.
Thorndike, A. S., Rothrock, D., Maykut, G., and Colony, R.: The thickness distribution of sea ice, J. Geophys. Res., 80, 4501–4513, 1975.
Vavrus, S.: The impact of cloud feedbacks on Arctic climate under greenhouse
forcing, J. Climate, 17, 603–615, 2004.
Wang, C., Graham, R. M., Wang, K., Gerland, S., and Granskog, M. A.: Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: effects on sea ice thermodynamics and evolution, The Cryosphere, 13, 1661–1679, https://doi.org/10.5194/tc-13-1661-2019, 2019.
Webster, M., Gerland, S., Holland, M., Hunke, E., Kwok, R., Lecomte, O., Massom, R., Perovich, D., and Sturm, M.: Snow in the changing sea-ice systems, Nat. Clim. Change, 8, 946–953, https://doi.org/10.1038/s41558-018-0286-7, 2018.
Webster, M. A., Rigor, I. G., Nghiem, S. V., Kurtz, N. T., Farrell, S. L.,
Perovich, D. K., and Sturm, M.: Interdecadal changes in snow depth on Arctic sea ice, J. Geophys. Res.-Oceans, 119, 5395–5406, 2014.
Webster, M. A., DuVivier, A. K., Holland, M. M., and Bailey, D. A.: Snow on
Arctic Sea Ice in a Warming Climate as Simulated in CESM, J. Geophys. Res.-Oceans, 125, e2020JC016308, https://doi.org/10.1029/2020JC016308, 2020.
Zhang, J. and Rothrock, D. A.: Modeling global sea ice with a thickness and
enthalpy distribution model in generalized curvilinear coordinates, Mon. Wea. Rev., 131, 845–861, https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2, 2003.
Short summary
High-latitude Arctic wintertime sea ice and snow insulate the relatively warmer ocean from the colder atmosphere. As the climate warms, wintertime Arctic conductive heat fluxes increase even when the sea ice concentrations remain high. Simulations from the Community Earth System Model Large Ensemble (CESM1-LE) show how sea ice and snow thicknesses, as well as the distribution of these thicknesses, significantly impact large-scale calculations of wintertime surface heat budgets in the Arctic.
High-latitude Arctic wintertime sea ice and snow insulate the relatively warmer ocean from the...