Articles | Volume 15, issue 12
https://doi.org/10.5194/tc-15-5785-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-5785-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Automated mapping of the seasonal evolution of surface meltwater and its links to climate on the Amery Ice Shelf, Antarctica
Peter A. Tuckett
CORRESPONDING AUTHOR
Department of Geography, University of Sheffield, Sheffield, S3 7ND, UK
Jeremy C. Ely
Department of Geography, University of Sheffield, Sheffield, S3 7ND, UK
Andrew J. Sole
Department of Geography, University of Sheffield, Sheffield, S3 7ND, UK
James M. Lea
Department of Geography, University of Liverpool, Liverpool, UK
Stephen J. Livingstone
Department of Geography, University of Sheffield, Sheffield, S3 7ND, UK
Julie M. Jones
Department of Geography, University of Sheffield, Sheffield, S3 7ND, UK
J. Melchior van Wessem
Institute for Marine and Atmospheric Research, Utrecht University,
Utrecht, the Netherlands
Related authors
No articles found.
Xi Lu, Liming Jiang, Daan Li, Yi Liu, Andrew Sole, and Stephen John Livingstone
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-304, https://doi.org/10.5194/essd-2025-304, 2025
Preprint under review for ESSD
Short summary
Short summary
To support generalized automated monitoring and modeling of Greenland’s outlet glaciers, this study presents a benchmark dataset of over 12,000 manually delineated calving front positions from 2002 to 2021. With high spatial accuracy and wide coverage, it enables evaluation of automated detection methods, improves model boundary conditions, and supports long-term studies of glacier change and sea-level rise.
Tancrède P. M. Leger, Jeremy C. Ely, Christopher D. Clark, Sarah L. Bradley, Rosie E. Archer, and Jiang Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2025-1616, https://doi.org/10.5194/egusphere-2025-1616, 2025
Short summary
Short summary
This study uses state-of-the-art computer simulations to better understand how the Greenland ice sheet has changed over the past 24,000 years. By comparing model results with geological data, it reveals when and why the ice sheet grew and shrank, helping improve future predictions of sea level rise and climate change.
Penelope How, Dorthe Petersen, Kristian Kjellerup Kjeldsen, Katrine Raundrup, Nanna Bjørnholt Karlsson, Alexandra Messerli, Anja Rutishauser, Jonathan Lee Carrivick, James M. Lea, Robert Schjøtt Fausto, Andreas Peter Ahlstrøm, and Signe Bech Andersen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-18, https://doi.org/10.5194/essd-2025-18, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
Ice-marginal lakes around Greenland temporarily store glacial meltwater, affecting sea level rise, glacier dynamics and ecosystems. Our study presents an eight-year inventory (2016–2023) of 2918 lakes, mapping their size, abundance, and surface water temperature. This openly available dataset supports future research on sea level projections, lake-driven glacier melting, and sustainable resource planning, including hydropower development under Greenland's climate commitments.
Laura J. Larocca, James M. Lea, Michael P. Erb, Nicholas P. McKay, Megan Phillips, Kara A. Lamantia, and Darrell S. Kaufman
The Cryosphere, 18, 3591–3611, https://doi.org/10.5194/tc-18-3591-2024, https://doi.org/10.5194/tc-18-3591-2024, 2024
Short summary
Short summary
Here we present summer snowline altitude (SLA) time series for 269 Arctic glaciers. Between 1984 and 2022, SLAs rose ∼ 150 m, equating to a ∼ 127 m shift per 1 °C of summer warming. SLA is most strongly correlated with annual temperature variables, highlighting their dual effect on ablation and accumulation processes. We show that SLAs are rising fastest on low-elevation glaciers and that > 50 % of the studied glaciers could have SLAs that exceed the maximum ice elevation by 2100.
Izabela Szuman, Jakub Z. Kalita, Christiaan R. Diemont, Stephen J. Livingstone, Chris D. Clark, and Martin Margold
The Cryosphere, 18, 2407–2428, https://doi.org/10.5194/tc-18-2407-2024, https://doi.org/10.5194/tc-18-2407-2024, 2024
Short summary
Short summary
A Baltic-wide glacial landform-based map is presented, filling in a geographical gap in the record that has been speculated about by palaeoglaciologists for over a century. Here we used newly available bathymetric data and provide landform evidence of corridors of fast ice flow that we interpret as ice streams. Where previous ice-sheet-scale investigations inferred a single ice source, our mapping identifies flow and ice margin geometries from both Swedish and Bothnian sources.
Tancrède P. M. Leger, Christopher D. Clark, Carla Huynh, Sharman Jones, Jeremy C. Ely, Sarah L. Bradley, Christiaan Diemont, and Anna L. C. Hughes
Clim. Past, 20, 701–755, https://doi.org/10.5194/cp-20-701-2024, https://doi.org/10.5194/cp-20-701-2024, 2024
Short summary
Short summary
Projecting the future evolution of the Greenland Ice Sheet is key. However, it is still under the influence of past climate changes that occurred over thousands of years. This makes calibrating projection models against current knowledge of its past evolution (not yet achieved) important. To help with this, we produced a new Greenland-wide reconstruction of ice sheet extent by gathering all published studies dating its former retreat and by mapping its past margins at the ice sheet scale.
Oliver G. Pollard, Natasha L. M. Barlow, Lauren J. Gregoire, Natalya Gomez, Víctor Cartelle, Jeremy C. Ely, and Lachlan C. Astfalck
The Cryosphere, 17, 4751–4777, https://doi.org/10.5194/tc-17-4751-2023, https://doi.org/10.5194/tc-17-4751-2023, 2023
Short summary
Short summary
We use advanced statistical techniques and a simple ice-sheet model to produce an ensemble of plausible 3D shapes of the ice sheet that once stretched across northern Europe during the previous glacial maximum (140,000 years ago). This new reconstruction, equivalent in volume to 48 ± 8 m of global mean sea-level rise, will improve the interpretation of high sea levels recorded from the Last Interglacial period (120 000 years ago) that provide a useful perspective on the future.
Lauren D. Rawlins, David M. Rippin, Andrew J. Sole, Stephen J. Livingstone, and Kang Yang
The Cryosphere, 17, 4729–4750, https://doi.org/10.5194/tc-17-4729-2023, https://doi.org/10.5194/tc-17-4729-2023, 2023
Short summary
Short summary
We map and quantify surface rivers and lakes at Humboldt Glacier to examine seasonal evolution and provide new insights of network configuration and behaviour. A widespread supraglacial drainage network exists, expanding up the glacier as seasonal runoff increases. Large interannual variability affects the areal extent of this network, controlled by high- vs. low-melt years, with late summer network persistence likely preconditioning the surface for earlier drainage activity the following year.
Yubin Fan, Chang-Qing Ke, Xiaoyi Shen, Yao Xiao, Stephen J. Livingstone, and Andrew J. Sole
The Cryosphere, 17, 1775–1786, https://doi.org/10.5194/tc-17-1775-2023, https://doi.org/10.5194/tc-17-1775-2023, 2023
Short summary
Short summary
We used the new-generation ICESat-2 altimeter to detect and monitor active subglacial lakes in unprecedented spatiotemporal detail. We created a new inventory of 18 active subglacial lakes as well as their elevation and volume changes during 2019–2020, which provides an improved understanding of how the Greenland subglacial water system operates and how these lakes are fed by water from the ice surface.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Ryan N. Ing, Jeremy C. Ely, Julie M. Jones, and Bethan J. Davies
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-33, https://doi.org/10.5194/tc-2023-33, 2023
Preprint withdrawn
Short summary
Short summary
Many of the glaciers in Alaska are losing ice, contributing to sea-level rise. Here, we study the inputs and outputs for the Juneau Icefield. We first model the historical changes to snowfall and melt, constraining our model with observations. We then project future changes to the icefield, which show that icefield-wide loss of ice is likely. Losses are driven by rising temperatures, and less snowfall. The exposure of ice, and the break-up of glaciers due to thinning may accelerate ice loss.
Jeremy Carter, Amber Leeson, Andrew Orr, Christoph Kittel, and J. Melchior van Wessem
The Cryosphere, 16, 3815–3841, https://doi.org/10.5194/tc-16-3815-2022, https://doi.org/10.5194/tc-16-3815-2022, 2022
Short summary
Short summary
Climate models provide valuable information for studying processes such as the collapse of ice shelves over Antarctica which impact estimates of sea level rise. This paper examines variability across climate simulations over Antarctica for fields including snowfall, temperature and melt. Significant systematic differences between outputs are found, occurring at both large and fine spatial scales across Antarctica. Results are important for future impact assessments and model development.
Sophie Goliber, Taryn Black, Ginny Catania, James M. Lea, Helene Olsen, Daniel Cheng, Suzanne Bevan, Anders Bjørk, Charlie Bunce, Stephen Brough, J. Rachel Carr, Tom Cowton, Alex Gardner, Dominik Fahrner, Emily Hill, Ian Joughin, Niels J. Korsgaard, Adrian Luckman, Twila Moon, Tavi Murray, Andrew Sole, Michael Wood, and Enze Zhang
The Cryosphere, 16, 3215–3233, https://doi.org/10.5194/tc-16-3215-2022, https://doi.org/10.5194/tc-16-3215-2022, 2022
Short summary
Short summary
Terminus traces have been used to understand how Greenland's glaciers have changed over time; however, manual digitization is time-intensive, and a lack of coordination leads to duplication of efforts. We have compiled a dataset of over 39 000 terminus traces for 278 glaciers for scientific and machine learning applications. We also provide an overview of an updated version of the Google Earth Engine Digitization Tool (GEEDiT), which has been developed specifically for the Greenland Ice Sheet.
Matthew K. Laffin, Charles S. Zender, Melchior van Wessem, and Sebastián Marinsek
The Cryosphere, 16, 1369–1381, https://doi.org/10.5194/tc-16-1369-2022, https://doi.org/10.5194/tc-16-1369-2022, 2022
Short summary
Short summary
The collapses of the Larsen A and B ice shelves on the Antarctic Peninsula (AP) occurred while the ice shelves were covered with large melt lakes, and ocean waves damaged the ice shelf fronts, triggering collapse. Observations show föhn winds were present on both ice shelves and increased surface melt and drove sea ice away from the ice front. Collapsed ice shelves experienced enhanced surface melt driven by föhn winds, whereas extant ice shelves are affected less by föhn-wind-induced melt.
Benjamin Joseph Davison, Tom Cowton, Andrew Sole, Finlo Cottier, and Pete Nienow
The Cryosphere, 16, 1181–1196, https://doi.org/10.5194/tc-16-1181-2022, https://doi.org/10.5194/tc-16-1181-2022, 2022
Short summary
Short summary
The ocean is an important driver of Greenland glacier retreat. Icebergs influence ocean temperature in the vicinity of glaciers, which will affect glacier retreat rates, but the effect of icebergs on water temperature is poorly understood. In this study, we use a model to show that icebergs cause large changes to water properties next to Greenland's glaciers, which could influence ocean-driven glacier retreat around Greenland.
Nicolaj Hansen, Sebastian B. Simonsen, Fredrik Boberg, Christoph Kittel, Andrew Orr, Niels Souverijns, J. Melchior van Wessem, and Ruth Mottram
The Cryosphere, 16, 711–718, https://doi.org/10.5194/tc-16-711-2022, https://doi.org/10.5194/tc-16-711-2022, 2022
Short summary
Short summary
We investigate the impact of different ice masks when modelling surface mass balance over Antarctica. We used ice masks and data from five of the most used regional climate models and a common mask. We see large disagreement between the ice masks, which has a large impact on the surface mass balance, especially around the Antarctic Peninsula and some of the largest glaciers. We suggest a solution for creating a new, up-to-date, high-resolution ice mask that can be used in Antarctic modelling.
David W. Ashmore, Douglas W. F. Mair, Jonathan E. Higham, Stephen Brough, James M. Lea, and Isabel J. Nias
The Cryosphere, 16, 219–236, https://doi.org/10.5194/tc-16-219-2022, https://doi.org/10.5194/tc-16-219-2022, 2022
Short summary
Short summary
In this paper we explore the use of a transferrable and flexible statistical technique to try and untangle the multiple influences on marine-terminating glacier dynamics, as measured from space. We decompose a satellite-derived ice velocity record into ranked sets of static maps and temporal coefficients. We present evidence that the approach can identify velocity variability mainly driven by changes in terminus position and velocity variation mainly driven by subglacial hydrological processes.
Izabela Szuman, Jakub Z. Kalita, Marek W. Ewertowski, Chris D. Clark, Stephen J. Livingstone, and Leszek Kasprzak
Earth Syst. Sci. Data, 13, 4635–4651, https://doi.org/10.5194/essd-13-4635-2021, https://doi.org/10.5194/essd-13-4635-2021, 2021
Short summary
Short summary
The Baltic Ice Stream Complex was the most prominent ice stream of the last Scandinavian Ice Sheet, controlling ice sheet drainage and collapse. Our mapping effort, based on a lidar DEM, resulted in a dataset containing 5461 landforms over an area of 65 000 km2, which allows for reconstruction of the last Scandinavian Ice Sheet extent and dynamics from the Middle Weichselian ice sheet advance, 50–30 ka, through the Last Glacial Maximum, 25–21 ka, and Young Baltic advances, 18–15 ka.
Ruth Mottram, Nicolaj Hansen, Christoph Kittel, J. Melchior van Wessem, Cécile Agosta, Charles Amory, Fredrik Boberg, Willem Jan van de Berg, Xavier Fettweis, Alexandra Gossart, Nicole P. M. van Lipzig, Erik van Meijgaard, Andrew Orr, Tony Phillips, Stuart Webster, Sebastian B. Simonsen, and Niels Souverijns
The Cryosphere, 15, 3751–3784, https://doi.org/10.5194/tc-15-3751-2021, https://doi.org/10.5194/tc-15-3751-2021, 2021
Short summary
Short summary
We compare the calculated surface mass budget (SMB) of Antarctica in five different regional climate models. On average ~ 2000 Gt of snow accumulates annually, but different models vary by ~ 10 %, a difference equivalent to ± 0.5 mm of global sea level rise. All models reproduce observed weather, but there are large differences in regional patterns of snowfall, especially in areas with very few observations, giving greater uncertainty in Antarctic mass budget than previously identified.
J. Melchior van Wessem, Christian R. Steger, Nander Wever, and Michiel R. van den Broeke
The Cryosphere, 15, 695–714, https://doi.org/10.5194/tc-15-695-2021, https://doi.org/10.5194/tc-15-695-2021, 2021
Short summary
Short summary
This study presents the first modelled estimates of perennial firn aquifers (PFAs) in Antarctica. PFAs are subsurface meltwater bodies that do not refreeze in winter due to the isolating effects of the snow they are buried underneath. They were first identified in Greenland, but conditions for their existence are also present in the Antarctic Peninsula. These PFAs can have important effects on meltwater retention, ice shelf stability, and, consequently, sea level rise.
Vincent Verjans, Amber A. Leeson, Christopher Nemeth, C. Max Stevens, Peter Kuipers Munneke, Brice Noël, and Jan Melchior van Wessem
The Cryosphere, 14, 3017–3032, https://doi.org/10.5194/tc-14-3017-2020, https://doi.org/10.5194/tc-14-3017-2020, 2020
Short summary
Short summary
Ice sheets are covered by a firn layer, which is the transition stage between fresh snow and ice. Accurate modelling of firn density properties is important in many glaciological aspects. Current models show disagreements, are mostly calibrated to match specific observations of firn density and lack thorough uncertainty analysis. We use a novel calibration method for firn models based on a Bayesian statistical framework, which results in improved model accuracy and in uncertainty evaluation.
Emma L. M. Lewington, Stephen J. Livingstone, Chris D. Clark, Andrew J. Sole, and Robert D. Storrar
The Cryosphere, 14, 2949–2976, https://doi.org/10.5194/tc-14-2949-2020, https://doi.org/10.5194/tc-14-2949-2020, 2020
Short summary
Short summary
We map visible traces of subglacial meltwater flow across Keewatin, Canada. Eskers are commonly observed to form within meltwater corridors up to a few kilometres wide, and we interpret different traces to have formed as part of the same integrated drainage system. In our proposed model, we suggest that eskers record the imprint of a central conduit while meltwater corridors represent the interaction with the surrounding distributed drainage system.
Cited articles
Alley, K. E., Scambos, T. A., Miller, J. Z., Long, D. G., and MacFerrin, M.:
Quantifying vulnerability of Antarctic ice shelves to hydrofracture using
microwave scattering properties, Remote Sens. Environ., 210, 297–306,
https://doi.org/10.1016/j.rse.2018.03.025, 2018.
Arblaster, J. M. and Meehl, G. A.: Contributions of External Forcings to
Southern Annular Mode Trends, J. Climate, 19, 2896–2905,
https://doi.org/10.1175/JCLI3774.1, 2006.
Arthur, J. F., Stokes, C. R., Jamieson, S. S. R., Carr, J. R., and Leeson, A. A.: Distribution and seasonal evolution of supraglacial lakes on Shackleton Ice Shelf, East Antarctica, The Cryosphere, 14, 4103–4120, https://doi.org/10.5194/tc-14-4103-2020, 2020a.
Arthur, J. F., Stokes, C., Jamieson, S. S. R., Carr, J. R., and Leeson, A. A.:
Recent understanding of Antarctic supraglacial lakes using satellite remote
sensing, Prog. Phys. Geogr., 44,
837–869, https://doi.org/10.1177/0309133320916114, 2020b.
Banerjee, A., Fyfe, J. C., Polvani, L. M., Waugh, D., and Chang, K.-L.: A
pause in Southern Hemisphere circulation trends due to the Montreal
Protocol, Nature, 579, 544–548, https://doi.org/10.1038/s41586-020-2120-4,
2020.
Banwell, A. F., MacAyeal, D. R., and Sergienko, O. V.: Breakup of the Larsen
B Ice Shelf triggered by chain reaction drainage of supraglacial lakes,
Geophys. Res. Lett., 40, 5872–5876, https://doi.org/10.1002/2013gl057694,
2013.
Bell, R. E., Banwell, A. F., Trusel, L. D., and Kingslake, J.: Antarctic
surface hydrology and impacts on ice-sheet mass balance, Nat. Clim. Change,
8, 1044–1052, https://doi.org/10.1038/s41558-018-0326-3, 2018.
Budd, W.: The Dynamics of the Amery Ice Shelf, J. Glaciol., 6, 335–358,
https://doi.org/10.3189/S0022143000019456, 1966.
Buzzard, S. C., Feltham, D. L., and Flocco, D.: A Mathematical Model of Melt
Lake Development on an Ice Shelf, J. Adv. Model. Earth
Sy., 10, 262–283, https://doi.org/10.1002/2017ms001155, 2018.
Dell, R., Arnold, N., Willis, I., Banwell, A., Williamson, A., Pritchard, H., and Orr, A.: Lateral meltwater transfer across an Antarctic ice shelf, The Cryosphere, 14, 2313–2330, https://doi.org/10.5194/tc-14-2313-2020, 2020.
Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T. M.,
Ligtenberg, S. R. M., van den Broeke, M. R., and Moholdt, G.: Calving fluxes
and basal melt rates of Antarctic ice shelves, Nature, 502, 89–92,
https://doi.org/10.1038/nature12567, 2013.
Dirscherl, M., Dietz, A. J., Kneisel, C., and Kuenzer, C.: Automated Mapping
of Antarctic Supraglacial Lakes Using a Machine Learning Approach, Remote
Sensing, 12, 1203, https://doi.org/10.3390/rs12071203, 2020.
Doran, P. T., McKay, C. P., Meyer, M. A., Andersen, D. T., Wharton, R. A.,
and Hastings, J. T.: Climatology and implications for perennial lake ice
occurrence at Bunger Hills Oasis, East Antarctica, Antarct. Sci., 8,
289–296, https://doi.org/10.1017/s0954102096000429, 1996.
Dunmire, D., Lenaerts, J. T. M., Banwell, A. F., Wever, N., Shragge, J.,
Lhermitte, S., Drews, R., Pattyn, F., Hansen, J. S. S., Willis, I. C.,
Miller, J., and Keenan, E.: Observations of Buried Lake Drainage on the
Antarctic Ice Sheet, Geophys. Res. Lett., 47, e2020GL087970,
https://doi.org/10.1029/2020GL087970, 2020.
Earth Engine Data Catalog: United States Geological Survey, available at: https://developers.google.com/earth-engine/datasets/catalog/landsat, last access: March 2021.
EarthExplorer: United States Geological Survey, available at: https://earthexplorer.usgs.gov/, last access: 31 March 2021.
Echelmeyer, K., Clarke, T. S., and Harrison, W. D.: Surficial glaciology of
Jakobshavns Isbræ, West Greenland: Part I. Surface morphology, J.
Glaciol., 37, 368–382, https://doi.org/10.3189/S0022143000005803, 1991.
Elvidge, A. D., Kuipers Munneke, P., King, J. C., Renfrew, I. A. and
Gilbert, E.: Atmospheric Drivers of Melt on Larsen C Ice Shelf: Surface
Energy Budget Regimes and the Impact of Foehn, J. Geophys.
Res.-Atmos., 125, e2020JD032463, https://doi.org/10.1029/2020jd032463, 2020.
Ely, J. C., Clark, C. D., Ng, F. S. L., and Spagnolo, M.: Insights on the
formation of longitudinal surface structures on ice sheets from analysis of
their spacing, spatial distribution, and relationship to ice thickness and
flow, J. Geophys. Res.-Earth, 122, 961–972,
https://doi.org/10.1002/2016jf004071, 2017.
Fogt, R. L. and Marshall, G. J.: The Southern Annular Mode: Variability,
trends, and climate impacts across the Southern Hemisphere, Wiley
Interdiscip. Rev. Clim. Change, 11, e652, https://doi.org/10.1002/wcc.652, 2020.
Fricker, H. A., Young, N. W., Allison, I., and Coleman, R.: Iceberg calving
from the Amery Ice Shelf, East Antarctica, Ann. Glaciol., 34, 241–246,
https://doi.org/10.3189/172756402781817581, 2002.
Fricker, H. A., Coleman, R., Padman, L., Scambos, T. A., Bohlander, J., and
Brunt, K. M.: Mapping the grounding zone of the Amery Ice Shelf, East
Antarctica using InSAR, MODIS and ICESat, Antarct. Sci., 21, 515,
https://doi.org/10.1017/S095410200999023X, 2009.
Gerrish, L., Fretwell, P., and Cooper, P.: High resolution vector polygons
of the Antarctic coastline (7.4), UK Polar Data Centre, Natural
Environment Research Council, UK Research & Innovation [data set],
https://doi.org/10.5285/cdeb448d-10de-4e6e-b56b-6a16f7c59095, 2021.
Glasser, N. F., Jennings, S. J. A., Hambrey, M. J., and Hubbard, B.: Origin and dynamic significance of longitudinal structures (“flow stripes”) in the Antarctic Ice Sheet, Earth Surf. Dynam., 3, 239–249, https://doi.org/10.5194/esurf-3-239-2015, 2015.
Halberstadt, A. R. W., Gleason, C. J., Moussavi, M. S., Pope, A., Trusel, L.
D., and DeConto, R. M.: Antarctic Supraglacial Lake Identification Using
Landsat-8 Image Classification, Remote Sensing, 12, 1327,
https://doi.org/10.3390/rs12081327, 2020.
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J., and Morin, P.: The Reference Elevation Model of Antarctica, The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019, 2019.
Hubbard, B., Luckman, A., Ashmore, D. W., Bevan, S., Kulessa, B., Munneke,
P. K., Philippe, M., Jansen, D., Booth, A., Sevestre, H., Tison, J.-L.,
O'Leary, M., and Rutt, I.: Massive subsurface ice formed by refreezing of
ice-shelf melt ponds, Nat. Commun., 7, 1–6,
https://doi.org/10.1038/ncomms11897, 2016.
Ignéczi, Á., Sole, A. J., Livingstone, S. J., Ng, F. S. L., and
Yang, K.: Greenland Ice Sheet Surface Topography and Drainage Structure
Controlled by the Transfer of Basal Variability, Front Earth Sci. Chin., 6,
101, https://doi.org/10.3389/feart.2018.00101, 2018.
Iken, A.: The Effect of the Subglacial Water Pressure on the Sliding
Velocity of a Glacier in an Idealized Numerical Model, J. Glaciol., 27,
407–421, https://doi.org/10.3189/S0022143000011448, 1981.
Iken, A. and Bindschadler, R. A.: Combined measurements of Subglacial Water
Pressure and Surface Velocity of Findelengletscher, Switzerland: Conclusions
about Drainage System and Sliding Mechanism, J. Glaciol., 32, 101–119,
https://doi.org/10.3189/S0022143000006936, 1986.
Jacobs, S. S., Helmer, H. H., Doake, C. S. M., Jenkins, A., and Frolich, R.
M.: Melting of ice shelves and the mass balance of Antarctica, J. Glaciol.,
38, 375–387, https://doi.org/10.3189/S0022143000002252, 1992.
Jakobs, C. L., Reijmer, C. H., Kuipers Munneke, P., König-Langlo, G., and van den Broeke, M. R.: Quantifying the snowmelt–albedo feedback at Neumayer Station, East Antarctica, The Cryosphere, 13, 1473–1485, https://doi.org/10.5194/tc-13-1473-2019, 2019.
Jakobs, C. L., Reijmer, C. H., van den Broeke, M. R., van de Berg, W. J.,
and van Wessem, J. M.: Spatial Variability of the Snowmelt-Albedo Feedback
in Antarctica, J. Geophys. Res.-Earth, 126, e2020JF005696,
https://doi.org/10.1029/2020jf005696, 2021.
Kingslake, J., Ng, F., and Sole, A.: Modelling channelized surface drainage
of supraglacial lakes, J. Glaciol., 61, 185–199,
https://doi.org/10.3189/2015JoG14J158, 2015.
Kingslake, J., Ely, J. C., Das, I., and Bell, R. E.: Widespread movement of
meltwater onto and across Antarctic ice shelves, Nature, 551, 658,
https://doi.org/10.1038/nature24478, 2017.
Krawczynski, M. J., Behn, M. D., Das, S. B., and Joughin, I.: Constraints on
the lake volume required for hydro-fracture through ice sheets, Geophys.
Res. Lett., 36, L10501, https://doi.org/10.1029/2008gl036765, 2009.
Lai, C. Y., Kingslake, J., Wearing, M. G., Chen, P. H. C., Gentine, P., Li,
H., Spergel, J. J., and van Wessem, J. M.: Vulnerability of Antarctica's ice
shelves to meltwater-driven fracture, Nature, 584, 574–578,
https://doi.org/10.1038/s41586-020-2627-8, 2020.
Langley, E. S., Leeson, A. A., Stokes, C. R., and Jamieson, S. S. R.:
Seasonal evolution of supraglacial lakes on an East Antarctic outlet
glacier, Geophys. Res. Lett., 43, 8563–8571,
https://doi.org/10.1002/2016gl069511, 2016.
Lea, J. and Brough, S.: Supraglacial lake mapping of the entire Greenland Ice Sheet using Google Earth Engine, [abstract], AGU Fall Meeting 2019, San Francisco, USA, C31A-1483, 2019.
Leeson, A. A., Forster, E., Rice, A., Gourmelen, N., and Wessem, J. M.:
Evolution of supraglacial lakes on the Larsen B ice shelf in the decades
before it collapsed, Geophys. Res. Lett., 47, e2019GL085591,
https://doi.org/10.1029/2019gl085591, 2020.
Lenaerts, J. T. M., Lhermitte, S., Drews, R., Ligtenberg, S. R. M., Berger,
S., Helm, V., Smeets, C. J. P., van den Broeke, M. R., van de Berg, W. J.,
van Meijgaard, E., Eijkelboom, M., Eisen, O., and Pattyn, F.: Meltwater
produced by wind–albedo interaction stored in an East Antarctic ice shelf,
Nat. Clim. Change, 7, 58–62, https://doi.org/10.1038/nclimate3180, 2017.
Liang, D., Guo, H., Zhang, L., Cheng, Y., Zhu, Q., and Liu, X.: Time-series
snowmelt detection over the Antarctic using Sentinel-1 SAR images on Google
Earth Engine, Remote Sens. Environ., 256, 112318,
https://doi.org/10.1016/j.rse.2021.112318, 2021.
Marshall, G. J.: Trends in the Southern Annular Mode from Observations and
Reanalyses, J. Climate, 16, 4134–4143,
https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2, 2003 (data available at: http://www.nerc-bas.ac.uk/public/icd/gjma/newsam.1957.2007.seas.txt, last access: March 2021,).
Marshall, G. J. and Thompson, D. W. J.: The signatures of large-scale
patterns of atmospheric variability in Antarctic surface temperatures, J.
Geophys. Res., 121, 3276–3289, https://doi.org/10.1002/2015jd024665, 2016.
McMillan, M., Nienow, P., Shepherd, A., Benham, T., and Sole, A.: Seasonal
evolution of supra-glacial lakes on the Greenland Ice Sheet, Earth Planet.
Sc. Lett., 262, 484–492, https://doi.org/10.1016/j.epsl.2007.08.002, 2007.
Moussavi, M., Pope, A., Halberstadt, A. R. W., Trusel, L. D., Cioffi, L.,
and Abdalati, W.: Antarctic Supraglacial Lake Detection Using Landsat 8 and
Sentinel-2 Imagery: Towards Continental Generation of Lake Volumes, Remote
Sensing, 12, 134, https://doi.org/10.3390/rs12010134, 2020.
Moussavi, M. S., Abdalati, W., Pope, A., Scambos, T., Tedesco, M.,
MacFerrin, M., and Grigsby, S.: Derivation and validation of supraglacial
lake volumes on the Greenland Ice Sheet from high-resolution satellite
imagery, Remote Sens. Environ., 183, 294–303,
https://doi.org/10.1016/j.rse.2016.05.024, 2016.
Ng, F. S. L., Ignéczi, Á., Sole, A. J., and Livingstone, S. J.:
Response of surface topography to basal variability along glacial flowlines,
J. Geophys. Res.-Earth, 123, 2319–2340,
https://doi.org/10.1029/2017jf004555, 2018.
Oza, S. R., Singh, R. K. K., Vyas, N. K., and Sarkar, A.: Study of
inter-annual variations in surface melting over Amery Ice Shelf, East
Antarctica, using space-borne scatterometer data, J. Earth Syst. Sci., 120,
329–336, https://doi.org/10.1007/s12040-011-0055-8, 2011.
Pan, Z., Trusel, L. D., and Moussavi, M. S.: Repeated hydrofracture of a supraglacial lake above the grounding zone of Amery Ice Shelf, East Antarctica, [abstract], AGU Fall Meeting 2020, Online Meeting, C054-0009, 2020.
Phillips, H. A.: Surface meltstreams on the Amery Ice Shelf, East
Antarctica, Ann. Glaciol., 27, 177–181,
https://doi.org/10.3189/1998AoG27-1-177-181, 1998.
Picard, G., Fily, M., and Gallee, H.: Surface melting derived from microwave
radiometers: a climatic indicator in Antarctica, Ann. Glaciol., 46, 29–34,
https://doi.org/10.3189/172756407782871684, 2007.
Pope, A., Scambos, T. A., Moussavi, M., Tedesco, M., Willis, M., Shean, D., and Grigsby, S.: Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods, The Cryosphere, 10, 15–27, https://doi.org/10.5194/tc-10-15-2016, 2016.
Priestley, R. E. and David, T. W. E.: Geological notes of the British Antarctic Expedition 1907–09, 11th International Geological Congress, Stockholm, 1910, 2, 767–811, 1912.
Rignot, E.: Accelerated ice discharge from the Antarctic Peninsula following
the collapse of Larsen B ice shelf, Geophys. Res. Lett., 31, L18401,
https://doi.org/10.1029/2004gl020697, 2004.
Rott, H., Müller, F., Nagler, T., and Floricioiu, D.: The imbalance of glaciers after disintegration of Larsen-B ice shelf, Antarctic Peninsula, The Cryosphere, 5, 125–134, https://doi.org/10.5194/tc-5-125-2011, 2011.
Scambos, T. A., Hulbe, C., Fahnestock, M., and Bohlander, J.: The link
between climate warming and break-up of ice shelves in the Antarctic
Peninsula, J. Glaciol., 46, 516–530,
https://doi.org/10.3189/172756500781833043, 2000.
Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna, I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne, T., Scambos, T., Schlegel, N., A, G., Agosta, C., Ahlstrøm, A., Babonis, G., Barletta, V. R., Bjørk, A. A., Blazquez, A., Bonin, J., Colgan, W., Csatho, B., Cullather, R., Engdahl, M. E., Felikson, D., Fettweis, X., Forsberg, R., Hogg, A. E., Gallee, H., Gardner, A., Gilbert, L., Gourmelen, N., Groh, A., Gunter, B., Hanna, E., Harig, C., Helm, V., Horvath, A., Horwath, M., Khan, S., Kjeldsen, K. K., Konrad, H., Langen, P. L., Lecavalier, B., Loomis, B., Luthcke, S., McMillan, M., Melini, D., Mernild, S., Mohajerani, Y., Moore, P., Mottram, R., Mouginot, J., Moyano, G., Muir, A., Nagler, T., Nield, G., Nilsson, J., Noël, B., Otosaka, I., Pattle, M. E., Peltier, W. R., Pie, N., Rietbroek, R., Rott, H., Sørensen, L. S., Sasgen, I., Save, H., Scheuchl, B., Schrama, E., Schröder, L., Seo, K. W., Simonsen, S. B., Slater, T., Spada, G., Sutterley, T., Talpe, M., Tarasov, L., van de Berg, W. J., van der Wal, W., van Wessem, M., Vishwakarma, B. D., Wiese, D., Wilton, D., Wagner, T., Wouters, B., and Wuite, J.: Mass balance of the Greenland Ice Sheet from 1992 to 2018,
Nature, 579, 233–239, https://doi.org/10.1038/s41586-019-1855-2, 2020.
Smith, B., Fricker, H. A., Gardner, A. S., Medley, B., Nilsson, J., Paolo,
F. S., Holschuh, N., Adusumilli, S., Brunt, K., and Csatho, B.: Pervasive
ice sheet mass loss reflects competing ocean and atmosphere processes,
Science, 368, 1239–1242, https://doi.org/10.1126/science.aaz5845, 2020.
Spergel, J. J., Kingslake, J., Creyts, T., van Wessem, M., and Fricker, H.
A.: Surface meltwater drainage and ponding on Amery Ice Shelf, East
Antarctica, 1973–2019, J. Glaciol., 67, 985–998,
https://doi.org/10.1017/jog.2021.46, 2021.
Stokes, C. R., Sanderson, J. E., Miles, B. W., Jamieson, S. S. R., and
Leeson, A. A.: Widespread development of supraglacial lakes around the
margin of the East Antarctic Ice Sheet, Sci. Rep.-UK, 9, 13823,
https://doi.org/10.1038/s41598-019-50343-5, 2019.
Sundal, A. V., Shepherd, A., Nienow, P., Hanna, E., Palmer, S., and
Huybrechts, P.: Evolution of supra-glacial lakes across the Greenland Ice
Sheet, Remote Sens. Environ., 113, 2164–2171,
https://doi.org/10.1016/j.rse.2009.05.018, 2009.
Trusel, L. D., Frey, K. E., Das, S. B., Munneke, P. K., and van den Broeke,
M. R.: Satellite-based estimates of Antarctic surface meltwater fluxes,
Geophys. Res. Lett., 40, 6148–6153, https://doi.org/10.1002/2013gl058138,
2013.
Trusel, L. D., Frey, K. E., Das, S. B., Karnauskas, K. B., Munneke, P. K.,
van Meijgaard, E., and van den Broeke, M. R.: Divergent trajectories of
Antarctic surface melt under two twenty-first-century climate scenarios,
Nat. Geosci., 8, 927–932, https://doi.org/10.1038/ngeo2563, 2015.
Tuckett, P. A., Ely, J. C., Sole, A. J., Livingstone, S. J., Davison, B. J.,
Melchior van Wessem, J., and Howard, J.: Rapid accelerations of Antarctic
Peninsula outlet glaciers driven by surface melt, Nat. Commun., 10, 4311,
https://doi.org/10.1038/s41467-019-12039-2, 2019.
Tuckett, P. A., Ely, J. C., Sole, A. J., Lea, J. M., Livingstone, S. J.,
Melchior van Wessem, J., and Jones, J. M.: Automated mapping of
Antarctic surface meltwater, Figshare repository [code], The University of Sheffield, Collection,
https://doi.org/10.15131/shef.data.16904620, 2021.
Turner, J., Marshall, G. J., Clem, K., Colwell, S., Phillips, T., and Lu,
H.: Antarctic temperature variability and change from station data, Int. J.
Climatol., 40, 2986–3007, https://doi.org/10.1002/joc.6378, 2020.
van Wessem, J. M., Ligtenberg, S. R. M., Reijmer, C. H., van de Berg, W. J., van den Broeke, M. R., Barrand, N. E., Thomas, E. R., Turner, J., Wuite, J., Scambos, T. A., and van Meijgaard, E.: The modelled surface mass balance of the Antarctic Peninsula at 5.5 km horizontal resolution, The Cryosphere, 10, 271–285, https://doi.org/10.5194/tc-10-271-2016, 2016.
van Wessem, J. M., van de Berg, W. J., Noël, B. P. Y., van Meijgaard, E., Amory, C., Birnbaum, G., Jakobs, C. L., Krüger, K., Lenaerts, J. T. M., Lhermitte, S., Ligtenberg, S. R. M., Medley, B., Reijmer, C. H., van Tricht, K., Trusel, L. D., van Ulft, L. H., Wouters, B., Wuite, J., and van den Broeke, M. R.: Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 2: Antarctica (1979–2016), The Cryosphere, 12, 1479–1498, https://doi.org/10.5194/tc-12-1479-2018, 2018 (data available at: https://www.projects.science.uu.nl/iceclimate/models/antarctica.php, last access: March 2021).
Walker, C. C., Becker, M. K., and Fricker, H. A.: A high resolution,
three-dimensional view of the D-28 calving event from Amery ice shelf with
ICESat-2 and satellite imagery, Geophys. Res. Lett., 48, e2020GL091200,
https://doi.org/10.1029/2020gl091200, 2021.
Williamson, A. G., Banwell, A. F., Willis, I. C., and Arnold, N. S.: Dual-satellite (Sentinel-2 and Landsat 8) remote sensing of supraglacial lakes in Greenland, The Cryosphere, 12, 3045–3065, https://doi.org/10.5194/tc-12-3045-2018, 2018.
Zwally, H. J. and Fiegles, S.: Extent and duration of Antarctic surface melting, J. Glaciol., 40, 463–475, https://doi.org/10.1017/s0022143000012338, 1994.
Short summary
Lakes form on the surface of the Antarctic Ice Sheet during the summer. These lakes can generate further melt, break up floating ice shelves and alter ice dynamics. Here, we describe a new automated method for mapping surface lakes and apply our technique to the Amery Ice Shelf between 2005 and 2020. Lake area is highly variable between years, driven by large-scale climate patterns. This technique will help us understand the role of Antarctic surface lakes in our warming world.
Lakes form on the surface of the Antarctic Ice Sheet during the summer. These lakes can generate...