Articles | Volume 15, issue 9
https://doi.org/10.5194/tc-15-4501-2021
https://doi.org/10.5194/tc-15-4501-2021
Research article
 | Highlight paper
 | 
24 Sep 2021
Research article | Highlight paper |  | 24 Sep 2021

Giant ice rings in southern Baikal: multi-satellite data help to study ice cover dynamics and eddies under ice

Alexei V. Kouraev, Elena A. Zakharova, Andrey G. Kostianoy, Mikhail N. Shimaraev, Lev V. Desinov, Evgeny A. Petrov, Nicholas M. J. Hall, Frédérique Rémy, and Andrey Ya. Suknev

Related authors

River ice phenology and thickness from satellite altimetry: potential for ice bridge road operation and climate studies
Elena Zakharova, Svetlana Agafonova, Claude Duguay, Natalia Frolova, and Alexei Kouraev
The Cryosphere, 15, 5387–5407, https://doi.org/10.5194/tc-15-5387-2021,https://doi.org/10.5194/tc-15-5387-2021, 2021
Short summary
Mapping potential signs of gas emissions in ice of Lake Neyto, Yamal, Russia, using synthetic aperture radar and multispectral remote sensing data
Georg Pointner, Annett Bartsch, Yury A. Dvornikov, and Alexei V. Kouraev
The Cryosphere, 15, 1907–1929, https://doi.org/10.5194/tc-15-1907-2021,https://doi.org/10.5194/tc-15-1907-2021, 2021
Short summary

Related subject area

Discipline: Other | Subject: Freshwater Ice
The Capability of high spatial-temporal remote sensing imagery for monitoring surface morphology of lake ice in Chagan Lake of Northeast China
Qian Yang, Xiaoguang Shi, Weibang Li, Kaishan Song, Zhijun Li, Xiaohua Hao, Fei Xie, Nan Lin, Zhidan Wen, Chong Fang, and Ge Liu
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-175,https://doi.org/10.5194/tc-2022-175, 2022
Revised manuscript accepted for TC
Short summary
Mechanisms and effects of under-ice warming water in Ngoring Lake of Qinghai–Tibet Plateau
Mengxiao Wang, Lijuan Wen, Zhaoguo Li, Matti Leppäranta, Victor Stepanenko, Yixin Zhao, Ruijia Niu, Liuyiyi Yang, and Georgiy Kirillin
The Cryosphere, 16, 3635–3648, https://doi.org/10.5194/tc-16-3635-2022,https://doi.org/10.5194/tc-16-3635-2022, 2022
Short summary
Tricentennial trends in spring ice break-ups on three rivers in northern Europe
Stefan Norrgård and Samuli Helama
The Cryosphere, 16, 2881–2898, https://doi.org/10.5194/tc-16-2881-2022,https://doi.org/10.5194/tc-16-2881-2022, 2022
Short summary
Climate warming shortens ice durations and alters freeze and break-up patterns in Swedish water bodies
Sofia Hallerbäck, Laurie S. Huning, Charlotte Love, Magnus Persson, Katarina Stensen, David Gustafsson, and Amir AghaKouchak
The Cryosphere, 16, 2493–2503, https://doi.org/10.5194/tc-16-2493-2022,https://doi.org/10.5194/tc-16-2493-2022, 2022
Short summary
Sunlight penetration dominates the thermal regime and energetics of a shallow ice-covered lake in arid climate
Wenfeng Huang, Wen Zhao, Cheng Zhang, Matti Leppäranta, Zhijun Li, Rui Li, and Zhanjun Lin
The Cryosphere, 16, 1793–1806, https://doi.org/10.5194/tc-16-1793-2022,https://doi.org/10.5194/tc-16-1793-2022, 2022
Short summary

Cited articles

Ashton, G. D.: Ice in lakes and rivers, Encyclopedia Britannica, 21 June 2007, available at: https://www.britannica.com/science/lake-ice (last access: 17 March 2021), 2007. 
Atlas of the Lake Baikal: Russian Academy of Sciences, Siberian branch, Moscow: Federal Service of geodesy and cartography, 160 pp., in: Russian Circles in thin ice, Lake Baikal, Russia, NASA Earth Observatory, Image of the day – 25 May 2009, available at: http://earthobservatory.nasa.gov/IOTD/view.php?id=38721 (last access: 17 March 2021), 1993. 
Atwood, D. K., Gunn, G. E., Roussi, C., Wu, J., Duguay, C., and Sarabandi, K.: Microwave backscatter from Arctic lake ice and polarimetric implications, IEEE T. Geosci. Remote, 53, 5972–5982, 2015. 
Biancamaria S., Lettenmaier D., and Pavelsky T.: The SWOT Mission and Its Capabilities for Land Hydrology, Surv. Geophys., 37, 307–337, https://doi.org/10.1007/s10712-015-9346-y, 2016. 
Bouffard, D. and Wüest, A.: Convection in lakes, Annu. Rev. Fluid Mech., 51, 189–215, https://doi.org/10.1146/annurev-fluid-010518-040506, 2019. 
Download
Short summary
Giant ice rings are a beautiful and puzzling natural phenomenon. Our data show that ice rings are generated by lens-like warm eddies below the ice. We use multi-satellite data to analyse lake ice cover in the presence of eddies in April 2020 in southern Baikal. Unusual changes in ice colour may be explained by the competing influences of atmosphere above and the warm eddy below the ice. Tracking ice floes also helps to estimate eddy currents and their influence on the upper water layer.