Articles | Volume 15, issue 9
https://doi.org/10.5194/tc-15-4501-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-4501-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Giant ice rings in southern Baikal: multi-satellite data help to study ice cover dynamics and eddies under ice
Alexei V. Kouraev
CORRESPONDING AUTHOR
LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS Toulouse, France
Tomsk State University, Tomsk, Russia
Elena A. Zakharova
EOLA, Toulouse, France
Institute of Water Problems, Russian Academy of Sciences, Moscow, Russia
Andrey G. Kostianoy
P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
S. Yu. Witte Moscow University, Moscow, Russia
Mikhail N. Shimaraev
Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
Lev V. Desinov
Institute of Geography, Russian Academy of Sciences, Moscow, Russia
deceased
Evgeny A. Petrov
Baikal Museum of the Irkutsk Scientific Center of the Russian Academy of Sciences, Listvyanka village, Irkutsk region, Russia
Nicholas M. J. Hall
LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS Toulouse, France
Frédérique Rémy
LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS Toulouse, France
Andrey Ya. Suknev
Great Baikal Trail (GBT) Buryatiya, Ulan-Ude, Russia
Related authors
Elena Zakharova, Svetlana Agafonova, Claude Duguay, Natalia Frolova, and Alexei Kouraev
The Cryosphere, 15, 5387–5407, https://doi.org/10.5194/tc-15-5387-2021, https://doi.org/10.5194/tc-15-5387-2021, 2021
Short summary
Short summary
The paper investigates the performance of altimetric satellite instruments to detect river ice onset and melting dates and to retrieve ice thickness of the Ob River. This is a first attempt to use satellite altimetry for monitoring ice in the challenging conditions restrained by the object size. A novel approach permitted elaboration of the spatiotemporal ice thickness product for the 400 km river reach. The potential of the product for prediction of ice road operation was demonstrated.
Georg Pointner, Annett Bartsch, Yury A. Dvornikov, and Alexei V. Kouraev
The Cryosphere, 15, 1907–1929, https://doi.org/10.5194/tc-15-1907-2021, https://doi.org/10.5194/tc-15-1907-2021, 2021
Short summary
Short summary
This study presents strong new indications that regions of anomalously low backscatter in C-band synthetic aperture radar (SAR) imagery of ice of Lake Neyto in northwestern Siberia are related to strong emissions of natural gas. Spatio-temporal dynamics and potential scattering and formation mechanisms are assessed. It is suggested that exploiting the spatial and temporal properties of Sentinel-1 SAR data may be beneficial for the identification of similar phenomena in other Arctic lakes.
Florent Garnier, Sara Fleury, Gilles Garric, Jérôme Bouffard, Michel Tsamados, Antoine Laforge, Marion Bocquet, Renée Mie Fredensborg Hansen, and Frédérique Remy
The Cryosphere, 15, 5483–5512, https://doi.org/10.5194/tc-15-5483-2021, https://doi.org/10.5194/tc-15-5483-2021, 2021
Short summary
Short summary
Snow depth data are essential to monitor the impacts of climate change on sea ice volume variations and their impacts on the climate system. For that purpose, we present and assess the altimetric snow depth product, computed in both hemispheres from CryoSat-2 and SARAL satellite data. The use of these data instead of the common climatology reduces the sea ice thickness by about 30 cm over the 2013–2019 period. These data are also crucial to argue for the launch of the CRISTAL satellite mission.
Elena Zakharova, Svetlana Agafonova, Claude Duguay, Natalia Frolova, and Alexei Kouraev
The Cryosphere, 15, 5387–5407, https://doi.org/10.5194/tc-15-5387-2021, https://doi.org/10.5194/tc-15-5387-2021, 2021
Short summary
Short summary
The paper investigates the performance of altimetric satellite instruments to detect river ice onset and melting dates and to retrieve ice thickness of the Ob River. This is a first attempt to use satellite altimetry for monitoring ice in the challenging conditions restrained by the object size. A novel approach permitted elaboration of the spatiotemporal ice thickness product for the 400 km river reach. The potential of the product for prediction of ice road operation was demonstrated.
Georg Pointner, Annett Bartsch, Yury A. Dvornikov, and Alexei V. Kouraev
The Cryosphere, 15, 1907–1929, https://doi.org/10.5194/tc-15-1907-2021, https://doi.org/10.5194/tc-15-1907-2021, 2021
Short summary
Short summary
This study presents strong new indications that regions of anomalously low backscatter in C-band synthetic aperture radar (SAR) imagery of ice of Lake Neyto in northwestern Siberia are related to strong emissions of natural gas. Spatio-temporal dynamics and potential scattering and formation mechanisms are assessed. It is suggested that exploiting the spatial and temporal properties of Sentinel-1 SAR data may be beneficial for the identification of similar phenomena in other Arctic lakes.
Eugeny A. Zakharchuk, Natalia Tikhonova, Elena Zakharova, and Alexei V. Kouraev
Ocean Sci., 17, 543–559, https://doi.org/10.5194/os-17-543-2021, https://doi.org/10.5194/os-17-543-2021, 2021
Short summary
Short summary
Investigation of free sea level oscillations is important for understanding of specifics of oceanographic processes and for their identification. Based on numerical experiments with the 3-D INMOM hydrodynamic model, we demonstrated that after cessation of atmospheric forcing, the water masses of the Baltic Sea return to equilibrium state as in the form of barotropic progressive–standing waves with 13–44 h periods, as in the form of baroclinic low-frequency waves with periods of 89 and 358 d.
Nicolas Bouhier, Jean Tournadre, Frédérique Rémy, and Rozenn Gourves-Cousin
The Cryosphere, 12, 2267–2285, https://doi.org/10.5194/tc-12-2267-2018, https://doi.org/10.5194/tc-12-2267-2018, 2018
Short summary
Short summary
The evolution of two large Southern Ocean icebergs, in terms of area and thickness, are used to study the melting and fragmentation laws of icebergs. The area and thickness are estimated by the mean of satellite images and radar altimeter data. Two classical formulations of melting are tested and a fragmentation law depending on the sea temperature and iceberg velocity is proposed and tested. The size distribution of the pieces generated by fragmentation is also estimated.
Fifi Ibrahime Adodo, Frédérique Remy, and Ghislain Picard
The Cryosphere, 12, 1767–1778, https://doi.org/10.5194/tc-12-1767-2018, https://doi.org/10.5194/tc-12-1767-2018, 2018
Short summary
Short summary
In Antarctica, the seasonal cycle of the backscatter behaves differently at high and low frequencies, peaking in winter and in summer, respectively. At the intermediate frequency, some areas behave analogously to low frequency in terms of the seasonal cycle, but other areas behave analogously to high frequency. This calls into question the empirical relationships often used to correct elevation changes from radar penetration into the snowpack using backscatter.
Related subject area
Discipline: Other | Subject: Freshwater Ice
Measurements of frazil ice flocs in rivers
Assessment of the impact of dam reservoirs on river ice cover – an example from the Carpathians (central Europe)
Forward modelling of synthetic-aperture radar (SAR) backscatter during lake ice melt conditions using the Snow Microwave Radiative Transfer (SMRT) model
A comparison of constant false alarm rate object detection algorithms for iceberg identification in L- and C-band SAR imagery of the Labrador Sea
Fusion of Landsat 8 Operational Land Imager and Geostationary Ocean Color Imager for hourly monitoring surface morphology of lake ice with high resolution in Chagan Lake of Northeast China
Mechanisms and effects of under-ice warming water in Ngoring Lake of Qinghai–Tibet Plateau
Tricentennial trends in spring ice break-ups on three rivers in northern Europe
Climate warming shortens ice durations and alters freeze and break-up patterns in Swedish water bodies
Sunlight penetration dominates the thermal regime and energetics of a shallow ice-covered lake in arid climate
Dam type and lake location characterize ice-marginal lake area change in Alaska and NW Canada between 1984 and 2019
River ice phenology and thickness from satellite altimetry: potential for ice bridge road operation and climate studies
Ice roughness estimation via remotely piloted aircraft and photogrammetry
Analyses of Peace River Shallow Water Ice Profiling Sonar data and their implications for the roles played by frazil ice and in situ anchor ice growth in a freezing river
Creep and fracture of warm columnar freshwater ice
Climate change and Northern Hemisphere lake and river ice phenology from 1931–2005
Methane pathways in winter ice of a thermokarst lake–lagoon–coastal water transect in north Siberia
Continuous in situ measurements of anchor ice formation, growth, and release
Proglacial icings as records of winter hydrological processes
Investigation of spatial and temporal variability of river ice phenology and thickness across Songhua River Basin, northeast China
Observation-derived ice growth curves show patterns and trends in maximum ice thickness and safe travel duration of Alaskan lakes and rivers
Chuankang Pei, Jiaqi Yang, Yuntong She, and Mark Loewen
The Cryosphere, 18, 4177–4196, https://doi.org/10.5194/tc-18-4177-2024, https://doi.org/10.5194/tc-18-4177-2024, 2024
Short summary
Short summary
Frazil flocs are aggregates of frazil ice particles that form in supercooled water. As they grow, they rise to the river surface, contributing to ice cover formation. We measured the properties of frazil flocs in rivers for the first time using underwater imaging. We found that the floc size distributions follow a lognormal distribution and mean floc size decreases linearly as the local Reynolds number increases. Floc volume concentration has a power law correlation with the relative depth.
Maksymilian Fukś
The Cryosphere, 18, 2509–2529, https://doi.org/10.5194/tc-18-2509-2024, https://doi.org/10.5194/tc-18-2509-2024, 2024
Short summary
Short summary
This paper presents a method for determining the impact of dam reservoirs on the occurrence of ice cover on rivers downstream of their location. It was found that the operation of dam reservoirs reduces the duration of ice cover and significantly affects the ice regime of rivers. Based on the results presented, it can be assumed that dam reservoirs play an important role in transforming ice conditions on rivers.
Justin Murfitt, Claude Duguay, Ghislain Picard, and Juha Lemmetyinen
The Cryosphere, 18, 869–888, https://doi.org/10.5194/tc-18-869-2024, https://doi.org/10.5194/tc-18-869-2024, 2024
Short summary
Short summary
This research focuses on the interaction between microwave signals and lake ice under wet conditions. Field data collected for Lake Oulujärvi in Finland were used to model backscatter under different conditions. The results of the modelling likely indicate that a combination of increased water content and roughness of different interfaces caused backscatter to increase. These results could help to identify areas where lake ice is unsafe for winter transportation.
Laust Færch, Wolfgang Dierking, Nick Hughes, and Anthony P. Doulgeris
The Cryosphere, 17, 5335–5355, https://doi.org/10.5194/tc-17-5335-2023, https://doi.org/10.5194/tc-17-5335-2023, 2023
Short summary
Short summary
Icebergs in open water are a risk to maritime traffic. We have compared six different constant false alarm rate (CFAR) detectors on overlapping C- and L-band synthetic aperture radar (SAR) images for the detection of icebergs in open water, with a Sentinel-2 image used for validation. The results revealed that L-band gives a slight advantage over C-band, depending on which detector is used. Additionally, the accuracy of all detectors decreased rapidly as the iceberg size decreased.
Qian Yang, Xiaoguang Shi, Weibang Li, Kaishan Song, Zhijun Li, Xiaohua Hao, Fei Xie, Nan Lin, Zhidan Wen, Chong Fang, and Ge Liu
The Cryosphere, 17, 959–975, https://doi.org/10.5194/tc-17-959-2023, https://doi.org/10.5194/tc-17-959-2023, 2023
Short summary
Short summary
A large-scale linear structure has repeatedly appeared on satellite images of Chagan Lake in winter, which was further verified as being ice ridges in the field investigation. We extracted the length and the angle of the ice ridges from multi-source remote sensing images. The average length was 21 141.57 ± 68.36 m. The average azimuth angle was 335.48° 141.57 ± 0.23°. The evolution of surface morphology is closely associated with air temperature, wind, and shoreline geometry.
Mengxiao Wang, Lijuan Wen, Zhaoguo Li, Matti Leppäranta, Victor Stepanenko, Yixin Zhao, Ruijia Niu, Liuyiyi Yang, and Georgiy Kirillin
The Cryosphere, 16, 3635–3648, https://doi.org/10.5194/tc-16-3635-2022, https://doi.org/10.5194/tc-16-3635-2022, 2022
Short summary
Short summary
The under-ice water temperature of Ngoring Lake has been rising based on in situ observations. We obtained results showing that strong downward shortwave radiation is the main meteorological factor, and precipitation, wind speed, downward longwave radiation, air temperature, ice albedo, and ice extinction coefficient have an impact on the range and rate of lake temperature rise. Once the ice breaks, the lake body releases more energy than other lakes, whose water temperature remains horizontal.
Stefan Norrgård and Samuli Helama
The Cryosphere, 16, 2881–2898, https://doi.org/10.5194/tc-16-2881-2022, https://doi.org/10.5194/tc-16-2881-2022, 2022
Short summary
Short summary
We examined changes in the dates of ice break-ups in three Finnish rivers since the 1700s. The analyses show that ice break-ups nowadays occur earlier in spring than in previous centuries. The changes are pronounced in the south, and both rivers had their first recorded years without a complete ice cover in the 21st century. These events occurred during exceptionally warm winters and show that climate extremes affect the river-ice regime in southwest Finland differently than in the north.
Sofia Hallerbäck, Laurie S. Huning, Charlotte Love, Magnus Persson, Katarina Stensen, David Gustafsson, and Amir AghaKouchak
The Cryosphere, 16, 2493–2503, https://doi.org/10.5194/tc-16-2493-2022, https://doi.org/10.5194/tc-16-2493-2022, 2022
Short summary
Short summary
Using unique data, some dating back to the 18th century, we show a significant trend in shorter ice duration, later freeze, and earlier break-up dates across Sweden. In recent observations, the mean ice durations have decreased by 11–28 d and the chance of years with an extremely short ice cover duration (less than 50 d) have increased by 800 %. Results show that even a 1 °C increase in air temperatures can result in a decrease in ice duration in Sweden of around 8–23 d.
Wenfeng Huang, Wen Zhao, Cheng Zhang, Matti Leppäranta, Zhijun Li, Rui Li, and Zhanjun Lin
The Cryosphere, 16, 1793–1806, https://doi.org/10.5194/tc-16-1793-2022, https://doi.org/10.5194/tc-16-1793-2022, 2022
Short summary
Short summary
Thermal regimes of seasonally ice-covered lakes in an arid region like Central Asia are not well constrained despite the unique climate. We observed annual and seasonal dynamics of thermal stratification and energetics in a shallow arid-region lake. Strong penetrated solar radiation and high water-to-ice heat flux are the predominant components in water heat balance. The under-ice stratification and convection are jointly governed by the radiative penetration and salt rejection during freezing.
Brianna Rick, Daniel McGrath, William Armstrong, and Scott W. McCoy
The Cryosphere, 16, 297–314, https://doi.org/10.5194/tc-16-297-2022, https://doi.org/10.5194/tc-16-297-2022, 2022
Short summary
Short summary
Glacial lakes impact societies as both resources and hazards. Lakes form, grow, and drain as glaciers thin and retreat, and understanding lake evolution is a critical first step in assessing their hazard potential. We map glacial lakes in Alaska between 1984 and 2019. Overall, lakes grew in number and area, though lakes with different damming material (ice, moraine, bedrock) behaved differently. Namely, ice-dammed lakes decreased in number and area, a trend lost if dam type is not considered.
Elena Zakharova, Svetlana Agafonova, Claude Duguay, Natalia Frolova, and Alexei Kouraev
The Cryosphere, 15, 5387–5407, https://doi.org/10.5194/tc-15-5387-2021, https://doi.org/10.5194/tc-15-5387-2021, 2021
Short summary
Short summary
The paper investigates the performance of altimetric satellite instruments to detect river ice onset and melting dates and to retrieve ice thickness of the Ob River. This is a first attempt to use satellite altimetry for monitoring ice in the challenging conditions restrained by the object size. A novel approach permitted elaboration of the spatiotemporal ice thickness product for the 400 km river reach. The potential of the product for prediction of ice road operation was demonstrated.
James Ehrman, Shawn Clark, and Alexander Wall
The Cryosphere, 15, 4031–4046, https://doi.org/10.5194/tc-15-4031-2021, https://doi.org/10.5194/tc-15-4031-2021, 2021
Short summary
Short summary
This research proposes and tests new methods for the estimation of the surface roughness of newly formed river ice covers. The hypothesis sought to determine if surface ice roughness was indicative of the subsurface. Ice roughness has consequences for winter flow characteristics of rivers and can greatly impact river ice jams. Remotely piloted aircraft and photogrammetry were used, and good correlation was found between the observed surface ice roughness and estimated subsurface ice roughness.
John R. Marko and David R. Topham
The Cryosphere, 15, 2473–2489, https://doi.org/10.5194/tc-15-2473-2021, https://doi.org/10.5194/tc-15-2473-2021, 2021
Short summary
Short summary
Acoustic backscattering data from Peace River frazil events are interpreted to develop a quantitative model of interactions between ice particles in the water column and riverbed ice layers. Two generic behaviours, evident in observed time variability, are linked to differences in the relative stability of in situ anchor ice layers which develop at the beginning of each frazil interval and are determined by cooling rates. Changes in these layers are shown to control water column frazil content.
Iman E. Gharamti, John P. Dempsey, Arttu Polojärvi, and Jukka Tuhkuri
The Cryosphere, 15, 2401–2413, https://doi.org/10.5194/tc-15-2401-2021, https://doi.org/10.5194/tc-15-2401-2021, 2021
Short summary
Short summary
We study the creep and fracture behavior of 3 m × 6 m floating edge-cracked rectangular plates of warm columnar freshwater S2 ice under creep/cyclic-recovery loading and monotonic loading to fracture. Under the testing conditions, the ice response was elastic–viscoplastic; no significant viscoelasticity or major recovery was detected. There was no clear effect of the creep/cyclic loading on the fracture properties: failure load and crack opening displacements at crack growth initiation.
Andrew M. W. Newton and Donal J. Mullan
The Cryosphere, 15, 2211–2234, https://doi.org/10.5194/tc-15-2211-2021, https://doi.org/10.5194/tc-15-2211-2021, 2021
Short summary
Short summary
This paper investigates changes in the dates of ice freeze-up and breakup for 678 Northern Hemisphere lakes and rivers from 1931–2005. From 3510 time series, the results show that breakup dates have gradually occurred earlier through time, whilst freeze-up trends have tended to be significantly more variable. These data combined show that the number of annual open-water days has increased through time for most sites, with the magnitude of change at its largest in more recent years.
Ines Spangenberg, Pier Paul Overduin, Ellen Damm, Ingeborg Bussmann, Hanno Meyer, Susanne Liebner, Michael Angelopoulos, Boris K. Biskaborn, Mikhail N. Grigoriev, and Guido Grosse
The Cryosphere, 15, 1607–1625, https://doi.org/10.5194/tc-15-1607-2021, https://doi.org/10.5194/tc-15-1607-2021, 2021
Short summary
Short summary
Thermokarst lakes are common on ice-rich permafrost. Many studies have shown that they are sources of methane to the atmosphere. Although they are usually covered by ice, little is known about what happens to methane in winter. We studied how much methane is contained in the ice of a thermokarst lake, a thermokarst lagoon and offshore. Methane concentrations differed strongly, depending on water body type. Microbes can also oxidize methane in ice and lower the concentrations during winter.
Tadros R. Ghobrial and Mark R. Loewen
The Cryosphere, 15, 49–67, https://doi.org/10.5194/tc-15-49-2021, https://doi.org/10.5194/tc-15-49-2021, 2021
Short summary
Short summary
Anchor ice typically forms on riverbeds during freeze-up and can alter the river ice regime. Most of the knowledge on anchor ice mechanisms has been attributed to lab experiments. This study presents for the first time insights into anchor ice initiation, growth, and release in rivers using an underwater camera system. Three stages of growth and modes of release have been identified. These results will improve modelling capabilities in predicting the effect of anchor ice on river ice regimes.
Anna Chesnokova, Michel Baraër, and Émilie Bouchard
The Cryosphere, 14, 4145–4164, https://doi.org/10.5194/tc-14-4145-2020, https://doi.org/10.5194/tc-14-4145-2020, 2020
Short summary
Short summary
In the context of a ubiquitous increase in winter discharge in cold regions, our results show that icing formations can help overcome the lack of direct observations in these remote environments and provide new insights into winter runoff generation. The multi-technique approach used in this study provided important information about the water sources active during the winter season in the headwaters of glacierized catchments.
Qian Yang, Kaishan Song, Xiaohua Hao, Zhidan Wen, Yue Tan, and Weibang Li
The Cryosphere, 14, 3581–3593, https://doi.org/10.5194/tc-14-3581-2020, https://doi.org/10.5194/tc-14-3581-2020, 2020
Short summary
Short summary
Using daily ice records of 156 hydrological stations across Songhua River Basin, we examined the spatial variability in the river ice phenology and river ice thickness from 2010 to 2015 and explored the role of snow depth and air temperature on the ice thickness. Snow cover correlated with ice thickness significantly and positively when the freshwater was completely frozen. Cumulative air temperature of freezing provides a better predictor than the air temperature for ice thickness modeling.
Christopher D. Arp, Jessica E. Cherry, Dana R. N. Brown, Allen C. Bondurant, and Karen L. Endres
The Cryosphere, 14, 3595–3609, https://doi.org/10.5194/tc-14-3595-2020, https://doi.org/10.5194/tc-14-3595-2020, 2020
Short summary
Short summary
River and lake ice thickens at varying rates geographically and from year to year. We took a closer look at ice growth across a large geographic region experiencing rapid climate change, the State of Alaska, USA. Slower ice growth was most pronounced in northern Alaskan lakes over the last 60 years. Western and interior Alaska ice showed more variability in thickness and safe travel duration. This analysis provides a comprehensive evaluation of changing freshwater ice in Alaska.
Cited articles
Ashton, G. D.:
Ice in lakes and rivers,
Encyclopedia Britannica, 21 June 2007,
available at: https://www.britannica.com/science/lake-ice (last access: 17 March 2021), 2007.
Atlas of the Lake Baikal:
Russian Academy of Sciences, Siberian branch, Moscow: Federal Service of geodesy and cartography, 160 pp.,
in: Russian Circles in thin ice, Lake Baikal, Russia, NASA Earth Observatory, Image of the day – 25 May 2009,
available at: http://earthobservatory.nasa.gov/IOTD/view.php?id=38721 (last access: 17 March 2021), 1993.
Atwood, D. K., Gunn, G. E., Roussi, C., Wu, J., Duguay, C., and Sarabandi, K.:
Microwave backscatter from Arctic lake ice and polarimetric implications,
IEEE T. Geosci. Remote,
53, 5972–5982, 2015.
Biancamaria S., Lettenmaier D., and Pavelsky T.:
The SWOT Mission and Its Capabilities for Land Hydrology,
Surv. Geophys.,
37, 307–337, https://doi.org/10.1007/s10712-015-9346-y, 2016.
Bouffard, D. and Wüest, A.:
Convection in lakes,
Annu. Rev. Fluid Mech.,
51, 189–215, https://doi.org/10.1146/annurev-fluid-010518-040506, 2019.
Duguay, C. R., Bernier, M., Gauthier, Y., and Kouraev, A. V.: Remote sensing of lake and river ice, Remote Sensing of the Cryosphere, 273–306, edited by: Tedesco, M., John Wiley & Sons, Chichester, 2015.
ESA: SNAP software, available at: https://step.esa.int/main/download/snap-download/, last access: 20 September 2021.
Evans, C. A., Lulla, K. P., Dessinov, L. V., Glazovskiy, N. F., Kasimov, N. S., and Knizhnikov, Yu. F.:
Shuttle-Mir Earth Science investigations: Studying Dynamic Earth from the Mir Space Station,
in: Dynamic Earth Environments. Remote Sensing observations from Shuttle-Mir Missions,
edited by: Lulla, K. P., Dessinov, L. V., Evans, C. A., Dickerson, P. W., and Robinson, J. A.,
John Wiley & Sons, New York, 1–14, 2000.
GCOS web site:
available at: https://gcos.wmo.int/en/home (last access: 19 July 2021), 2021.
GCOS web terrestrial network web site:
available at: https://gcos.wmo.int/en/networks/terrestrial (last access: 19 July 2021), 2021.
Granin, N. G., Wüest, A., Gnatovskii, R. Yu., and Kapitanov, V. V.:
Evidence of activity of mud volcanoes in Baikal,
in: The Fourth Vereshchagin Baikal Conference: Abstracts of Papers and Posters, 26 September–1 October 2005, Institute of Geography SB RAS, Irkutsk, 52–53, 2005 (in Russian).
Granin, N. G., Makarov, M. M., Kucher, K. M., and Gnatovsky, R. Y.:
The deep water gas seeps in Lake Baikal,
Proceedings of the 9th International Conference on gas in marine sediments, Bremen, Germany, 15–19 September, 76–77, 2008.
Granin, N. G., Kozlov, V. V., Tsvetova, E. A., and Gnatovsky, R. Y.:
Field studies and some results of numerical modeling of a ring structure on Baikal ice,
Doklady Earth Sci.,
461, 316–320, 2015.
Granin, N. G., Mizandrontsev, I. B., Kozlov, V. V., Tsvetova, E. A., Gnatovskii, R. Yu., Blinov, V. V., Aslamov, I. A., Kucher, K. M., Ivanov, V. G., and Zhdanov A. A.:
Natural ring structures on the Baikal ice cover: Analysis of experimental data and mathematical modeling,
Russ. Geol. Geophys.+,
59, 1514–1525, https://doi.org/10.1016/j.rgg.2018.10.011, 2018.
Gunn, G. E., Duguay, C. R., Atwood, D. K., King, J., and Toose, P.:
Observing scattering mechanisms of bubbled freshwater lake ice using polarimetric RADARSAT-2 (C-Band) and UW-Scat (X-and Ku-Bands),
IEEE T. Geosci. Remote,
56, 2887–2903, 2018.
Kääb, A., Altena, B., and Mascaro, J.: River-ice and water velocities using the Planet optical cubesat constellation, Hydrol. Earth Syst. Sci., 23, 4233–4247, https://doi.org/10.5194/hess-23-4233-2019, 2019.
Kirillin, G., Leppäranta, M., Terzhevik, A., Granin, N., Bernhardt, J., Engelhardt, Ch., Efremova, T., Golosov, S., Palshin, N., Sherstyankin, P., Zdorovennova, G., and Zdorovennov, R.:
Physics of seasonally ice-covered lakes: a review,
Aquat. Sci.,
74, 659–682, https://doi.org/10.1007/s00027-012-0279-y, 2012.
Kostianoy, A. G. and Belkin, I. M.:
A survey of observations on intrathermocline eddies in the World Ocean,
Proc. 20th Int. Liege Colloq. Ocean Hydrodyn. “Mesoscale/synoptic coherent structures in geophysical turbulence”, 2–6 May 1988,
edited by: Nihoul, J. C. J. and Jamart, B. M.,
Amsterdam, Elsevier, 821–841, 1989.
Kouraev, A. V., Semovski, S. V., Shimaraev, M. N., Mognard, N. M., Legresy, B., and Remy, F.:
Ice regime of lake Baikal from historical and satellite data: Influence of thermal and dynamic factors,
Limnol. Oceanogr.,
52, 1268–1286, https://doi.org/10.4319/lo.2007.52.3.1268, 2007.
Kouraev, A. V., Shimaraev, M. N., Buharizin, P. I., Naumenko, M. A., Crétaux, J.-F., Mognard, N. M., Legrésy, B., and Rémy, F.:
Ice and snow cover of continental water bodies from simultaneous radar altimetry and radiometry observations,
Surv. Geophys., Thematic issue “Hydrology from space”,
29, 271–295, https://doi.org/10.1007/s10712-008-9042-2, 2008.
Kouraev, A. V., Zakharova, E. A., Rémy, F., and Suknev, A. Ya.:
Study of Lake Baikal ice cover from radar altimetry and in situ observations,
Mar. Geod., Special issue on SARAL/AltiKa,
38:sup1, 477–486, https://doi.org/10.1080/01490419.2015.1008155, 2015.
Kouraev, A. V., Zakharova, E. A., Rémy, F., Kostianoy, A. G., Shimaraev, M. N., Hall, N. M. J., and Suknev, A. Ya.:
Giant ice rings on Lakes Baikal and Hovsgol: inventory, associated water structure and potential formation mechanism,
Limnol. Oceanogr.,
61, 1001–1014, https://doi.org/10.1002/lno.10268, 2016.
Kouraev, A. V., Zakharova, E. A., Rémy, F., Kostianoy, A. G., Shimaraev, M. N., Hall, N. M. J., and Suknev A. Ya.:
Ice cover and water dynamics in lakes Baikal and Hovsgol from satellite observations and field studies,
in: Remote Sensing of Asian Seas,
edited by: Barale, V. and Gade, M.,
Springer, Cham, 541–555, 2018.
Kouraev, A. V., Zakharova, E. A., Rémy, F., Kostianoy, A. G., Shimaraev, M. N., Hall, N. M. J., Zdorovennov, R. E., and Suknev, A. Ya.:
Giant ice rings on lakes and field observations of lens-like eddies in the Middle Baikal (2016–2017),
Limnol. Oceanogr.,
64, 2738–2754, https://doi.org/10.1002/lno.11338, 2019.
Obolkina, L. A., Bondarenko, N. A., Doroshenko, L. F., Gorbunova, L. A., and Molozhavaya, O. A.:
Discovery of cryophilic community in Lake Baikal,
Doklady of the Russian Academy of Sciences,
371, 815–817, 2000 (in Russian).
Planet Team:
Planet Application Program Interface: In Space for Life on Earth,
San Francisco, CA,
available at: https://www.planet.com/ (last access: 20 September 2021), 2017.
Planet Team:
Planet Educational and research program:
https://www.planet.com/markets/education-and-research/, last access: 20 September 2021.
Powers, S. M. and Hampton, S. E.:
Winter Limnology as a New Frontier,
Limnol. Oceanogr.,
25, 103–108, 2016.
Prowse, T., Alfredsen, K., Beltaos, S., Bonsal, B. R., Bowden, W. B., Duguay, C. R., Korhola, A., McNamara, J., Vincent, W. F., Vuglinsky, V., Walter Anthony, K. M., and Weyhenmeyer, G. A.:
Effects of Changes in Arctic Lake and River Ice,
AMBIO,
40, 63–74, https://doi.org/10.1007/s13280-011-0217-6, 2011.
Yazeryan, G. G.:
“Remote Sensing of Earth from space in Russia” – Scientific and practical magazine,
Issue No 2, Roskosmos, 14–15, 2020.
Roujean, J.-L., Bhattacharya, B., Gamet, P., Pandya, M. R., Boulet, G., Olioso, A., Singh, S. K., Shukla, M. V., Mishra, M., Babu, S., Raju, P. V., Murthy, C. S., Briottet, X., Rodler, A., Autret, E., Dadou, I., Adlakha, D., Sarka, M., Picard, G., Kouraev, A., Ferrari, C., Irvine, M., Delogu, E., Vidal, T., Hagolle, O., Maisongrande, P., Sekhar, M., and Mallick, K.:
TRISHNA: an Indo-French space mission to study the thermography of the earth at fine spatio-temporal resolution,
Proceedings of IEEE InGARSS 2021, 6–10 December 2021, Virtual Symposium, available at: https://www.ingarss2021.com/, last access: 20 September 2021.
Rusinek, O. T., Takhteev, V. V., Gladkochub, D. P., Khodzher, T. V., and Budnev, N. M.:
Baicalogy: in 2 books, Book 1,
Nauka publishers, Novosibirsk, 468 pp., ISBN 978-5-02-019100-6, 2012 (in Russian).
Shimaraev, M. N. and Verbolov, V. I.:
Water temperature and circulation, in: Lake Baikal: Evolution and Diversity,
edited by: Kozhova, O. M. and Izmest'eva, L. R.,
Backhuys Publishers, Leiden, 26–44, 1998.
Sokol'nikov, V. M.:
Radiation properties of Lake Baikal ice and some events of ice regime in Maloye More,
Proceedings of the Baikal Limnological station, USSR Academy of Sciences,
XVII, 104–107, 1959.
Sokol'nikov, V. M.:
Vertical and horizontal shifts and deformations of the continuous Baikal ice cover (Vertikal'niye I gorizontal'niye smesheniya I deformazii sploshnogo ledyanogo pokrova Baikala),
Proceedings of the Baikal Limnological Station of the Academy of Sciences,
XVIII, 291–350, 1960 (in Russian).
Vedeneeva, N.:
Giant gaz bubble found in Lake Baikal may explode at any moment,
Moskovskiy Komsomolets, 12 May 2020,
available at: https://www.mk.ru/science/2020/05/12/ogromnyy-gazovyy-puzyr-obnaruzhennyy-v-baykale-mozhet-vzorvatsya-v-lyubuyu-minutu.html (last access: 17 March 2021), 2021 (in Russian).
Verbolov, V. I., Sokol'nikov, V. M., and Shimaraev, M. N.:
Hydrometeorological regime and heat balance of Lake Baikal (Gidrometeorologicheskiy regim i teplovoy balans oz. Baikal),
Nauka, Moscow–Leningrad, 1965 In Russian.
Vincent, W. F., Laurion, I., Pienitz, R. and Walter Anthony, K. M.:
Climate Impacts on Arctic Lake Ecosystems,
in: Climatic Change and Global Warming of Inland Waters,
edited by: Goldman, C. R., Kumagai, M., and Robarts, R. D.,
John Wiley & Sons, Ltd, Chichester, UK,
https://doi.org/10.1002/9781118470596.ch2, 2012.
Zakharova, E., Agafonova, S., Duguay, C., Frolova, N., and Kouraev, A.: River ice phenology and thickness from satellite altimetry. Potential for ice bridge road operation, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2020-325, in review, 2020.
Zyryanov, V. N., Granin, N. G., Zyryanov, D. V., Chebanova, M. K., Aslamov, I. A., Gnatovsky, R. Yu., and Blinov, V. V.:
Preliminary results of the summer and winter companies 2019–2020 on Lake Baikal in the framework of the RFBR project for the study of eddies that form ice rings,
Limnology and Freshwater Biology,
SI: “The VII-th Vereshchagin Baikal Conference”,
4, 954–955, https://doi.org/10.31951/2658-3518-2020-A-4-954, 2020.
Short summary
Giant ice rings are a beautiful and puzzling natural phenomenon. Our data show that ice rings are generated by lens-like warm eddies below the ice. We use multi-satellite data to analyse lake ice cover in the presence of eddies in April 2020 in southern Baikal. Unusual changes in ice colour may be explained by the competing influences of atmosphere above and the warm eddy below the ice. Tracking ice floes also helps to estimate eddy currents and their influence on the upper water layer.
Giant ice rings are a beautiful and puzzling natural phenomenon. Our data show that ice rings...