Articles | Volume 15, issue 8
https://doi.org/10.5194/tc-15-3877-2021
https://doi.org/10.5194/tc-15-3877-2021
Research article
 | 
20 Aug 2021
Research article |  | 20 Aug 2021

The distribution and evolution of supraglacial lakes on 79° N Glacier (north-eastern Greenland) and interannual climatic controls

Jenny V. Turton, Philipp Hochreuther, Nathalie Reimann, and Manuel T. Blau

Related authors

From Five to Thirty-Five: Fostering the Next Generation of Arctic Scientists
Jenny Victoria Turton, Naima El bani Altuna, Charlotte Weber, Salve Dahle, Nina Boine Olsen, Elise Fosshaug, Katrine Opheim, Julia Morales-Aguirre, and Astrid Wara
Geosci. Commun. Discuss., https://doi.org/10.5194/gc-2024-5,https://doi.org/10.5194/gc-2024-5, 2024
Preprint under review for GC
Short summary
The atmosphere-land/ice-ocean system in the region near the 79N Glacier in Northeast Greenland: Synthesis and key findings from GROCE
Torsten Kanzow, Angelika Humbert, Thomas Mölg, Mirko Scheinert, Matthias Braun, Hans Burchard, Francesca Doglioni, Philipp Hochreuther, Martin Horwath, Oliver Huhn, Jürgen Kusche, Erik Loebel, Katrina Lutz, Ben Marzeion, Rebecca McPherson, Mahdi Mohammadi-Aragh, Marco Möller, Carolyne Pickler, Markus Reinert, Monika Rhein, Martin Rückamp, Janin Schaffer, Muhammad Shafeeque, Sophie Stolzenberger, Ralph Timmermann, Jenny Turton, Claudia Wekerle, and Ole Zeising
EGUsphere, https://doi.org/10.5194/egusphere-2024-757,https://doi.org/10.5194/egusphere-2024-757, 2024
Short summary
The influence of föhn winds on annual and seasonal surface melt on the Larsen C Ice Shelf, Antarctica
Jenny V. Turton, Amélie Kirchgaessner, Andrew N. Ross, John C. King, and Peter Kuipers Munneke
The Cryosphere, 14, 4165–4180, https://doi.org/10.5194/tc-14-4165-2020,https://doi.org/10.5194/tc-14-4165-2020, 2020
Short summary
High-resolution (1 km) Polar WRF output for 79° N Glacier and the northeast of Greenland from 2014 to 2018
Jenny V. Turton, Thomas Mölg, and Emily Collier
Earth Syst. Sci. Data, 12, 1191–1202, https://doi.org/10.5194/essd-12-1191-2020,https://doi.org/10.5194/essd-12-1191-2020, 2020
Short summary

Related subject area

Discipline: Glaciers | Subject: Atmospheric Interactions
Foehn winds at Pine Island Glacier and their role in ice changes
Diana Francis, Ricardo Fonseca, Kyle S. Mattingly, Stef Lhermitte, and Catherine Walker
The Cryosphere, 17, 3041–3062, https://doi.org/10.5194/tc-17-3041-2023,https://doi.org/10.5194/tc-17-3041-2023, 2023
Short summary
The role of föhn winds in eastern Antarctic Peninsula rapid ice shelf collapse
Matthew K. Laffin, Charles S. Zender, Melchior van Wessem, and Sebastián Marinsek
The Cryosphere, 16, 1369–1381, https://doi.org/10.5194/tc-16-1369-2022,https://doi.org/10.5194/tc-16-1369-2022, 2022
Short summary
Atmospheric extremes caused high oceanward sea surface slope triggering the biggest calving event in more than 50 years at the Amery Ice Shelf
Diana Francis, Kyle S. Mattingly, Stef Lhermitte, Marouane Temimi, and Petra Heil
The Cryosphere, 15, 2147–2165, https://doi.org/10.5194/tc-15-2147-2021,https://doi.org/10.5194/tc-15-2147-2021, 2021
Short summary
Spatio-temporal flow variations driving heat exchange processes at a mountain glacier
Rebecca Mott, Ivana Stiperski, and Lindsey Nicholson
The Cryosphere, 14, 4699–4718, https://doi.org/10.5194/tc-14-4699-2020,https://doi.org/10.5194/tc-14-4699-2020, 2020
Short summary
Measurements and modeling of snow albedo at Alerce Glacier, Argentina: effects of volcanic ash, snow grain size, and cloudiness
Julián Gelman Constantin, Lucas Ruiz, Gustavo Villarosa, Valeria Outes, Facundo N. Bajano, Cenlin He, Hector Bajano, and Laura Dawidowski
The Cryosphere, 14, 4581–4601, https://doi.org/10.5194/tc-14-4581-2020,https://doi.org/10.5194/tc-14-4581-2020, 2020
Short summary

Cited articles

Arthur, J. F., Stokes, C. R., Jamieson, S. S. R., Carr, J. R., and Leeson, A. A.: Distribution and seasonal evolution of supraglacial lakes on Shackleton Ice Shelf, East Antarctica, The Cryosphere, 14, 4103–4120, https://doi.org/10.5194/tc-14-4103-2020, 2020. 
Bartholomew, I., Nienow, P., Sole, A., Mair, D., Cowton, T., Palmer, S., and Wadham, J.: Supraglacial forcing of subglacial drainage in the ablation zone of the Greenland ice sheet, Geophys. Res. Lett., 38, L08502, https://doi.org/10.1029/2011GL047063, 2011. 
Blau, M. T., Turton, J. V., Mölg, T., and Sauter, T.: Surface mass and energy balance estimates of the 79N Glacier (Nioghalvfjerdsfjorden, NE Greenland) modeled by linking COSIPY and Polar WRF, J. Glaciol., 1–15, https://doi.org/10.1017/jog.2021.56, 2021. 
Bell, R. E., Chu, W., Kingslake, J., Das, I., Tedesco, M., Tinto, K. J., Zappa, C. J., Frezzotti, M., Boghosian, A., and Sang Lee, W.: Antarctic ice shelf potentially stabilized by export of meltwater in surface river, Nature, 544, 344–348, https://doi.org/10.1038/nature22048, 2017. 
Bennartz, R., Shupe, M., Turner, D., Walden, V. P., Steffen, K., Cox, C. J., Kulie, M. S., Miller, N. B., and Pettersen, C.: July 2012 Greenland melt extent enhanced by low-level liquid clouds, Nature, 496, 83–86, https://doi.org/10.1038/nature12002, 2013. 
Download
Short summary
We assess the climatic controls of melt lake development, melt duration, melt extent, and the spatial distribution of lakes of 79°N Glacier. There is a large interannual variability in the areal extent of the lakes and the maximum elevation of lake development, which is largely controlled by the summertime air temperatures and the snowpack thickness. Late-summer lake development can be prompted by spikes in surface mass balance. There is some evidence of inland expansion of lakes over time.