Articles | Volume 15, issue 7
https://doi.org/10.5194/tc-15-3423-2021
https://doi.org/10.5194/tc-15-3423-2021
Research article
 | 
22 Jul 2021
Research article |  | 22 Jul 2021

Lateral thermokarst patterns in permafrost peat plateaus in northern Norway

Léo C. P. Martin, Jan Nitzbon, Johanna Scheer, Kjetil S. Aas, Trond Eiken, Moritz Langer, Simon Filhol, Bernd Etzelmüller, and Sebastian Westermann

Related authors

Quantifying permafrost ground ice contents in the Tien Shan and Pamir (Central Asia): A Petrophysical Joint Inversion approach using the Geometric Mean model
Tamara Mathys, Muslim Azimshoev, Zhoodarbeshim Bektursunov, Christian Hauck, Christin Hilbich, Murataly Duishonakunov, Abdulhamid Kayumov, Nikolay Kassatkin, Vassily Kapitsa, Leo C. P. Martin, Coline Mollaret, Hofiz Navruzshoev, Eric Pohl, Tomas Saks, Intizor Silmonov, Timur Musaev, Ryskul Usubaliev, and Martin Hoelzle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2795,https://doi.org/10.5194/egusphere-2024-2795, 2024
Short summary
Recent ground thermo-hydrological changes in a southern Tibetan endorheic catchment and implications for lake level changes
Léo C. P. Martin, Sebastian Westermann, Michele Magni, Fanny Brun, Joel Fiddes, Yanbin Lei, Philip Kraaijenbrink, Tamara Mathys, Moritz Langer, Simon Allen, and Walter W. Immerzeel
Hydrol. Earth Syst. Sci., 27, 4409–4436, https://doi.org/10.5194/hess-27-4409-2023,https://doi.org/10.5194/hess-27-4409-2023, 2023
Short summary

Related subject area

Discipline: Frozen ground | Subject: Numerical Modelling
Modelling the effect of free convection on permafrost melting rates in frozen rock clefts
Amir Sedaghatkish, Frédéric Doumenc, Pierre-Yves Jeannin, and Marc Luetscher
The Cryosphere, 18, 4531–4546, https://doi.org/10.5194/tc-18-4531-2024,https://doi.org/10.5194/tc-18-4531-2024, 2024
Short summary
Coupled thermo–geophysical inversion for permafrost monitoring
Soňa Tomaškovičová and Thomas Ingeman-Nielsen
The Cryosphere, 18, 321–340, https://doi.org/10.5194/tc-18-321-2024,https://doi.org/10.5194/tc-18-321-2024, 2024
Short summary
Simulating ice segregation and thaw consolidation in permafrost environments with the CryoGrid community model
Juditha Aga, Julia Boike, Moritz Langer, Thomas Ingeman-Nielsen, and Sebastian Westermann
The Cryosphere, 17, 4179–4206, https://doi.org/10.5194/tc-17-4179-2023,https://doi.org/10.5194/tc-17-4179-2023, 2023
Short summary
Investigating the thermal state of permafrost with Bayesian inverse modeling of heat transfer
Brian Groenke, Moritz Langer, Jan Nitzbon, Sebastian Westermann, Guillermo Gallego, and Julia Boike
The Cryosphere, 17, 3505–3533, https://doi.org/10.5194/tc-17-3505-2023,https://doi.org/10.5194/tc-17-3505-2023, 2023
Short summary
Representation of soil hydrology in permafrost regions may explain large part of inter-model spread in simulated Arctic and subarctic climate
Philipp de Vrese, Goran Georgievski, Jesus Fidel Gonzalez Rouco, Dirk Notz, Tobias Stacke, Norman Julius Steinert, Stiig Wilkenskjeld, and Victor Brovkin
The Cryosphere, 17, 2095–2118, https://doi.org/10.5194/tc-17-2095-2023,https://doi.org/10.5194/tc-17-2095-2023, 2023
Short summary

Cited articles

Aalto, J., Venäläinen, A., Heikkinen, R. K., and Luoto, M.: Potential for extreme loss in high-latitude Earth surface processes due to climate change, Geophys. Res. Lett., 41, 3914–3924, https://doi.org/10.1002/2014GL060095, 2014. 
Aalto, J., Harrison, S., and Luoto, M.: Statistical modelling predicts almost complete loss of major periglacial processes in Northern Europe by, Nat. Commun., 8, 515, https://doi.org/10.1038/s41467-017-00669-3, 2017. 
Aas, K. S., Dunse, T., Collier, E., Schuler, T. V., Berntsen, T. K., Kohler, J., and Luks, B.: The climatic mass balance of Svalbard glaciers: a 10-year simulation with a coupled atmosphere–glacier mass balance model, The Cryosphere, 10, 1089–1104, https://doi.org/10.5194/tc-10-1089-2016, 2016. 
Aas, K. S., Martin, L., Nitzbon, J., Langer, M., Boike, J., Lee, H., Berntsen, T. K., and Westermann, S.: Thaw processes in ice-rich permafrost landscapes represented with laterally coupled tiles in a land surface model, The Cryosphere, 13, 591–609, https://doi.org/10.5194/tc-13-591-2019, 2019. 
Andresen, C. G., Lawrence, D. M., Wilson, C. J., McGuire, A. D., Koven, C., Schaefer, K., Jafarov, E., Peng, S., Chen, X., Gouttevin, I., Burke, E., Chadburn, S., Ji, D., Chen, G., Hayes, D., and Zhang, W.: Soil moisture and hydrology projections of the permafrost region – a model intercomparison, The Cryosphere, 14, 445–459, https://doi.org/10.5194/tc-14-445-2020, 2020. 
Download
Short summary
It is important to understand how permafrost landscapes respond to climate changes because their thaw can contribute to global warming. We investigate how a common permafrost morphology degrades using both field observations of the surface elevation and numerical modeling. We show that numerical models accounting for topographic changes related to permafrost degradation can reproduce the observed changes in nature and help us understand how parameters such as snow influence this phenomenon.