Articles | Volume 15, issue 6
https://doi.org/10.5194/tc-15-2873-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-2873-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Non-normal flow rules affect fracture angles in sea ice viscous–plastic rheologies
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
MARUM – Center for Marine Environmental Sciences, Leobener Str. 8, 28359, Bremen, Germany
L. Bruno Tremblay
Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, Canada
Martin Losch
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
Related authors
Gavin A. Schmidt, Kenneth D. Mankoff, Jonathan L. Bamber, Dustin Carroll, David M. Chandler, Violaine Coulon, Benjamin J. Davison, Matthew H. England, Paul R. Holland, Nicolas C. Jourdain, Qian Li, Juliana M. Marson, Pierre Mathiot, Clive R. McMahon, Twila A. Moon, Ruth Mottram, Sophie Nowicki, Anne Olivé Abelló, Andrew G. Pauling, Thomas Rackow, and Damien Ringeisen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1940, https://doi.org/10.5194/egusphere-2025-1940, 2025
Short summary
Short summary
The impact of increasing mass loss from the Greenland and Antarctic ice sheets has not so far been included in historical climate model simulations. This paper describes the protocols and data available for modeling groups to add this anomalous freshwater to their ocean modules to better represent the impacts of these fluxes on ocean circulation, sea ice, salinity and sea level.
Jean-Francois Lemieux, Mathieu Plante, Nils Hutter, Damien Ringeisen, Bruno Tremblay, Francois Roy, and Philippe Blain
EGUsphere, https://doi.org/10.5194/egusphere-2024-3831, https://doi.org/10.5194/egusphere-2024-3831, 2025
Short summary
Short summary
Sea ice models simulate angles between cracks that are too wide compared to observations. Ringeisen et al. argue that this is due to the flow rule which defines the fracture deformations. We implemented a non-normal flow rule. This flow rule also leads to angles that are too wide. This is a consequence of deformations that tend to align with the grid. Nevertheless, this flow rule could be used to optimize deformations while other parameters could be used to modify landfast ice and ice drift.
Mathieu Plante, Jean-François Lemieux, L. Bruno Tremblay, Amélie Bouchat, Damien Ringeisen, Philippe Blain, Stephen Howell, Mike Brady, Alexander S. Komarov, Béatrice Duval, Lekima Yakuden, and Frédérique Labelle
Earth Syst. Sci. Data, 17, 423–434, https://doi.org/10.5194/essd-17-423-2025, https://doi.org/10.5194/essd-17-423-2025, 2025
Short summary
Short summary
Sea ice forms a thin boundary between the ocean and the atmosphere, with complex, crust-like dynamics and ever-changing networks of sea ice leads and ridges. Statistics of these dynamical features are often used to evaluate sea ice models. Here, we present a new pan-Arctic dataset of sea ice deformations derived from satellite imagery, from 1 September 2017 to 31 August 2023. We discuss the dataset coverage and some limitations associated with uncertainties in the computed values.
Damien Ringeisen, Nils Hutter, and Luisa von Albedyll
The Cryosphere, 17, 4047–4061, https://doi.org/10.5194/tc-17-4047-2023, https://doi.org/10.5194/tc-17-4047-2023, 2023
Short summary
Short summary
When sea ice is put into motion by wind and ocean currents, it deforms following narrow lines. Our two datasets at different locations and resolutions show that the intersection angle between these lines is often acute and rarely obtuse. We use the orientation of narrow lines to gain indications about the mechanical properties of sea ice and to constrain how to design sea-ice mechanical models for high-resolution simulation of the Arctic and improve regional predictions of sea-ice motion.
Noemie Planat, Carolina Olivia Dufour, Camille Lique, Jan Klaus Rieck, Claude Talandier, and L. Bruno Tremblay
EGUsphere, https://doi.org/10.5194/egusphere-2025-3527, https://doi.org/10.5194/egusphere-2025-3527, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
We detect and track mesoscale eddies in the Canadian Basin of the Arctic Ocean and describe their spatio-temporal characteristics in a high resolution pan-Arctic model. Results show eddies of typical size 12 km, lasting 10 days and travelling 11 km, with roughly an equal number of cyclones and anticyclones detected. Seasonal, decadal and interannual changes of the number of eddies detected show strong correlations with the ice cover, and with the mean circulation of the basin.
Gavin A. Schmidt, Kenneth D. Mankoff, Jonathan L. Bamber, Dustin Carroll, David M. Chandler, Violaine Coulon, Benjamin J. Davison, Matthew H. England, Paul R. Holland, Nicolas C. Jourdain, Qian Li, Juliana M. Marson, Pierre Mathiot, Clive R. McMahon, Twila A. Moon, Ruth Mottram, Sophie Nowicki, Anne Olivé Abelló, Andrew G. Pauling, Thomas Rackow, and Damien Ringeisen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1940, https://doi.org/10.5194/egusphere-2025-1940, 2025
Short summary
Short summary
The impact of increasing mass loss from the Greenland and Antarctic ice sheets has not so far been included in historical climate model simulations. This paper describes the protocols and data available for modeling groups to add this anomalous freshwater to their ocean modules to better represent the impacts of these fluxes on ocean circulation, sea ice, salinity and sea level.
Jan P. Gärtner, Martin Losch, Markus Jochum, and Roman Nuterman
EGUsphere, https://doi.org/10.22541/essoar.173940251.11733929/v1, https://doi.org/10.22541/essoar.173940251.11733929/v1, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Climate simulations help us understand the Earth systems and inform climate policies. These complex models require advanced programming and significant energy, as they run on large grids over long timescales. A key component of a climate model is its sea ice component. We present a sea ice model that simplifies development while maintaining high performance. By utilizing GPUs, our model can replace dozens to hundreds of CPUs, drastically reducing the energy usage of running climate simulations.
Jean-Francois Lemieux, Mathieu Plante, Nils Hutter, Damien Ringeisen, Bruno Tremblay, Francois Roy, and Philippe Blain
EGUsphere, https://doi.org/10.5194/egusphere-2024-3831, https://doi.org/10.5194/egusphere-2024-3831, 2025
Short summary
Short summary
Sea ice models simulate angles between cracks that are too wide compared to observations. Ringeisen et al. argue that this is due to the flow rule which defines the fracture deformations. We implemented a non-normal flow rule. This flow rule also leads to angles that are too wide. This is a consequence of deformations that tend to align with the grid. Nevertheless, this flow rule could be used to optimize deformations while other parameters could be used to modify landfast ice and ice drift.
Mathieu Plante, Jean-François Lemieux, L. Bruno Tremblay, Amélie Bouchat, Damien Ringeisen, Philippe Blain, Stephen Howell, Mike Brady, Alexander S. Komarov, Béatrice Duval, Lekima Yakuden, and Frédérique Labelle
Earth Syst. Sci. Data, 17, 423–434, https://doi.org/10.5194/essd-17-423-2025, https://doi.org/10.5194/essd-17-423-2025, 2025
Short summary
Short summary
Sea ice forms a thin boundary between the ocean and the atmosphere, with complex, crust-like dynamics and ever-changing networks of sea ice leads and ridges. Statistics of these dynamical features are often used to evaluate sea ice models. Here, we present a new pan-Arctic dataset of sea ice deformations derived from satellite imagery, from 1 September 2017 to 31 August 2023. We discuss the dataset coverage and some limitations associated with uncertainties in the computed values.
Antoine Savard and Bruno Tremblay
The Cryosphere, 18, 2017–2034, https://doi.org/10.5194/tc-18-2017-2024, https://doi.org/10.5194/tc-18-2017-2024, 2024
Short summary
Short summary
We include a suitable plastic damage parametrization in the standard viscous–plastic (VP) sea ice model to disentangle its effect from resolved model physics (visco-plastic with and without damage) on its ability to reproduce observed scaling laws of deformation. This study shows that including a damage parametrization in the VP model improves its performance in simulating the statistical behavior of fracture patterns. Therefore, a damage parametrization is a powerful tuning knob.
Mathieu Plante, Jean-François Lemieux, L. Bruno Tremblay, Adrienne Tivy, Joey Angnatok, François Roy, Gregory Smith, Frédéric Dupont, and Adrian K. Turner
The Cryosphere, 18, 1685–1708, https://doi.org/10.5194/tc-18-1685-2024, https://doi.org/10.5194/tc-18-1685-2024, 2024
Short summary
Short summary
We use a sea ice model to reproduce ice growth observations from two buoys deployed on coastal sea ice and analyze the improvements brought by new physics that represent the presence of saline liquid water in the ice interior. We find that the new physics with default parameters degrade the model performance, with overly rapid ice growth and overly early snow flooding on top of the ice. The performance is largely improved by simple modifications to the ice growth and snow-flooding algorithms.
Oreste Marquis, Bruno Tremblay, Jean-François Lemieux, and Mohammed Islam
The Cryosphere, 18, 1013–1032, https://doi.org/10.5194/tc-18-1013-2024, https://doi.org/10.5194/tc-18-1013-2024, 2024
Short summary
Short summary
We developed a standard viscous–plastic sea-ice model based on the numerical framework called smoothed particle hydrodynamics. The model conforms to the theory within an error of 1 % in an idealized ridging experiment, and it is able to simulate stable ice arches. However, the method creates a dispersive plastic wave speed. The framework is efficient to simulate fractures and can take full advantage of parallelization, making it a good candidate to investigate sea-ice material properties.
Damien Ringeisen, Nils Hutter, and Luisa von Albedyll
The Cryosphere, 17, 4047–4061, https://doi.org/10.5194/tc-17-4047-2023, https://doi.org/10.5194/tc-17-4047-2023, 2023
Short summary
Short summary
When sea ice is put into motion by wind and ocean currents, it deforms following narrow lines. Our two datasets at different locations and resolutions show that the intersection angle between these lines is often acute and rarely obtuse. We use the orientation of narrow lines to gain indications about the mechanical properties of sea ice and to constrain how to design sea-ice mechanical models for high-resolution simulation of the Arctic and improve regional predictions of sea-ice motion.
Charles Brunette, L. Bruno Tremblay, and Robert Newton
The Cryosphere, 16, 533–557, https://doi.org/10.5194/tc-16-533-2022, https://doi.org/10.5194/tc-16-533-2022, 2022
Short summary
Short summary
Sea ice motion is a versatile parameter for monitoring the Arctic climate system. In this contribution, we use data from drifting buoys, winds, and ice thickness to parameterize the motion of sea ice in a free drift regime – i.e., flowing freely in response to the forcing from the winds and ocean currents. We show that including a dependence on sea ice thickness and taking into account a climatology of the surface ocean circulation significantly improves the accuracy of sea ice motion estimates.
Mathieu Plante and L. Bruno Tremblay
The Cryosphere, 15, 5623–5638, https://doi.org/10.5194/tc-15-5623-2021, https://doi.org/10.5194/tc-15-5623-2021, 2021
Short summary
Short summary
We propose a generalized form for the damage parameterization such that super-critical stresses can return to the yield with different final sub-critical stress states. In uniaxial compression simulations, the generalization improves the orientation of sea ice fractures and reduces the growth of numerical errors. Shear and convergence deformations however remain predominant along the fractures, contrary to observations, and this calls for modification of the post-fracture viscosity formulation.
Shihe Ren, Xi Liang, Qizhen Sun, Hao Yu, L. Bruno Tremblay, Bo Lin, Xiaoping Mai, Fu Zhao, Ming Li, Na Liu, Zhikun Chen, and Yunfei Zhang
Geosci. Model Dev., 14, 1101–1124, https://doi.org/10.5194/gmd-14-1101-2021, https://doi.org/10.5194/gmd-14-1101-2021, 2021
Short summary
Short summary
Sea ice plays a crucial role in global energy and water budgets. To get a better simulation of sea ice, we coupled a sea ice model with an atmospheric and ocean model to form a fully coupled system. The sea ice simulation results of this coupled system demonstrated that a two-way coupled model has better performance in terms of sea ice, especially in summer. This indicates that sea-ice–ocean–atmosphere interaction plays a crucial role in controlling Arctic summertime sea ice distribution.
Jean-François Lemieux, L. Bruno Tremblay, and Mathieu Plante
The Cryosphere, 14, 3465–3478, https://doi.org/10.5194/tc-14-3465-2020, https://doi.org/10.5194/tc-14-3465-2020, 2020
Short summary
Short summary
Sea ice pressure poses great risk for navigation; it can lead to ship besetting and damages. Sea ice forecasting systems can predict the evolution of pressure. However, these systems have low spatial resolution (a few km) compared to the dimensions of ships. We study the downscaling of pressure from the km-scale to scales relevant for navigation. We find that the pressure applied on a ship beset in heavy ice conditions can be markedly larger than the pressure predicted by the forecasting system.
Cited articles
Aksenov, Y. and Hibler, W. D.: Failure Propagation Effects in an Anisotropic Sea Ice Dynamics Model, in: IUTAM Symposium on Scaling Laws in Ice Mechanics and Ice Dynamics, edited by: Dempsey, J. P. and Shen, H. H., Solid Mechanics and Its Applications, 363–372, Springer, the Netherlands, 2001. a
Alshibli, K. A. and Sture, S.: Shear Band Formation in Plane Strain Experiments of Sand, J. Geotech. Geoenviron., 126, 495–503, https://doi.org/10.1061/(ASCE)1090-0241(2000)126:6(495), 2000. a, b
Anderson, E. M.: The dynamics of faulting and dyke formation with applications to Britain, Oliver and Boyd, 1942. a
Arthur, J. R. F., Dunstan, T., Al-Ani, Q. a. J. L., and Assadi, A.: Plastic deformation and failure in granular media, Géotechnique, 27, 53–74, https://doi.org/10.1680/geot.1977.27.1.53, 1977. a
Badgley, F. I.: Heat balance at the surface of the Arctic Ocean, in: Proceedings of the 29th Annual Western Snow Conference, Western Snow Conference, Spokane, Washington, available at: https://westernsnowconference.org/node/1205 (last access: 3 June 2021), 1961. a
Balendran, B. and Nemat-Nasser, S.: Double sliding model for cyclic deformation of granular materials, including dilatancy effects, J. Mech. Phys. Solids, 41, 573–612, https://doi.org/10.1016/0022-5096(93)90049-L, 1993. a, b, c, d
Bolton, M. D.: The strength and dilatancy of sands, ICE Publishing, Géotechnique, 36, 65–78, https://doi.org/10.1680/geot.1986.36.1.65, 1986. a
Bouchat, A. and Tremblay, B.: Using sea-ice deformation fields to constrain the mechanical strength parameters of geophysical sea ice, J. Geophys. Res.-Oceans, 122, 5802–5825, https://doi.org/10.1002/2017JC013020, 2017. a, b, c, d
Buiter, S. J. H., Babeyko, A. Y., Ellis, S., Gerya, T. V., Kaus, B. J. P., Kellner, A., Schreurs, G., and Yamada, Y.: The numerical sandbox: comparison of model results for a shortening and an extension experiment, Analogue and Numerical Sandbox Models, Geol. Soc. Sp., 253, 29–64, https://doi.org/10.1144/GSL.SP.2006.253.01.02, 2006. a
Campin, J.-M., Heimbach, P., Losch, M., Forget, G., Adcroft, A., Dussin, R., et al.: MITgcm/MITgcm: checkpoint67z (Version checkpoint67z), Zenodo, https://doi.org/10.5281/zenodo.4968496, 2021. a
Coon, M., Kwok, R., Levy, G., Pruis, M., Schreyer, H., and Sulsky, D.: Arctic Ice Dynamics Joint Experiment (AIDJEX) assumptions revisited and found inadequate, J. Geophys. Res.-Oceans, 112, C11S90, https://doi.org/10.1029/2005JC003393, 2007. a
Coon, M. D., Maykut, A., G., Pritchard, R. S., Rothrock, D. A., and Thorndike, A. S.: Modeling The Pack Ice as an Elastic-Plastic Material, AIDJEX Bulletin, 24, 1–106, 1974. a
Cunningham, G., Kwok, R., and Banfield, J.: Ice lead orientation characteristics in the winter Beaufort Sea, in: Proceedings of IGARSS '94 – 1994 IEEE International Geoscience and Remote Sensing Symposium, 3, 1747–1749, https://doi.org/10.1109/IGARSS.1994.399553, 1994. a, b, c
Dansereau, V., Weiss, J., Saramito, P., and Lattes, P.: A Maxwell elasto-brittle rheology for sea ice modelling, The Cryosphere, 10, 1339–1359, https://doi.org/10.5194/tc-10-1339-2016, 2016. a, b, c
Dethloff, K., Rex, M., and Shupe, M.: Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC), EGU General Assembly Conference Abstracts, 18, https://ui.adsabs.harvard.edu/#abs/2016EGUGA..18.3064D/abstract, 2016. a
Drucker, D. C. and Prager, W.: Soil mechanics and plastic analysis or limit design, Q. Appl. Math., 10, 157–165, 1952. a
Dumont, D., Gratton, Y., and Arbetter, T. E.: Modeling the Dynamics of the North Water Polynya Ice Bridge, J. Phys. Oceanogr., 39, 1448–1461, https://doi.org/10.1175/2008JPO3965.1, 2009. a
Girard, L., Bouillon, S., Weiss, J., Amitrano, D., Fichefet, T., and Legat, V.: A new modeling framework for sea-ice mechanics based on elasto-brittle rheology, Ann. Glaciol., 52, 123–132, https://doi.org/10.3189/172756411795931499, 2011. a
Golding, N., Schulson, E. M., and Renshaw, C. E.: Shear faulting and localized heating in ice: The influence of confinement, Acta Mater., 58, 5043–5056, https://doi.org/10.1016/j.actamat.2010.05.040, 2010. a
Han, C. and Drescher, A.: Shear Bands in Biaxial Tests on Dry Coarse Sand, Soil and Foundations, 33, 118–132, https://doi.org/10.3208/sandf1972.33.118, 1993. a, b
Handin, J.: On the Coulomb–Mohr failure criterion, Journal of Geophysical Research (1896–1977), 74, 5343–5348, https://doi.org/10.1029/JB074i022p05343, 1969. a
Heorton, H. D. B. S., Feltham, D. L., and Tsamados, M.: Stress and deformation characteristics of sea ice in a high-resolution, anisotropic sea ice model, Philos. T. R. Soc. A, 376, 20170 349, https://doi.org/10.1098/rsta.2017.0349, 2018. a, b
Hibler, W. D.: A viscous sea ice law as a stochastic average of plasticity, J. Geophys. Res., 82, 3932–3938, https://doi.org/10.1029/JC082i027p03932, 1977. a, b, c, d
Hopkins, M. A.: On the ridging of intact lead ice, J. Geophys. Res.-Oceans, 99, 16351–16360, https://doi.org/10.1029/94JC00996, 1994. a
Horvat, C. and Tziperman, E.: The evolution of scaling laws in the sea ice floe size distribution, J. Geophys. Res.-Oceans, 122, 7630–7650, https://doi.org/10.1002/2016JC012573, 2017. a, b
Hutchings, J. K., Heil, P., and Hibler, W. D.: Modeling Linear Kinematic Features in Sea Ice, Mon. Weather Rev., 133, 3481–3497, https://doi.org/10.1175/MWR3045.1, 2005. a, b, c, d
Hutter, N. and Losch, M.: Feature-based comparison of sea ice deformation in lead-permitting sea ice simulations, The Cryosphere, 14, 93–113, https://doi.org/10.5194/tc-14-93-2020, 2020. a, b
Hutter, N., Martin, L., and Dimitris, M.: Scaling Properties of Arctic Sea Ice Deformation in a High-Resolution Viscous-Plastic Sea Ice Model and in Satellite Observations, J. Geophys. Res.-Oceans, 123, 672–687, https://doi.org/10.1002/2017JC013119, 2018. a, b, c, d
Hutter, N., Zampieri, L., and Losch, M.: Leads and ridges in Arctic sea ice from RGPS data and a new tracking algorithm, The Cryosphere, 13, 627–645, https://doi.org/10.5194/tc-13-627-2019, 2019. a, b, c
Ip, C. F.: Numerical investigation of different rheologies on sea-ice dynamics, PhD thesis, Dartmouth College, New Hampshire, United States, 1993. a
Itkin, P., Losch, M., and Gerdes, R.: Landfast ice affects the stability of the Arctic halocline: Evidence from a numerical model, J. Geophys. Res.-Oceans, 120, 2622–2635, https://doi.org/10.1002/2014JC010353, 2015. a
Kaus, B. J. P.: Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation, Tectonophysics, 484, 36–47, https://doi.org/10.1016/j.tecto.2009.08.042, 2010. a
Koldunov, N. V., Danilov, S., Sidorenko, D., Hutter, N., Losch, M., Goessling, H., Rakowsky, N., Scholz, P., Sein, D., Wang, Q., and Jung, T.: Fast EVP Solutions in a High-Resolution Sea Ice Model, J. Adv. Model. Earth Sy., 11, 1269–1284, https://doi.org/10.1029/2018MS001485, 2019. a
Kwok, R.: Deformation of the Arctic Ocean Sea Ice Cover between November 1996 and April 1997: A Qualitative Survey, in: IUTAM Symposium on Scaling Laws in Ice Mechanics and Ice Dynamics, edited by Dempsey, J. P. and Shen, H. H., Solid Mechanics and Its Applications, 315–322, Springer, the Netherlands, Dordrecht, https://doi.org/10.1007/978-94-015-9735-7, 2001. a
König Beatty, C. and Holland, D. M.: Modeling Landfast Sea Ice by Adding Tensile Strength, J. Phys. Oceanogr., 40, 185–198, https://doi.org/10.1175/2009JPO4105.1, 2010. a
Lemieux, J.-F. and Tremblay, B.: Numerical convergence of viscous–plastic sea ice models, J. Geophys. Res.-Oceans, 114, C05009, https://doi.org/10.1029/2008JC005017, 2009. a
Losch, M., Menemenlis, D., Campin, J.-M., Heimbach, P., and Hill, C.: On the formulation of sea-ice models. Part 1: Effects of different solver implementations and parameterizations, Ocean Model., 33, 129–144, https://doi.org/10.1016/j.ocemod.2009.12.008, 2010. a
Losch, M., Fuchs, A., Lemieux, J.-F., and Vanselow, A.: A parallel Jacobian-free Newton–Krylov solver for a coupled sea ice-ocean model, J. Comput. Phys., 257, 901–911, https://doi.org/10.1016/j.jcp.2013.09.026, 2014. a, b
Mancktelow, N. S.: How ductile are ductile shear zones?, GeoScienceWorld, Geology, 34, 345–348, https://doi.org/10.1130/G22260.1, 2006. a
Marko, J. R. and Thomson, R. E.: Rectilinear leads and internal motions in the ice pack of the western Arctic Ocean, J. Geophys. Res., 82, 979–987, https://doi.org/10.1029/JC082i006p00979, 1977. a, b, c
Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.:
A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers, J. Geophys. Res.-Oceans,
102, 5753–5766,
https://doi.org/10.1029/96JC02775, 1997. a
Mohr, O.: Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materials, Zeitschrift des Vereins Deutscher Ingenieure, 46, 1572–1577, 1900. a
Mánica, M. A., Gens, A., Vaunat, J., and Ruiz, D. F.: Nonlocal plasticity modelling of strain localisation in stiff clays, Comput. Geotech., 103, 138–150, https://doi.org/10.1016/j.compgeo.2018.07.008, 2018. a
Nguyen, A. T., Menemenlis, D., and Kwok, R.: Arctic ice-ocean simulation with optimized model parameters: Approach and assessment, J. Geophys. Res.-Oceans, 116, C04 025, https://doi.org/10.1029/2010JC006573, 2011. a
Nguyen, A. T., Kwok, R., and Menemenlis, D.: Source and Pathway of the Western Arctic Upper Halocline in a Data-Constrained Coupled Ocean and Sea Ice Model, American Meteorological Society, J. Phys. Oceanogr., 42, 802–823, https://doi.org/10.1175/JPO-D-11-040.1, 2012. a
Overland, J. E., McNutt, S. L., Salo, S., Groves, J., and Li, S.: Arctic sea ice as a granular plastic, J. Geophys. Res., 103, 21845–21868, https://doi.org/10.1029/98JC01263, 1998. a, b
Plante, M., Tremblay, B., Losch, M., and Lemieux, J.-F.: Landfast sea ice material properties derived from ice bridge simulations using the Maxwell elasto-brittle rheology, The Cryosphere, 14, 2137–2157, https://doi.org/10.5194/tc-14-2137-2020, 2020. a
Rampal, P., Bouillon, S., Ólason, E., and Morlighem, M.: neXtSIM: a new Lagrangian sea ice model, The Cryosphere, 10, 1055–1073, https://doi.org/10.5194/tc-10-1055-2016, 2016. a
Rampal, P., Dansereau, V., Olason, E., Bouillon, S., Williams, T., Korosov, A., and Samaké, A.: On the multi-fractal scaling properties of sea ice deformation, The Cryosphere, 13, 2457–2474, https://doi.org/10.5194/tc-13-2457-2019, 2019. a
Ringeisen, D., Losch, M., Tremblay, L. B., and Hutter, N.: Simulating intersection angles between conjugate faults in sea ice with different viscous–plastic rheologies, The Cryosphere, 13, 1167–1186, https://doi.org/10.5194/tc-13-1167-2019, 2019. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w
Roach, L. A., Horvat, C., Dean, S. M., and Bitz, C. M.: An Emergent Sea Ice Floe Size Distribution in a Global Coupled Ocean-Sea Ice Model, J. Geophys. Res.-Oceans, 123, 4322–4337, https://doi.org/10.1029/2017JC013692, 2018. a
Rothrock, D. A.: The energetics of the plastic deformation of pack ice by ridging, J. Geophys. Res., 80, 4514–4519, https://doi.org/10.1029/JC080i033p04514, 1975. a
Rothrock, D. A. and Thorndike, A. S.: Measuring the sea ice floe size distribution, J. Geophys. Res.-Oceans, 89, 6477–6486, https://doi.org/10.1029/JC089iC04p06477, 1984. a
Schall, P. and van Hecke, M.: Shear Bands in Matter with Granularity, Annu. Rev. Fluid Mech., 42, 67–88, https://doi.org/10.1146/annurev-fluid-121108-145544, 2010. a
Schulson, E. M.: Fracture of Ice on Scales Large and Small, in: IUTAM Symposium on Scaling Laws in Ice Mechanics and Ice Dynamics, edited by: Dempsey, J. P. and Shen, H. H., Solid Mechanics and Its Applications, 161–170, Springer, the Netherlands, 2001. a
Schulson, E. M.: Brittle Failure of Ice, GeoScienceWorld, Rev. Mineral. Geochem., 51, 201–252, https://doi.org/10.2138/gsrmg.51.1.201, 2002. a, b, c
Schulson, E. M. and Hibler, W. D.: Fracture of the winter sea ice cover on the Arctic ocean, C. R. Phys., 5, 753–767, https://doi.org/10.1016/j.crhy.2004.06.001, 2004. a
Schulson, E. M., Fortt, A. L., Iliescu, D., and Renshaw, C. E.: Failure envelope of first-year Arctic sea ice: The role of friction in compressive fracture, John Wiley & Sons, Ltd., J. Geophys. Res.-Oceans, 111, C11S25, https://doi.org/10.1029/2005JC003235, 2006a. a
Schulson, E. M., Fortt, A. L., Iliescu, D., and Renshaw, C. E.: On the role of frictional sliding in the compressive fracture of ice and granite: Terminal vs. post-terminal failure, Acta Mater., 54, 3923–3932, https://doi.org/10.1016/j.actamat.2006.04.024, 2006b. a
Spreen, G., Kwok, R., Menemenlis, D., and Nguyen, A. T.: Sea-ice deformation in a coupled ocean–sea-ice model and in satellite remote sensing data, The Cryosphere, 11, 1553–1573, https://doi.org/10.5194/tc-11-1553-2017, 2017. a
Stern, H. L., Rothrock, D. A., and Kwok, R.: Open water production in Arctic sea ice: Satellite measurements and model parameterizations, John Wiley & Sons, Ltd., J. Geophys. Res.-Oceans, 100, 20601–20612, https://doi.org/10.1029/95JC02306, 1995. a, b, c, d
Stroeve, J., Barrett, A., Serreze, M., and Schweiger, A.: Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness, The Cryosphere, 8, 1839–1854, https://doi.org/10.5194/tc-8-1839-2014, 2014. a
Tsamados, M., Feltham, D. L., and Wilchinsky, A. V.: Impact of a new anisotropic rheology on simulations of Arctic sea ice, J. Geophys. Res.-Oceans, 118, 91–107, https://doi.org/10.1029/2012JC007990, 2013. a, b
Vardoulakis, I.: Shear band inclination and shear modulus of sand in biaxial tests, Int. J. Numer. Anal. Met., 4, 103–119, https://doi.org/10.1002/nag.1610040202, 1980. a
Vardoulakis, I. and Graf, B.: Calibration of constitutive models for granular materials using data from biaxial experiments, ICE Publishing, Géotechnique, 35, 299–317, https://doi.org/10.1680/geot.1985.35.3.299, 1985. a
Vermeer, P. A.: The orientation of shear bands in biaxial tests, Géotechnique, 40, 223–236, https://doi.org/10.1680/geot.1990.40.2.223, 1990. a, b
Wang, K.: Pack ice as a two-dimensional granular plastic: a new constitutive law, Ann. Glaciol., 44, 317–320, https://doi.org/10.3189/172756406781811358, 2006. a
Wang, K.: Observing the yield curve of compacted pack ice, J. Geophys. Res.-Oceans, 112, C05015, https://doi.org/10.1029/2006JC003610, 2007. a
Weiss, J. and Schulson, E. M.: Coulombic faulting from the grain scale to the geophysical scale: lessons from ice, J. Phys. D Appl. Phys., 42, 214 017, https://doi.org/10.1088/0022-3727/42/21/214017, 2009. a, b
Weiss, J., Schulson, E. M., and Stern, H. L.: Sea ice rheology from in-situ, satellite and laboratory observations: Fracture and friction, Earth Planet. Sci. Lett., 255, 1–8, https://doi.org/10.1016/j.epsl.2006.11.033, 2007. a, b
Wilchinsky, A. V., Feltham, D. L., and Hopkins, M. A.: Effect of shear rupture on aggregate scale formation in sea ice, J. Geophys. Res.-Oceans, 115, C10 002, https://doi.org/10.1029/2009JC006043, 2010. a
Williams, J., Tremblay, L. B., and Lemieux, J.-F.: The effects of plastic waves on the numerical convergence of the viscous–plastic and elastic–viscous–plastic sea-ice models, J. Comput. Phys., 340, 519–533, https://doi.org/10.1016/j.jcp.2017.03.048, 2017. a
Zhang, J. and Hibler, W. D.: On an efficient numerical method for modeling sea ice dynamics, J. Geophys. Res.-Oceans, 102, 8691–8702, https://doi.org/10.1029/96JC03744, 1997. a
Zhang, J. and Rothrock, D. A.: Effect of sea ice rheology in numerical investigations of climate, J. Geophys. Res.-Oceans, 110, C08 014, https://doi.org/10.1029/2004JC002599, 2005. a, b, c
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(2000 KB) - Full-text XML
Short summary
Deformations in the Arctic sea ice cover take the shape of narrow lines. High-resolution sea ice models recreate these deformation lines. Recent studies have shown that the most widely used sea ice model creates fracture lines with intersection angles larger than those observed and cannot create smaller angles. In our work, we change the way sea ice deforms post-fracture. This change allows us to understand the link between the sea ice model and intersection angles and create more acute angles.
Deformations in the Arctic sea ice cover take the shape of narrow lines. High-resolution sea ice...