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Abstract. The standard viscous–plastic (VP) sea ice model
with an elliptical yield curve and a normal flow rule has at
least two issues. First, it does not simulate fracture angles
below 30◦ in uni-axial compression, in contrast with observa-
tions of linear kinematic features (LKFs) in the Arctic Ocean.
Second, there is a tight, but unphysical, coupling between
the fracture angle, post-fracture deformation, and the shape
of the yield curve. This tight coupling was identified as the
reason for the overestimation of fracture angles. In this pa-
per, these issues are addressed by removing the normality
constraint on the flow rule in the standard VP model. The
new rheology is tested in numerical uni-axial loading tests.
To this end, an elliptical plastic potential – which defines the
post-fracture deformations, or flow rule – is introduced in-
dependently of the elliptical yield curve. As a consequence,
the post-fracture deformation is decoupled from the mechan-
ical strength properties of the ice. We adapt Roscoe’s angle
theory, which is based on observations of granular materi-
als, to the context of sea ice modeling. In this framework, the
fracture angles depend on both yield curve and plastic po-
tential parameters. This new formulation predicts accurately
the results of the numerical experiments with a root-mean-
square error below 1.3◦. The new rheology allows for angles
of fracture smaller than 30◦ in uni-axial compression. For in-
stance, a plastic potential with an ellipse aspect ratio smaller
than 2 (i.e., the default value in the standard viscous–plastic
model) can lead to fracture angles as low as 22◦. Implement-
ing an elliptical plastic potential in the standard VP sea ice
model requires only small modifications to the standard VP
rheology. The momentum equations with the modified rhe-
ology, however, are more difficult to solve numerically. The

independent plastic potential solves the two issues with VP
rheology addressed in this paper: in uni-axial loading experi-
ments, it allows for smaller fracture angles, which fall within
the range of satellite observations, and it decouples the an-
gle of fracture and the post-fracture deformation from the
shape of the yield curve. The orientation of the post-fracture
deformation along the fracture lines (convergence and diver-
gence), however, is still controlled by the shape of the plas-
tic potential and the location of the stress state on the yield
curve. A non-elliptical plastic potential would be required to
change the orientation of deformation and to match deforma-
tion statistics derived from satellite measurements.

1 Introduction

Sea ice plays a significant role in the energy budget of the
climate system and therefore has a strong influence on future
climate projections. Sea ice dynamics are located primarily
along narrow lines of deformation, called linear kinematic
features (LKFs), where floes slide along and grind against
each other. LKFs can form in divergence, creating stretches
of open water or leads, or in convergence, creating piles of
ice or ridges. LKFs in the Arctic sea ice cover influence the
Earth system in many ways: heat and moisture exchange take
place primarily over open water (Badgley, 1961), and salt
rejection during ice formation in leads creates dense water
and influences the thermohaline circulation (Nguyen et al.,
2011, 2012; Itkin et al., 2015). Locally, the ice strength de-
pends on the sea ice state (e.g., thickness, concentration, and
damage), which in turn is affected by sea ice fracture with
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thermodynamic growth in opening leads and with local dy-
namical growth during ridge formation. One observable and
quantifiable feature of LKFs in Arctic sea ice is the inter-
section angles between individual LKFs. The LKFs have an
influence on the local ice strength, emergent anisotropy and
future deformation in the pack ice, and therefore sea ice mass
balance (Aksenov and Hibler, 2001). Reproducing the LKFs
patterns, density, and orientation is important for accurate sea
ice and climate projections at high resolution.

LKFs are ubiquitous features of granular media, and sea
ice is often described as such a granular material (Overland
et al., 1998; Erlingsson, 1988; Anderson, 1942; Schall and
van Hecke, 2010). Similarly to the crumbling of rocks, sea
ice also exhibits brittle fracture, as floes break into smaller
pieces. Brittle behavior adds a level of complexity because
it implies that models must represent both the dynamics of
intact ice (brittle – fracture or elastic regime) and the dy-
namics of a fractured system (granular – friction or plastic
regime) (Handin, 1969). The dominant deformation process
along LKFs is shear. Sometimes this shear is associated with
non-zero divergence, and this divergence along shear bands
is referred to as dilatancy (Stern et al., 1995). Granular matter
theory can explain the dilatancy along LKFs. In this work, we
consider sea ice a granular material and focus on the dynam-
ics of the fractured system. We use the term fracture as the
failure of a compact assemblage of floes and define the frac-
ture angle as half of the angle between intersecting LKFs.

Different rheological models assume different material be-
havior before and after fracture. Common sea ice rheological
models are, for example, viscous–plastic (VP; Hibler, 1977),
elastic–plastic (EP; Coon et al., 1974), elastic–anisotropic–
plastic (EAP; Tsamados et al., 2013), or Maxwell elasto-
brittle (MEB; Dansereau et al., 2016). In these different rhe-
ological models, various stress–strain(-rate) relationships, or
constitutive equations, can be defined. In the following, we
refer to models with different constitutive equations as dif-
ferent rheologies. We focus on the VP rheological model. A
specific VP rheology is defined by a yield curve and plas-
tic potential. The yield curve defines the stress criteria for
the transition from small viscous deformations (creep) to
the large plastic deformations (friction). The plastic poten-
tial determines the ensuing post-fracture deformation, called
the flow rule. The flow rule is normal to the plastic poten-
tial (Drucker and Prager, 1952). The plastic potential can
be independent of, or equal to, the yield curve. In the lat-
ter case, the flow rule is also normal to the yield curve and
is called a normal flow rule or associated flow rule. Several
yield curves have been used in sea ice VP models, some with
a normal flow rule (Hibler, 1979; Zhang and Rothrock, 2005)
and some with a non-normal flow rule (Ip et al., 1991; Trem-
blay and Mysak, 1997; Hibler and Schulson, 2000; Wang,
2007). We reiterate that two plastic models with the same
yield curve but with different flow rules are referred to as
two different rheologies, as they behave differently during
the creation of LKFs.

The viscous–plastic rheology is an appropriate continuum
rheology for modeling sea ice as a granular material because
it includes (1) a yield condition for plastic deformation and
(2) a flow rule that allows the representation of the divergent
and convergent motion along shear lines, that is, the dilatancy
observed in granular media. Continuum plastic flow mod-
els with normal or non-normal flow rules are often used in
other scientific fields to model granular geo-materials (Ver-
meer and De Borst, 1984; Mánica et al., 2018).

LKFs have been studied in satellite observations (Stern
et al., 1995; Kwok, 2001; Schulson and Hibler, 2004; Weiss
et al., 2007) and numerical models (Spreen et al., 2017; Hut-
ter et al., 2018). In VP sea ice models, LKFs are represented
as narrow zones of plastic deformation in a background field
of nearly un-deformed ice (viscous creep) (Hutchings et al.,
2005). This behavior has been argued to be the reason for low
temporal intermittency and spatial localization in VP mod-
els, leading to a spatial and temporal scaling of LKFs that
is different from that of observations (Rampal et al., 2016).
LKFs emerge clearly in plastic flow models at high resolu-
tion (Hutchings et al., 2005; Hutter et al., 2018; Koldunov
et al., 2019). VP models reproduce observed intermittency
and spatial localization even without brittle fracture dynam-
ics (Bouchat and Tremblay, 2017; Hutter et al., 2018), albeit
at higher resolution than Maxwell elasto-brittle models (e.g.,
Rampal et al., 2019).

New models have been designed to represent sea ice frac-
ture, for example, brittle models with a damage parameter
that keeps the memory of previous fracture (Dansereau et al.,
2016; Girard et al., 2011) or anisotropic viscous–plastic rhe-
ologies models (Tsamados et al., 2013; Heorton et al., 2018).
Still, as of today, the viscous–plastic rheology with an ellip-
tical yield curve and normal flow rule (Hibler, 1979) is the
de facto standard rheology in global climate models. For ex-
ample, of the 33 global climate models of the Climate Model
Intercomparison Project 5 (CMIP5), 30 use the VP rheology
with an elliptical yield curve and normal flow rule (Stroeve
et al., 2014). Below, we refer to this rheology as the standard
VP rheology.

The orientation of LKFs is a well-studied subject in the
field of engineering and granular materials (LKFs are called
shear bands in this field). Two classical solutions coexist
and set two limit angles for the orientation of fractures: the
Coulomb angle (static behavior) and the Roscoe angle (dy-
namic behavior). The Coulomb angle of fracture θC between
the fracture line and the first principal stress is determined
by the Mohr–Coulomb criterion. It is a function only of the
internal angle of friction φ (Coulomb, 1776; Mohr, 1900):

θC =
π

4
−
φ

2
. (1)

Roscoe (1970) challenged this concept by considering the
case of dilatant material and found from experiments with
sand that the dilatancy angle δ is the main parameter deter-
mining the orientation of shear bands (see Fig. 6 in Tremblay
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and Mysak, 1997, for a definition of the dilantancy angle δ
in the context of sea ice modeling.). Dilatancy refers to di-
vergence along shear bands or LKFs. This divergence is a
function of the distribution of contact points between indi-
vidual floes at the sub-grid scales. A positive angle of di-
latancy is associated with contact points that (on average)
oppose the macroscopic shear motion and create divergence
along the shear band, while negative dilatancy is associated
with a closing of the shear line (ridging in the case of sea
ice). The Roscoe angle of fracture is defined as

θR =
π

4
−
δ

2
. (2)

A general theory derived from experiments with sand that
takes into account both the angle of friction and the angle of
dilation combines the Coulomb and Roscoe angles as (Arthur
et al., 1977; Vardoulakis, 1980)

θA =
π

4
−

1
4
(φ+ δ), (3)

where θA is called the Arthur angle. Tremblay and Mysak
(1997) used this general theory to design their sea ice rheol-
ogy. Vermeer (1990) proposed a theoretical framework based
on the grain size and showed that the angle of fracture in most
experiments falls between the two extremes: θC ≤ θ ≤ θR,
with δ < φ in sands. If φ = δ, then θR = θC = θA, and the
flow rule is normal to the yield curve. In other words, for
φ = δ, the principal axes of stress and the principal axes
of strain are coaxial. This condition, however, is not gener-
ally satisfied for granular materials: experiments with sand
have shown differences between φ and δ of the order of 30◦

(Balendran and Nemat-Nasser, 1993; Vardoulakis and Graf,
1985; Bolton, 1986). Note that both mechanisms, friction and
dilatancy, are not radically different: a larger dilatancy angle
implies a larger grain size and more contact normals oppos-
ing the flow, hence more friction (Vermeer, 1990). The con-
cept of the internal angle of friction can be used to link the
orientation of LKFs to plastic rheologies with a normal flow
rule (Ringeisen et al., 2019, Appendix B). So far, only the
yield curve has been considered when investigating the ori-
entation of LKFs in the viscous–plastic model (as in, e.g.,
Hibler and Schulson, 2000; Hutchings et al., 2005; Wang,
2006). Therefore, it is unknown which of the three angles
(Coulomb, Roscoe, Arthur) provides the most accurate pre-
diction for this case.

The fracture angles with the standard VP rheology cannot
be smaller than 30◦ in uni-axial compression, even by chang-
ing the ellipse aspect ratio e (Ringeisen et al., 2019). In con-
trast, observations show fracture angles generally below 30◦

(e.g., 14◦ in Marko and Thomson, 1977; 15±1.5◦ in Erlings-
son, 1988; 17 to 18◦ in Cunningham et al., 1994) and a clear
peak in the distribution of angles between 20 and 25◦ (Hut-
ter and Losch, 2020). In addition, uni-axial loading compres-
sion experiments with lateral confinement (achieved via the
addition of thinner ice surrounding the ice slab) presented in

Ringeisen et al. (2019) showed that (1) the angle of fracture
is a function of the slope of the yield curve in stress invariant
space, (2) the ellipse aspect ratio determines the divergence
along the LKFs, and (3) the fracture angle is a function of
the confining pressure. These three properties of the standard
VP rheology do not agree with the theory and observations
of granular media behavior, namely that shear band orien-
tations and divergent or convergent motion at the slip lines
are a function mainly of the shear strength of the material
and orientation of the contact normals (or dilatancy angle)
and that the confining pressure has only a limited effect (Bal-
endran and Nemat-Nasser, 1993; Alshibli and Sture, 2000;
Han and Drescher, 1993; Desrues and Hammad, 1989). Note
that some of these last experiments are tri-axial tests, and
that bi-axial tests of 2D granular sea ice might yield different
results as sea ice can “escape” in the vertical direction. Bi-
axial tests on sea ice samples show that small confinements
lead to coulombic shear fault fractures with a similar inter-
nal friction coefficient and similar fracture angle. However,
larger confinements lead to a spalling raft-like behavior with
a broader range of fracture angles (Schulson et al., 2006a).
The fracture angles are similar in different regions of the Arc-
tic with different background stress conditions (Erlingsson,
1988; Marko and Thomson, 1977; Cunningham et al., 1994).
This observation supports the hypothesis that the angle of
fracture in sea ice is independent of the confining pressure.
Finally, the distribution of intersection angles simulated with
the standard VP rheology at high resolution has a peak of the
distribution at larger angles than the RADARSAT Geophys-
ical Processor System (RGPS) dataset (Hutter et al., 2019;
Hutter and Losch, 2020). The unphysical behavior of the
standard VP rheology (points 1, 2, 3 presented above and the
distribution of angles) is connected to the shape of the yield
curve in conjunction with a normal flow rule.

The flow rule has the advantage that it can be observed
with remote sensing methods, in contrast to observing stress
which requires in situ measurements. The ratio of shear to di-
vergence along the shear bands or LKFs allows the inference
of the dilatancy angle of granular material. Observations of
sea ice drift in the Arctic show that most of the deformation
takes place in shear with some divergence (Stern et al., 1995).
The distribution of the ratio of divergence and convergence
can be reproduced by modifying the ellipse aspect ration e
of the standard VP rheology (Bouchat and Tremblay, 2017).
Separating the link between the fracture angle and the flow
rule from the yield curve is necessary to design VP rheolo-
gies that are consistent with observed sea ice deformation.

In this paper, we investigate the effects of a non-normal
flow rule on fracture angles. We use the non-normal flow
rule as a means of separating the state of stress (at failure)
and the post-fracture deformation. To this end, we study the
non-normal flow rule in the context of the standard VP rhe-
ological model using a similar shape for the plastic potential
(i.e., an ellipse) because (1) the ellipse is widely used in the
community and (2) its behavior is well documented (com-
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pared to other models), providing a solid basis for compari-
son. For these two reasons, we use the elliptical yield curve
despite the fact that it is not the most appropriate yield curve
to model sea ice as a granular material. This paper provides
a new generalized theoretical framework for any viscous–
plastic material with normal or non-normal flow rules. Fol-
lowing Ringeisen et al. (2019), we test the new model in sim-
ple uni-axial loading experiments where the relationship be-
tween fracture angle and flow rule can be easily identified.

The paper is structured as follows. Section 2 describes the
model (Sect. 2.1), the new rheology (Sect. 2.2), and a gen-
eral theory linking the fracture angles and a general flow rule
(Sect. 2.3). Sects. 3 and 4 describe the idealized experimen-
tal setup and the results. Section 5 discusses these results and
their implications for current and future rheologies. Conclu-
sions follow in Sect. 6.

2 Sea ice model and rheology

2.1 Building the sea ice VP constitutive equations

We consider sea ice a 2D viscous–plastic material. The ice
velocities are calculated from the sea ice momentum equa-
tions:

ρh
∂u

∂t
=−ρhf k×u+ τ a+ τ o− ρh∇φs+∇ · σ , (4)

where ρ is the ice density, h is the grid-cell-averaged sea
ice thickness, u is the ice drift velocity field, f is the Cori-
olis parameter, k is the vertical unit vector, τ a is the sur-
face air stress, τ o is the ocean drag, ∇φs is acceleration
from the gradient of sea surface height, and σ is the verti-
cally integrated internal ice stress tensor defined by the sea
ice VP constitutive equations. The constitutive equations de-
fine the vertically integrated stress tensor σ as a function of
the strain rate tensor ε̇ and the state variables χ (e.g., ice
thickness, ice strength, ice concentration). The components
of the strain rate tensor are computed from the velocities as
ε̇ij = (∂ui)/(∂xj ). The constitutive equations then have the
following form:

σ = f (ε̇,χ). (5)

In the sea ice VP model the stresses are independent of the
strain rates for large deformation events (the plastic states
with stresses on the yield curve) and they depend on the strain
rates for small deformations (the viscous states with stresses
inside the yield curve). It is this set of equations that defines
the rheology of sea ice and determines the fracture pattern
and the opening or closing along the fractures.

One of the state variables in the model is the maximum
compressive strength P . This variable represents the max-
imum compressive stress that sea ice can bear in uniform
compression before ridging. We use the following simple
standard relationship (Hibler, 1979):

P = P ?he−C
∗(1−A), (6)

Figure 1. Schematic yield curve F (blue) and plastic potential G
(red) for a normal (a) and non-normal (b) flow rule. The flow rule
(orange) for a given stress on the yield curve is normal to the plas-
tic potential (red) for the same σI. Note that the stress and strain
invariant axes are assumed to coincide.

where C? is a free parameter (typically C? = 20), h is the
mean ice thickness, A is the fractional sea ice area cover in
a grid cell, and P ? is the ice strength of 1 m of ice at 100 %
concentration (A= 1).

The yield curve represents the stress states for which sea
ice deforms plastically while enclosing the stress states for
which sea ice slowly deforms viscously. We express the yield
curve as a function of the stresses σij and the state variables
χ :

F(σij ,χ)= 0. (7)

The yield curve can be represented in principal stress (σ1
and σ2) or stress invariant space (σI and σII). Figure 1 shows
an arbitrary yield curve in stress invariant space. Although
Eq. (7) determines if the deformation is plastic or viscous,
it does not determine how the ice will deform after fracture.
In order to obtain a closed system of equations, we define a
plastic potential that defines the flow rule.

The plastic potential determines the direction of deforma-
tion for stress states on the yield curve. The flow rule repre-
sents the direction of deformation in the grid cell. The ori-
entation of the flow rule in the coordinate system (ε̇I, ε̇II), as
shown in orange in Fig. 1, indicates if the grid cell deforms
in convergence (ε̇I < 0) or divergence (ε̇I > 0) and shear (ε̇II).
Just as with the yield curve, the plastic potential can be writ-
ten as

G(σij ,χ)= 0. (8)

The direction of the deformation, called the flow rule, is per-
pendicular to the plastic potential. This is shown in red in
Fig. 1b and mathematically expressed by

∂G

∂σij
(σij ,χ)= λε̇ij , (9)

where λ > 0 is the unknown flow rate. The flow rule is ap-
plied for stress states on the yield curve at the same compres-
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sive stresses (orange arrows in Fig. 1b). If the plastic poten-
tial and the yield curve are the same (G= F ), the flow rule
is called an associated or normal flow rule, as the flow rule
is also perpendicular to the yield curve (see Fig. 1a).

Using Eqs. (7) and (9), we can write a system of five equa-
tions (four from Eq. 9 and one from Eq. 7) for five unknowns
(σ11, σ22, σ12, σ12, λ). Solving this system of equations al-
lows us to write the constitutive equations for the sea ice
model as function of the components of the strain rate (ε̇11,
ε̇22, ε̇12, ε̇21) and the state variables χ .

After deriving these constitutive equations, we assume
that the stress and strain rate tensors are symmetric; that
is, σ12 = σ21 and ε̇ij = 1/2((∂ui)/(∂xj )+(∂uj )/(∂xi)). The
symmetry follows from ignoring the rotation in an isotropic
medium. Note that we first need to solve this system of equa-
tions without using the symmetry condition; the symmetry
condition is only invoked at the end. Applying the symmetry
before solving the system of equation would change the na-
ture of the initial tensor, and the resulting constitutive equa-
tions would be different.

An ideal plastic model, with the stresses independent of
the strain rates, has a singularity because the non-linear vis-
cosities tend to infinity as the strain rates tend to zero. Hibler
(1977) solved this issue with a regularization that limits the
value of the bulk and shear viscosities ζ and η to a maximum
value. When the viscosities are capped to their maximum val-
ues, the stresses are linearly related to the strain rates and the
material behaves as a viscous material. VP sea ice models
typically cap the viscosity at

ζmax =
1

21min
·P =

(
2.5× 108 s

)
·P (10)

and ηmax = (ζmax)/e
2
G to regularize the momentum equa-

tions. When this regularization is in effect, ζ and η are in-
dependent of the deformation field (1) and the stress di-
vergence reduces to harmonic viscosity with constant coef-
ficients.1min = 2×10−9 s−1 (Hibler, 1979, 1977) translates
to a deformation timescale of almost 16 years. Therefore, vis-
cous deformations are slow and negligible with respect to the
plastic deformations that operate on a synoptic timescale, and
sea ice VP rheologies can be considered ideal plastic. The
viscous behavior can be seen as a consequence of regulariz-
ing the viscosities rather than of an implementation of a type
of physical behavior.

2.2 Elliptical yield curve with non-normal flow rule

We now build a rheology with an elliptical yield curve and
a non-normal flow rule; that is, we use a plastic potential G
that is different from the yield curve F . By doing this, we will
change the orientation of the flow rule, without changing the
yield stress state (see Figs. 2 and 4 for some examples). We
use a different, but still elliptical, plastic potential for sim-
plicity; this choice requires only minor modifications to a
typical VP sea ice model. We define the yield condition F

and the plastic potentialG as a function of the state variables
χ – the ice compression strength P , the ice tensile strength
T = ktP (König Beatty and Holland, 2010), the yield curve’s
ellipse ratio eF , and the plastic potential’s ellipse ratio eG –
by

X(σI,P ,eX,kt)=

(
σI+

P(1−kt)
2

P(1+kt)
2

)2

+

(
σII

P(1+kt)
2eX

)2

− 1

(11)

= 0,

for X = F,G for the yield curve or the plastic potential. Us-
ing Eq. (11), we write σII as a function of σI as

σII,X =
1
eX

√
P 2kt− σ

2
I − σIP(1− kt). (12)

Following Hibler (1977, 1979), we derive the constitutive
equations σij :

σij = 2ηε̇ij + (ζ − η) ε̇kkδij −
P(1− kt)

2
δij , (13)

where the shear and bulk viscosities η and ζ are defined by

ζ =
P(1+ kt)

21
and η =

ζ

e2
G

=
P(1+ kt)

2e2
G1

(14)

with

1=

√
(ε̇11− ε̇22)2+

e2
F

e4
G

(
(ε̇11− ε̇22)

2
+ 4ε̇2

12

)
. (15)

Figure 2 shows an example of a yield curve and plastic po-
tential, with the resulting flow rule. For eG > eF , the absolute
value of the divergence is smaller and the shear strain rate is
larger compared to a normal flow rule (eG = eF ) and vice
versa for eG < eF .

2.3 Linking fracture and flow rule

In this section, we generalize the theory linking the rheo-
logical model and the fracture angles in a simple uni-axial
compressive test (Ringeisen et al., 2019) to materials with a
non-associated flow rule. To this end, we follow the theory of
Roscoe (1970), where the angle of fracture depends uniquely
on the angle of dilatancy of a granular material. Based on
laboratory experiments, Roscoe (1970) states that the veloc-
ity characteristics (the post-failure deformation) seem to be
a better predictor than the stress characteristics (the stress at
failure) for the orientation of shear bands in granular materi-
als. The Roscoe angles can then be compared to the Coulomb
angles, as defined in Ringeisen et al. (2019), and to the results
from the idealized experiments in Sect. 4.

Figure 3 illustrates the case of an arbitrary yield curve with
an arbitrary plastic potential. To adapt the Roscoe angles to
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Figure 2. Elliptical yield curve with a non-normal flow rule, a yield
curve ellipse aspect ratio eF = 2 (blue), and a plastic potential el-
lipse aspect ratio eG = 4 (red). The gray and orange arrows show
the normal and non-normal flow rules, respectively.

sea ice modeling, we proceed as follows: (1) the stress state
on the yield curve (point p in Fig. 3a) defines the position and
size of Mohr’s circle at the fracture (blue circle in Fig. 3b)
and (2) the slope of the plastic potential determines the point
on the Mohr’s circle where deformation takes place; that is,
the slope directly predicts the fracture angle θ as a function
of the dilatancy angle δ (as per Roscoe theory, Fig. 3b). For
the special case of uni-axial compression, we (A) determine
the stress state on the yield curve for uni-axial compression
as a function of the yield curve ellipse ratio eF and (B) com-
pute the slope of the plastic potential at that stress state as a
function of the plastic potential ellipse ratio eG. Finally, we
combine (2) and (B) to compute the theoretical prediction
for the fracture angle as a function of ellipse ratios eG and
eF . Figure 3 shows the geometrical construction that links
the angle of dilatancy δ to the slope of the plastic potential
tan(γG):

sin(δ)= tan(γG)=−
∂σII,G

∂σI
. (16)

Note that the minus sign above was included in the deriva-
tive of the yield curve function in Eqs. (B1) and (B2) of
Ringeisen et al. (2019). This equation agrees with the defi-
nition of Roscoe (1970) that sin(δ)= ε̇I/ε̇II, because the ra-
tio of ε̇I to ε̇II is equal to the slope of the plastic potential
−∂σII,G/∂σI, as the flow rule is perpendicular to the plastic
potential. Figure 3 also shows the normal flow rule, which, in
agreement with the coulombic theory, would lead to different
fracture angles (light blue lines). From Fig. 3, the fracture an-
gle can be written as

θR =
π

4
−
δ

2
. (17)

Substituting Eq. (16) in the equation above, the relation-
ship between the fracture angle and the plastic potential be-
comes

θR(σI)=
1
2

[
π

2
− arcsin

(
−
∂σII,G

∂σI
(σI)

)]
(18)

=
1
2

arccos
(
−
∂σII,G

∂σI
(σI)

)
. (19)

We calculate the fracture angles for the elliptical yield
curve with a non-normal flow rule in uni-axial compression
along the y axis. In this case, σ11 = σ12 = 0; σ22 < 0; and the
principal stresses and stress invariants can be written as

σ1 =
1
2

(
σ11+ σ22+

√
(σ11− σ22)

2
+ 4σ 2

12

)
= 0, (20)

σ2 =
1
2

(
σ11+ σ22−

√
(σ11− σ22)

2
+ 4σ 2

12

)
= σ22 , (21)

σI =
σ1+ σ2

2
=
σ22

2
, (22)

σII =
σ1− σ2

2
=−

σ22

2
=−σI . (23)

From Eq. (23), the maximum shear stress σpII,F in the fracture
plane in uni-axial compression can be expressed as

σ
p
II,F (σ

p
I )=−σ

p
I , (24)

where p indicates the stress state at the fracture. Figure 4
shows the stress trajectory in principal stress space for uni-
axial compression. It also shows how the flow rule changes
for the same stress state when using two different elliptical
plastic potentials.

In the following, we use the normalized stress invariants
σ ′I = σI/P and σ ′II = σII/P to simplify the notation. The
slope of the yield curve or the plastic potential depends only
on eF and eG and not on P . Substituting Eq. (12), σ ′I , and σ ′II
in Eq. (24), we obtain

σ ′II
p
=−σ ′I

p
=

1
eF

√
kt− σ

′
I
p
(σ ′I

p
+ 1− kt), (25)

and solve the first stress invariant σpI on the fracture plane in
uni-axial compression:

σ ′I
p
=

(kt− 1)−
√
(1− kt)2+ 4kt(1+ e2

F )

2(1+ e2
F )

. (26)

The slope of the tangent at σpI to the plastic potential is
given by the derivative of Eq. (12):

∂σ ′II,G

∂σ ′I
(σ ′I

p
)=

1
2eG

−2σ ′I
p
− 1+ kt√

kt− σ
′
I
p
(σ ′I

p
+ 1− kt)

. (27)

Substituting Eq. (26) into Eq. (27) yields

∂σII,G′
∂σI′

∣∣∣
σI′p
=

1
eGeF

1− (1+e2
F )

1+
√

1+4 kt
(1−kt)2

(1+e2
F )

 (28)
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Figure 3. Link between fracture angle and yield curve: (a) arbitrary yield curve F (blue) and plastic potential G (red) in stress invariant
space. The plastic potential and yield curve intersect at a stress state p for illustration purposes only. The red arrow is perpendicular to G
but non-normal to the yield curve F . The tangent to the plastic potential G at point p has a slope µG = tan(γG) and intersects the σI axis at
point q (thin red line). For reference, the normal and tangent to the yield curve F are shown as a thin blue arrow and line. Dashed gray lines
show the principal stress axes. (b) Mohr’s circle for the fracture state p in (a) (for normal in blue and for non-normal flow rule in red) in the
fracture plane of reference (σ , τ ) of center σpI and radius σpII . The thin red line is the tangent to Mohr’s circle passing through the point q
on the σ axis. By this geometrical construction, sin(δ)= tan(γG)= µG (only valid for |µG| ≤ 1). δ is called the dilatancy angle. Again for
comparison with (a), the blue lines and dots depicts the case of the normal flow rule (i.e., G= F ). When considering the plastic potential,
the angle of fracture is written from the dilatancy angle δ as θ = π/4− δ/2. By comparison again, δ = φ in the case of a normal flow rule
and the Roscoe theory (θ = π/4− δ/2) reduces to the Mohr–Coulomb theory (θ = π/4−φ/2).

Figure 4. Trajectory of maximum normal stress (red arrow) in a
uni-axial loading test experiment in a material with two different
elliptical yield curves (blue) and plastic potentials (dashed orange
and dash-dotted teal). The orange and teal arrows show the flow
rule normal to the plastic potential of the same color for the same
stress state. For eG < eF , the ratio of divergence to shear increases.
The opposite is true for eG > eF . A similar figure in principal stress
space is presented in Ringeisen et al. (2019).

or, for zero tensile strength (kt = 0),

∂σ ′II,G

∂σ ′I

∣∣∣∣∣
σ ′I
p
,kt=0

=
1

2eF eG
(1− e2

F ). (29)

The fracture angle can finally be written as a function of eG
and eF from Eq. (18):

θe,nn(eF ,eG)=
1
2

arccos
(

1
2eF eG

(e2
F − 1)

)
. (30)

As expected, for eF = eG = e, we recover the fracture angle
derived in Ringeisen et al. (2019):

θe,n(e)=
1
2

arccos
[

1
2

(
1−

1
e2

)]
. (31)

3 Experimental setup and numerical scheme

Following Ringeisen et al. (2019), we load a rectangular
ice floe of 8 km by 25 km with a uniform thickness of h=
1m and a uniform sea ice concentration of A= 100% (see
Fig. 5). The numerical domain has the dimensions Lx =
10km and Ly = 25km. At y = 0, we use a closed, solid
boundary with a no-slip condition (i.e., u= v = 0). At x = 0
and Lx , we use Neumann boundary conditions:

∂A
∂x

∣∣
x=0,Lx

=
∂h
∂x

∣∣
x=0,Lx

=
∂u
∂x

∣∣
x=0,Lx

=
∂v
∂x

∣∣
x=0,Lx

= 0. (32)

On the left and right sides of the domain (x < 1km and
x > 9km), we have open water between the ice floe and the
boundary to ensure that the boundaries have no effect on the
simulation. At y = Ly , we use a Dirichlet boundary condi-
tion for ice velocity (v the velocity in the y direction increas-
ing linearly in time simulating an axial loading test) and a
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Figure 5. Model domain with a solid wall at y = 0 (red), Dirichlet
boundary conditions where u is 0 at y = 0, and prescribed velocities
at y = Ly . Open boundaries at x = 0,Lx (green) with Neumann
boundary conditions. For the conservation of mass, ice thickness,
and concentration equations (h, A), Neumann boundary conditions
are used on all boundaries. θ is the measured fracture angle with
respect to the vertical; the blue line represents an LKF.

Neumann boundary condition for ice thickness and concen-
tration:

v(t)|y=Ly = av · t , u(t)|y=Ly = 0, (33)

∂A

∂y

∣∣∣∣
y=Ly

=
∂h

∂y

∣∣∣∣
y=Ly

= 0, (34)

where av is−5×10−4 ms−2. The grid spacing of the domain
is 25 m, and the time step is 0.1 s. For simplicity, the Coriolis
parameter f is 0.

The non-linear momentum equation, Eq. (4), is integrated
using a Picard solver with 15 000 non-linear (or outer-loop)
iterations (Losch et al., 2010). For the linearized problem
within each non-linear iteration, we use a line successive
(over-)relaxation (LSR) method (Zhang and Hibler, 1997),
with a tolerance criterion of |uk − uk−1|max < 10−11 ms−1,
where k is the linear iteration index. We use an inexact ap-
proach with only a maximum of 200 linear iterations for the
linearized equations; the linearized system does not reach
the tolerance criterion for the first non-linear iterations, but
it does so as the non-linear system approaches a converged
solution. We chose a very small tolerance and residual norm
for the solution of the linear and non-linear problem in or-
der to simulate a clean fracture with a well-defined frac-
ture angle – for comparison with theory and observations.
These criteria are much stricter than common recommenda-
tions for Arctic sea ice simulations (e.g., Lemieux and Trem-
blay, 2009). We expect that numerical sea ice models are

computationally more challenging with a non-normal flow
rule than with a normal flow rule. The non-normality of the
flow rule relative to the yield curve introduces more com-
plexity because Drucker’s stability postulate is not satisfied
(Vermeer and De Borst, 1984; Balendran and Nemat-Nasser,
1993). This particular uni-axial loading experiment is also
complex to solve numerically because the forcing is local-
ized on the boundary, in contrast to real geophysical system
integrations where wind and ocean currents are acting over
the entire surface of the ice.

The intersection angles between the LKFs are measured
manually with the Measure Tool from the GNU Image
Manipulation Program (GIMP; version 2.8.16; https://www.
gimp.org/, last access: 3 June 2021). We estimated the accu-
racy as ±1◦ (Ringeisen et al., 2019). The first 5 s of simula-
tions is used to define the sea ice fracture and calculate the
fracture angle. Although the forced deformation is very slow,
the stresses already reach the yield curve in the first time step
(0.1 s). The fracture is created immediately, but because of
the large viscosity of the viscous states with a deformation
timescale of approximately 35 years, the fracture progression
is not visible immediately (Ringeisen et al., 2019). Therefore
we show the deformation after 5 s. During this 5 s there is
no fundamental change other than the initial deformation be-
coming clearer. The angle of each fracture line is measured
and used to compute the average fracture angle and the stan-
dard deviation. Note that the fracture angles do not depend
on resolution, scale, geometry, or boundary conditions (see
Ringeisen et al., 2019, their Sect. 3.2). We do not use a re-
placement pressure scheme (Ip et al., 1991; Ip, 1993), be-
cause it has no influence on the angle of fracture (not shown).

4 Results

We study the evolution of the fracture angle θ when the plas-
tic potential changes while the yield curve stays the same (see
Fig. 4 for details). In this manner, the ice breaks for the exact
same stress state but with a different flow rule. For simplicity,
we test here the elliptical yield curve without tensile strength
(kt = 0).

Figure 6 shows the fracture pattern for the standard yield
curve ellipse ratio eF = 2.0 and three values of the plas-
tic potential ellipse ratio: eG = 1.4, 2.0, and 4.0. The frac-
tures form a diamond shape, which is similar to the shapes
observed at large scales (Erlingsson, 1988) and in labora-
tory experiments (Schulson, 2001) and modeled with DEMs
(Wilchinsky et al., 2010) or other continuous sea ice mod-
els (Ringeisen et al., 2019; Heorton et al., 2018). With a
normal flow rule (eG = 2.0), single pairs of fracture lines
with one unique fracture angle, large deformation along the
LKFs, and smaller deformations (by several orders of mag-
nitude) within diamond-shape floes are simulated. With the
non-normal flow rule (eG = 1.4 and eG = 4) we make three
observations:
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Figure 6. Diamond-shaped fracture pattern in the shear deformation field ε̇II for eF = 2.0 and three different values of eG after 5 s of
simulation. For the non-normal flow rule (a, c), there are primary and secondary fracture lines, in contrast to the normal flow rule (b) where
a single pair of fracture lines are simulated. The fracture angles are 29.92±1.28◦ for eG = 1.4, 34.3±0.25◦ for eG = 2.0, and 40.7±0.94◦

for eG = 4.0. The error corresponds to 2 standard deviations (2σ ) of the measured fracture angles.

1. Asymmetric secondary fracture lines appear, in con-
trast to the normal flow rule simulation. We attribute the
asymmetry and presence of secondary fractures to the
lack of full numerical convergence associated with the
violation of Drucker’s principle, or the non-normality
of the flow rule (the ratio of divergence to shear strain
rate differs from that of the shear to normal stress). For
instance, the L2 norm of the residual (R) in the non-
linear equations decreases by 4 orders of magnitude for
the normal flow rule compared with 2 orders of magni-
tude for the non-normal flow rule for the same number
of non-linear iterations (15 000), specifically to R = 8×
10−4 for eG = eF = 2 and to R = 6×10−2 for eG = 1.4
and eF = 2. Note that a Jacobian-free Newton–Krylov
(JFNK) solver with a quadratic local numerical conver-
gence does not perform better because the global con-
vergence is poor with a combination of localized forcing
and a high grid resolution (Losch et al., 2014; Williams
et al., 2017).

2. The width and activity of the LKFs is also affected by
the flow rule. With eG = 1.4, the lines are thinner, the
shear along the LKFs is smaller, and there is little shear
between the fracture lines. With eG = 4.0, the fracture
lines are broader, the shear strain rate along the LKFs
is higher, and there is more shear between the fracture
lines. With eG = 1.4, the deformation at the fracture is
mainly in divergence, while for eG = 4.0, the deforma-
tion is mainly in shear and there is more stress transmit-
ted to the ice in between the fracture lines.

3. The fracture angle changes as the plastic potential
changes. The angles are wider with eG = 4 than eG =
1.4. The effect of flow rule orientation on the fracture
angles is discussed below.

We now present results from four sets of simulations with
fixed yield curve ellipse ratios at eF = 0.7, 1.0, 2.0, and 4.0.
For each of these, we test the sensitivity of the results to
changes in the plastic potential ellipse ratio eG. The choices
of yield curve ellipse ratios eF are the standard value of
Hibler (1979), values suggested by Bouchat and Tremblay
(2017) and Dumont et al. (2009), and an extreme value re-
sulting in a very small shear strength and smaller fracture
angles.

Figure 7a shows how the fracture angles evolve as the plas-
tic potential ellipse ratio eG changes for each of the four val-
ues of eF . There is a clear dependence of the fracture angles
on the relative eccentricity of the plastic potential and yield
curve. For eG > eF , the shear strain rate increases along the
LKFs (see Fig. 6c), and the fracture angles tend toward 45◦

as eG increases, in agreement with the theory (Eq. 18). For
eG < eF , the flow rule implies more divergence (for eF > 1
or convergence for eF < 1) and less shear along the LKFs
(see Fig. 6a), and the fracture angles move away from 45◦ as
eG decreases. More generally, for eF < 1, the fracture angle
increases with increasing convergence along the LKFs as eG
decreases. For eF > 1, the fracture angle decreases with in-
creasing divergence as eG decreases. For eF = 1 (a circular
yield curve), the fracture angles are independent of eG be-
cause the fracture takes place at the peak of the yield curve
and the flow rule is not affected by changes in the plastic
potential ellipse ratio (eG).

The colored, dashed lines in Fig. 7a show the fracture an-
gles θe,nn(eF ,eG) predicted by Eq. (30). The coefficient of
determination r2 and the root-mean-square error (RMSE) be-
tween the simulated angle of fracture and theoretical pre-
dictions are 0.97 and 0.37◦ for eF = 0.7, 0.95 and 1.22◦

for eF = 2.0, and 0.97 and 0.47◦ for eF = 4.0. The RMSE
is 0.37◦ for eF = 1.0, with r2 being inapplicable. That is,
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the theory predicts the fracture angles accurately. This result
shows that the flow rule plays a major role in the simulated
fracture angle for a given rheology. The dashed black line
show the change in the fracture angle with a normal flow
rule (eG = eF ; Eq. 31).

For completeness, Fig. 7b also show the theoretical predic-
tions for a constant plastic potential ellipse ratio eG for vary-
ing yield curve ellipse ratios eF . The fracture angles become
smaller as eF increases. Yield curve ellipse ratios smaller
than eF = 1 do not create fracture angles below 45◦.

5 Discussion

The idealized experiments using the elliptical yield curve
with a non-normal flow rule confirm that the type of defor-
mation and the fracture angle are intimately linked with the
shape of the plastic potential. We observe that, irrespective
of the plastic potential elliptical aspect ratio, a yield curve
ellipse ratio of eF < 1 does not allow fracture angles smaller
than 45◦ in uni-axial compression. To reduce the fracture an-
gles with yield curve ellipse ratios of eF > 1, plastic poten-
tial ellipse ratios eG smaller than the yield curve ellipse ra-
tio are required; that is, eG < eF . The idealized experiments
show that with a plastic potential in a viscous–plastic model
we can separate the yield criterion from the resulting defor-
mation (flow rule). This allows decoupling the mechanical
strength properties of the material (ice) from its post-fracture
behavior. The results illustrate clearly how the yield curve
defines the stress for which the ice will deform, that is, the
transition between viscous and plastic deformation, and how
the relative shape of the plastic potential with respect to the
yield curve defines both the fracture angle and the type of de-
formation (convergence or shear) along the fracture line. The
resulting fracture angles are in excellent agreement with the
Roscoe angle predictions (Roscoe, 1970).

Understanding the link between the rheology and frac-
ture angle is necessary for choosing or designing a rheol-
ogy that is capable of reproducing the observed intersection
angles between pairs of LKFs and consequently the emerg-
ing anisotropy. An independent plastic potential may resolve
several inconsistencies of the standard elliptical yield curve
with a normal flow rule (discussed in Ringeisen et al., 2019),
namely the following:

1. In the standard VP model with an elliptical yield curve
and normal flow rule, adding shear strength increases
the fracture angle, in contradiction to granular matter
theory (Coulomb, 1776). This behavior is linked to the
specific shape of the elliptical yield curve with a max-
imum shear stress at P/2 and an ascending and a de-
scending part. In principle, we can decrease the fracture
angle with increasing shear strength (eF decreasing) by
decreasing eG but only if eF > 1, but then the flow rule
is far from normal, making the numerical convergence
difficult.

2. Because of the elliptical shape of the yield curve, the an-
gle of fracture in the standard VP model changes with
confining pressure (Ringeisen et al., 2019, Sect. 3.2.2,
Fig. 8) unlike in laboratory experiments with granular
materials (e.g., sand) where the fracture angle is only
weakly sensitive to the confining pressure (Han and
Drescher, 1993; Desrues and Hammad, 1989; Alshibli
and Sture, 2000). This behavior cannot be eliminated
with an elliptical plastic potential, as the normal stress
along the LKFs increases with confining pressure and
the flow rule changes from divergence to convergence as
one passes the maximum shear stress at P/2 (Ringeisen
et al., 2019). A different plastic potential function would
change this behavior. However, this would make the
model implementation and numerical convergence even
more difficult. We note that a 3D granular material like
sand cannot release stress by ridging as sea ice does. A
2D material, such as sea ice, can ridge and “escape to
the third dimension” after fracture. Therefore, we ex-
pect a change in the fracture angles at large confine-
ment. Laboratory experiments show this behavior and
yield stresses in sea ice change above a critical confine-
ment ratio (Golding et al., 2010; Schulson, 2002). It is
still not clear whether these results can be extrapolated
to the modeling of sea ice as a 2D medium at the geo-
physical scale, although several common features can
be found (Schulson, 2002).

3. In the standard VP model with a normal flow rule, the
divergence and convergence are set by the ellipse ratio
of the yield curve and thus by the relative amounts of
compressive and shear stress. The plastic potential el-
lipse ratio eG changes the flow rule but does not change
the sign of the divergence along the LKFs, which is
solely determined by the yield curve ellipse ratio eF .
With the elliptical plastic potential, convergent motion
remains convergent and only the ratio of shear to con-
vergence changes. To change this behavior, a differ-
ent shape of plastic potential is required, for example
a teardrop plastic potential.

4. The fracture angles in the standard VP models are larger
than observed. Using a non-normal flow rule allows us
to change the fracture angle in uni-axial compression
to values below 30◦. This is not possible with a normal
flow rule (Ringeisen et al., 2019).

We discuss the elliptical yield curve here because it is
the most commonly used one and its behavior is better doc-
umented than any other model in use in the community.
This provides a known reference for studying the use of
non-associated flow rules. Our goal is to provide a refer-
ence for the future development of viscous–plastic rheolo-
gies with non-normal flow rules rather than suggest a new VP
rheology. Alternatives to the elliptic yield curve have been
used before, for instance, the Mohr–Coulomb, the Coulom-
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Figure 7. (a) Fracture angles as a function of the plastic potential ellipse ratio eG for different yield curve ellipse ratios (eF = 0.7, 1.0, 2.0,
and 4.0). The markers with ranges are the mean and 2 standard deviations of the fracture angles. The dashed lines show the Roscoe angle
(Eq. 30). The arrows mark the Coulomb angles as a function of eF , which are constant with respect to eG. Colors indicate the value of eF for
lines and markers. The r2 values between theory and modeled angles for eF = 0.7, 2.0, and 4.0 are 0.97, 0.95, and 0.97. (b) Roscoe fracture
angle computed from Eq. (30) as a function of eF with a constant eG, for illustration. As eF changes, both the stress state and the flow rule
change (see Fig. 4), resulting in more complex behavior. The dotted black line for the normal flow rule (eF = eG) is drawn for reference.

Figure 8. Alternative yield curves and flow rules: the Mohr–
Coulomb yield curve with shear (non-normal) flow rule (blue; Ip
et al., 1991), the modified Coulombic yield curve with normal (el-
liptic part) and non-normal (linear part) flow rule (orange; Hibler
and Schulson, 2000), and the teardrop yield curve with a normal
flow rule (red; Zhang and Rothrock, 2005). The elliptical yield
curve with eF = 2.0 is shown for reference (thin black line). P is
the compressive ice strength, and T is the tensile ice strength.

bic yield curve, or the teardrop yield curves (Fig. 8). The
concept of a plastic potential in conjunction with these yield
curves may also prove useful in solving the issues described
above. A detailed analysis of the simulations using the fam-
ily of Mohr–Coulomb and teardrop yield curves is beyond
the scope of this work and will be presented in a subsequent
study. Below, we use the experience from our simulations to
infer how alternative yield curves may address deficiencies
in the standard VP rheology.

Non-normal flow rules can be combined with the Mohr–
Coulomb family of yield curves. For a Mohr–Coulomb yield

curve with a double-sliding law (i.e., pure shear deforma-
tion; Ip et al., 1991), the Roscoe theory predicts a frac-
ture angle of approximately 45◦ that is independent of the
slope of the yield curve. This behavior can be mimicked us-
ing an elliptical yield curve and plastic potential by setting
eG� eF ; hence δ ' 0 and θ = 45◦ (Fig. 7a). This contra-
dicts the Coulomb theory, which predicts an angle of frac-
ture that depends exclusively on the internal angle of fric-
tion (Eq. 1). Combining an angle of dilatancy with a Mohr–
Coulomb yield curve (Tremblay and Mysak, 1997) would
allow an angle of fracture depending on δ that is differ-
ent with shear and divergence (δ > 0) or with convergence
(δ < 0) along the LKFs. Such a fracture angle and divergence
would be independent of the shear strength and the confin-
ing pressure in agreement with Roscoe’s angle of fracture so
that such a rheology could potentially solve all four issues in
Sect. 5. It is also important to note that the Mohr–Coulomb
yield curves do not satisfy the convexity requirements of
Drucker’s stability postulate. Mohr–Coulomb yield curves in
plastic Earth mantle models lead to a variety of fracture an-
gles corresponding to the Coulomb angle, the Roscoe angle,
and the intermediate Arthur angles (Buiter et al., 2006; Kaus,
2010; Mancktelow, 2006). However, such geological models
are designed for an incompressible medium, and making in-
ferences for the compressible formulation of sea ice models
is difficult.

The Coulombic yield curve uses the two straight limbs
from the Mohr–Coulomb yield curve and an elliptical cap of
the standard VP rheology for large compressive stresses (Hi-
bler and Schulson, 2000). In this rheology, the flow rule over
the two straight limbs is defined by the elliptical yield curve;
that is, the ellipse serves as a plastic potential for the Mohr–
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Coulomb yield curve. The Coulombic yield curve leads to
unrealistic and asymmetrical fracture lines (i) when the stress
states fall onto the non-differentiable intersection between
the straight limbs and the elliptical cap (Ringeisen et al.,
2019) and (ii) when the stress states fall onto the two straight
limbs with the non-normal flow rule. Note that straight and
symmetric fracture lines in this rheology are only possible
when all the stress states are on the Mohr–Coulomb limbs
and the flow rule at the fracture line is near-normal, that is, at
the location where the normal to the elliptic plastic potential
is nearly perpendicular to the limbs of the Mohr–Coulomb
yield curve (Ringeisen et al., 2019). Hibler and Schulson
(2000) have already inferred that the flow rule may have an
effect on the angle of fracture, but the authors limited their
case to the framework of flawed ice and did not consider
Roscoe’s theory of dilatancy. The rheology of Hibler and
Schulson (2000) was tested in an idealized experiment that
was more complex than ours (Hutchings et al., 2005), but the
effect of using a non-normal flow rule was not explored. The
complexity of their setup may explain the observed differ-
ence between simulated and predicted angles. Note that the
rheology in Hibler and Schulson (2000) was built by chang-
ing the shape of the yield curve a posteriori, while the rhe-
ology presented here solves the constitutive equations rigor-
ously.

The teardrop yield curve with a normal flow rule
(Rothrock, 1975; Zhang and Rothrock, 2005) is divergent
for a wide range of normal stresses and for all practical pur-
poses consists of a continuously differentiable version of the
Coulombic yield curve. This asymmetry between divergent
and convergent deformation for different normal stresses de-
creases the effect of confinement on the fracture angle – is-
sue 2 in Sect. 5 – and reduces the fracture angle for any con-
finement pressure – issue 4. This yield curve does not address
issue 1, because adding shear strength in the teardrop yield
curve also increases the fracture angle.

As the main disadvantage of a non-normal flow rule, we
found that it leads to slower convergence of the numeri-
cal solver. Solving the momentum equation accurately re-
quires more solver iterations, and failure to converge is more
frequent than for standard normal-flow-rule rheologies. In
our simulations, this numerical issue manifests itself by the
presence of multiple and asymmetrical fracture lines despite
the fact that our experiment geometry and forcing are ex-
actly symmetrical. This asymmetry is not expected and is not
found with normal flow rules. The fracture lines with a nor-
mal flow rule are symmetrical and come in pairs (Ringeisen
et al., 2019). In practice, the numerical convergence issue
will go unnoticed in simulations using realistic geometries
and time-varying wind forcing. In these simulations, while
the number of iterations typically used (O(10)) is much
smaller than that required for full convergence, at each time-
step, a new iteration typically uses the solution of the pre-
vious time step as the initial estimate. With this, together
with slowly varying forcing in space and time, the number of

solver iterations per forcing cycle is large, in contrast to the
fast-changing forcing in this study (every time step). Whether
this behavior (asymmetry and multiple fracture lines) will
also be present in realistic simulation using spatially and tem-
porally varying wind forcing remains to be tested.

The following criteria should be considered when build-
ing a new rheology: the spatial and temporal scaling of sea
ice deformation should agree with observations (Bouchat and
Tremblay, 2017; Hutter et al., 2018); the flow rule should
reproduce the correct divergence along LKFs (Stern et al.,
1995); the yield curve should include some tensile strength
(Coon et al., 2007) and be Coulombic in nature in agreement
with observed internal stress invariants from ice stress buoys
(Weiss and Schulson, 2009); the distribution of fracture an-
gles should agree with observations (Marko and Thomson,
1977; Erlingsson, 1988; Cunningham et al., 1994; Hutter
et al., 2019); and the sea ice mechanical strength proper-
ties (i.e., yield curve) and deformation (i.e., flow rule for
VP rheologies) should vary in time and space depending on
additional variables or parameterizations, for example, the
time-varying distribution of the contact normals (Balendran
and Nemat-Nasser, 1993), floe size distributions (Horvat and
Tziperman, 2017; Roach et al., 2018), or a damage parame-
ter (Dansereau et al., 2016; Plante et al., 2020), as per obser-
vations and laboratory or numerical experiments (Overland
et al., 1998; Hutter et al., 2019).

Although high-spatial-resolution observations from satel-
lites are available from optical instruments (e.g., from the
Landsat or Sentinel programs), higher temporal resolutions
of sea ice deformation and flow size distributions are still un-
available. The new Sentinel constellation and in situ obser-
vations from the field program the Multidisciplinary drifting
Observatory for the Study of Arctic Climate (MOSAiC) may
bridge this gap. There is also a knowledge gap in the inter-
play between yield stresses and the post-fracture deformation
in a 2D granular material such as sea ice. This interplay is
likely different than for the well-studied case of a solid, ho-
mogeneous, 3D block of ice (e.g., Schulson, 2002). Sea ice
floating on the ocean surface can escape vertically when it
forms ridges under confined compression (Hopkins, 1994).
This behavior differs from laboratory tests with 3D gran-
ular material like sand that use axial symmetry. Generally,
information about sea ice resistance in different configura-
tions (e.g., confinement) and the resulting fracture angles
and deformation (ridging or opening) is also still missing, al-
though some laboratory-scale experimental results are avail-
able (Weiss et al., 2007; Schulson et al., 2006b; Weiss and
Schulson, 2009). The sea ice flow size distribution varies in
time (summer/winter) and space (marginal ice zone/central
Arctic) (Rothrock and Thorndike, 1984). These variations
change the mechanical properties (e.g., distribution of con-
tact normals) and thermodynamic properties (e.g., lateral
melt) of sea ice (Horvat and Tziperman, 2017). Designing
more appropriate rheologies for improved high-resolution
climate models and more accurate sea ice prediction sys-
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tems requires consolidated observations of these still-unclear
physical processes.

6 Conclusions

The flow rule, which dictates the post-fracture deformation,
has a fundamental effect on the orientation of fractures lines
in a viscous–plastic (VP) sea ice model. To test this, we
added an elliptical plastic potential (allowing for a non-
normal flow rule) to the standard VP rheology with an ellip-
tical yield curve, therefore modifying the flow rule without
changing the yielding stress state. We tested this new rhe-
ology with numerical experiments in uni-axial compression
using the standard VP model of Hibler (1979). The mod-
eled fracture angles are in agreement with the Roscoe an-
gle, a theory based on experiments with granular materials
that includes an angle of dilatancy (Roscoe, 1970; Tremblay
and Mysak, 1997). This new rheology partially solves issues
raised in an earlier study (Ringeisen et al., 2019). The use
of a plastic potential or non-normal flow rule allows for the
simulation of smaller fracture angles between pairs of linear
kinematic features, in agreement with satellite observations.
Because of the elliptical yield curve, the fracture angles still
depend on the confinement pressure (Ringeisen et al., 2019),
and the elliptical plastic potential only modifies the ratio of
divergence relative to shear but not the direction of defor-
mation at the fracture lines (convergence or divergence). The
momentum equations for a rheological model with a non-
normal flow rule are more difficult to solve numerically and
produce multiple lines of fractures that are asymmetrical (de-
spite the geometrical symmetry of the problem), in contrast
with a model with a normal flow rule. It is necessary to un-
derstand the effect of the flow rule on the fracture angle to
design VP rheologies for high-resolution sea ice modeling
that reproduce both fracture angles and deformation along
the fracture lines and the behavior of sea ice as a granular
material.

Designing a rheology for high-resolution simulations re-
quires information about sea ice fracture angles and sea
ice strength in a wide range of stress conditions (i.e., com-
pression with or without confinement, pure shear, tension),
yet this is unavailable at high temporal and spatial resolu-
tion. The observations of MOSAiC (Dethloff et al., 2016) in
2019–2020 may provide valuable data from continuous ice
radar imaging, stress sensors, and arrays of drift buoys that
will greatly help improve sea ice model dynamics.

Code availability. The sea ice rheology used in this paper is im-
plemented in the sea ice package of the MITgcm, Mid 2021
release (https://doi.org/10.5281/zenodo.4968496, Campin et al.,
2021; Marshall et al., 1997; Losch et al., 2014).

Data availability. No datasets were used in this article. All sim-
ulation data have been obtained with the model cited in the “Code
availability” section below. The idealized model configuration is de-
scribed in detail in Sect. 3.

Author contributions. DR designed the rheology and implemented
the code changes with ML. DR ran the experiments. DR and BT
designed the theory linking sea ice rheologies and granular matter
theory. DR wrote the manuscript with contributions from BT and
ML.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. The authors would like to thank Véronique
Dansereau and Harry Heorton for their review and numerous com-
ments that helped improve this paper. The authors also thank Jen-
nifer Hutchings and Yevgeny Aksenov for their comments and in-
volvement as editors. The authors are thankful to Mathieu Plante
for his comments on this paper, as well as to Stephanie Deboeuf
and Guillaume Ovarlez for discussions on granular materials rhe-
ologies.

Financial support. This project has been supported by the
Deutsche Forschungsgemeinschaft (DFG) through the International
Research Training Group “Processes and impacts of climate change
in the North Atlantic Ocean and the Canadian Arctic” (grant no.
IRTG 1904 ArcTrain). This work is a contribution to the Natural
Sciences and Engineering Research Council Discovery Grant
awarded to L. Bruno Tremblay.

The article processing charges for this open-access
publication were covered by the University of Bremen.

Review statement. This paper was edited by Yevgeny Aksenov and
Jennifer Hutchings and reviewed by Véronique Dansereau and
Harry Heorton.

References

Aksenov, Y. and Hibler, W. D.: Failure Propagation Effects in an
Anisotropic Sea Ice Dynamics Model, in: IUTAM Symposium
on Scaling Laws in Ice Mechanics and Ice Dynamics, edited by:
Dempsey, J. P. and Shen, H. H., Solid Mechanics and Its Appli-
cations, 363–372, Springer, the Netherlands, 2001.

Alshibli, K. A. and Sture, S.: Shear Band Formation in
Plane Strain Experiments of Sand, J. Geotech. Geoen-
viron., 126, 495–503, https://doi.org/10.1061/(ASCE)1090-
0241(2000)126:6(495), 2000.

Anderson, E. M.: The dynamics of faulting and dyke formation with
applications to Britain, Oliver and Boyd, 1942.

https://doi.org/10.5194/tc-15-2873-2021 The Cryosphere, 15, 2873–2888, 2021

https://doi.org/10.5281/zenodo.4968496
https://doi.org/10.1061/(ASCE)1090-0241(2000)126:6(495)
https://doi.org/10.1061/(ASCE)1090-0241(2000)126:6(495)


2886 D. Ringeisen et al.: Non-normal flow rules affect fracture angles in sea ice viscous–plastic rheologies

Arthur, J. R. F., Dunstan, T., Al-Ani, Q. a. J. L., and Assadi, A.:
Plastic deformation and failure in granular media, Géotechnique,
27, 53–74, https://doi.org/10.1680/geot.1977.27.1.53, 1977.

Badgley, F. I.: Heat balance at the surface of the Arctic Ocean,
in: Proceedings of the 29th Annual Western Snow Confer-
ence, Western Snow Conference, Spokane, Washington, avail-
able at: https://westernsnowconference.org/node/1205 (last ac-
cess: 3 June 2021), 1961.

Balendran, B. and Nemat-Nasser, S.: Double sliding model
for cyclic deformation of granular materials, including
dilatancy effects, J. Mech. Phys. Solids, 41, 573–612,
https://doi.org/10.1016/0022-5096(93)90049-L, 1993.

Bolton, M. D.: The strength and dilatancy of
sands, ICE Publishing, Géotechnique, 36, 65–78,
https://doi.org/10.1680/geot.1986.36.1.65, 1986.

Bouchat, A. and Tremblay, B.: Using sea-ice deformation fields
to constrain the mechanical strength parameters of geo-
physical sea ice, J. Geophys. Res.-Oceans, 122, 5802–5825,
https://doi.org/10.1002/2017JC013020, 2017.

Buiter, S. J. H., Babeyko, A. Y., Ellis, S., Gerya, T. V.,
Kaus, B. J. P., Kellner, A., Schreurs, G., and Yamada, Y.:
The numerical sandbox: comparison of model results for
a shortening and an extension experiment, Analogue and
Numerical Sandbox Models, Geol. Soc. Sp., 253, 29–64,
https://doi.org/10.1144/GSL.SP.2006.253.01.02, 2006.

Campin, J.-M., Heimbach, P., Losch, M., Forget, G.,
Adcroft, A., Dussin, R., et al.: MITgcm/MITgcm:
checkpoint67z (Version checkpoint67z), Zenodo,
https://doi.org/10.5281/zenodo.4968496, 2021.

Coon, M., Kwok, R., Levy, G., Pruis, M., Schreyer, H., and Sulsky,
D.: Arctic Ice Dynamics Joint Experiment (AIDJEX) assump-
tions revisited and found inadequate, J. Geophys. Res.-Oceans,
112, C11S90, https://doi.org/10.1029/2005JC003393, 2007.

Coon, M. D., Maykut, A., G., Pritchard, R. S., Rothrock, D. A., and
Thorndike, A. S.: Modeling The Pack Ice as an Elastic-Plastic
Material, AIDJEX Bulletin, 24, 1–106, 1974.

Coulomb, C. A.: Sur une application des règles de maximis et min-
imis à quelques problèmes de statique, relatifs à l’architecture,
Acad. Sci. Paris Mem. Math. Phys., 7, 343–382, 1776.

Cunningham, G., Kwok, R., and Banfield, J.: Ice lead orien-
tation characteristics in the winter Beaufort Sea, in: Pro-
ceedings of IGARSS ’94 – 1994 IEEE International Geo-
science and Remote Sensing Symposium, 3, 1747–1749,
https://doi.org/10.1109/IGARSS.1994.399553, 1994.

Dansereau, V., Weiss, J., Saramito, P., and Lattes, P.: A Maxwell
elasto-brittle rheology for sea ice modelling, The Cryosphere, 10,
1339–1359, https://doi.org/10.5194/tc-10-1339-2016, 2016.

Desrues, J. and Hammad, W.: Shear banding dependency on mean
stress level in sand, in: Proc. of the Int. Workshop on Numerical
Methods for Localization and Bifurcation of Granular Bodies,
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