Articles | Volume 15, issue 5
https://doi.org/10.5194/tc-15-2357-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-2357-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Environmental drivers of circum-Antarctic glacier and ice shelf front retreat over the last two decades
German Remote Sensing Data Center (DFD), German Aerospace Center
(DLR), 82234 Weßling, Germany
Andreas J. Dietz
German Remote Sensing Data Center (DFD), German Aerospace Center
(DLR), 82234 Weßling, Germany
Christof Kneisel
Institute of Geography and Geology, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
Heiko Paeth
Institute of Geography and Geology, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
Claudia Kuenzer
German Remote Sensing Data Center (DFD), German Aerospace Center
(DLR), 82234 Weßling, Germany
Institute of Geography and Geology, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
Related authors
Erik Loebel, Celia A. Baumhoer, Andreas Dietz, Mirko Scheinert, and Martin Horwath
Earth Syst. Sci. Data, 17, 65–78, https://doi.org/10.5194/essd-17-65-2025, https://doi.org/10.5194/essd-17-65-2025, 2025
Short summary
Short summary
Glacier calving front positions are important for understanding glacier dynamics and constraining ice modelling. We apply a deep-learning framework to multi-spectral Landsat imagery to create a calving front record for 42 key outlet glaciers of the Antarctic Peninsula Ice Sheet. The resulting data product includes 4817 calving front locations from 2013 to 2023 and achieves sub-seasonal temporal resolution.
Andreas J. Dietz and Sebastian Roessler
The Cryosphere, 19, 3873–3877, https://doi.org/10.5194/tc-19-3873-2025, https://doi.org/10.5194/tc-19-3873-2025, 2025
Short summary
Short summary
The "Global SnowPack" product of the German Aerospace Center (DLR) contains binary information about the presence or absence of snow on a global scale since the year 2000. Now incorporating new input datasets, it was possible to increase the spatial resolution to 370 m. The detailed accuracy assessment proves the feasibility of the applied methods to remove data gaps caused by clouds and polar darkness.
Zacharie Barrou Dumont, Simon Gascoin, Jordi Inglada, Andreas Dietz, Jonas Köhler, Matthieu Lafaysse, Diego Monteiro, Carlo Carmagnola, Arthur Bayle, Jean-Pierre Dedieu, Olivier Hagolle, and Philippe Choler
The Cryosphere, 19, 2407–2429, https://doi.org/10.5194/tc-19-2407-2025, https://doi.org/10.5194/tc-19-2407-2025, 2025
Short summary
Short summary
We generated annual maps of snow melt-out days at 20 m resolution over a period of 38 years from 10 different satellites. This study fills a knowledge gap regarding the evolution of mountain snow in Europe by covering a much longer period and characterizing trends at much higher resolutions than previous studies. We found a trend for earlier melt-out with average reductions of 5.51 d per decade over the French Alps and 4.04 d per decade over the Pyrenees for the period 1986–2023.
Erik Loebel, Celia A. Baumhoer, Andreas Dietz, Mirko Scheinert, and Martin Horwath
Earth Syst. Sci. Data, 17, 65–78, https://doi.org/10.5194/essd-17-65-2025, https://doi.org/10.5194/essd-17-65-2025, 2025
Short summary
Short summary
Glacier calving front positions are important for understanding glacier dynamics and constraining ice modelling. We apply a deep-learning framework to multi-spectral Landsat imagery to create a calving front record for 42 key outlet glaciers of the Antarctic Peninsula Ice Sheet. The resulting data product includes 4817 calving front locations from 2013 to 2023 and achieves sub-seasonal temporal resolution.
Johannes Buckel, Jan Mudler, Rainer Gardeweg, Christian Hauck, Christin Hilbich, Regula Frauenfelder, Christof Kneisel, Sebastian Buchelt, Jan Henrik Blöthe, Andreas Hördt, and Matthias Bücker
The Cryosphere, 17, 2919–2940, https://doi.org/10.5194/tc-17-2919-2023, https://doi.org/10.5194/tc-17-2919-2023, 2023
Short summary
Short summary
This study reveals permafrost degradation by repeating old geophysical measurements at three Alpine sites. The compared data indicate that ice-poor permafrost is highly affected by temperature warming. The melting of ice-rich permafrost could not be identified. However, complex geomorphic processes are responsible for this rather than external temperature change. We suspect permafrost degradation here as well. In addition, we introduce a new current injection method for data acquisition.
Thorsten Hoeser, Stefanie Feuerstein, and Claudia Kuenzer
Earth Syst. Sci. Data, 14, 4251–4270, https://doi.org/10.5194/essd-14-4251-2022, https://doi.org/10.5194/essd-14-4251-2022, 2022
Short summary
Short summary
The DeepOWT (Deep-learning-derived Offshore Wind Turbines) data set provides offshore wind energy infrastructure locations and their temporal deployment dynamics from July 2016 until June 2021 on a global scale. It differentiates between offshore wind turbines, platforms under construction, and offshore wind farm substations. It is derived by applying deep-learning-based object detection to Sentinel-1 imagery.
Mariel C. Dirscherl, Andreas J. Dietz, and Claudia Kuenzer
The Cryosphere, 15, 5205–5226, https://doi.org/10.5194/tc-15-5205-2021, https://doi.org/10.5194/tc-15-5205-2021, 2021
Short summary
Short summary
We provide novel insight into the temporal evolution of supraglacial lakes across six major Antarctic ice shelves in 2015–2021. For Antarctic Peninsula ice shelves, we observe extensive meltwater ponding during the 2019–2020 and 2020–2021 summers. Over East Antarctica, lakes were widespread during 2016–2019 and at a minimum in 2020–2021. We investigate environmental controls, revealing lake ponding to be coupled to atmospheric modes, the near-surface climate and the local glaciological setting.
Cited articles
Alley, R. B., Horgan, H. J., Joughin, I., Cuffey, K. M., Dupont, T. K.,
Parizek, B. R., Anandakrishnan, S., and Bassis, J.: A simple law for
ice-shelf calving, Science, 322, 1344–1344, 2008.
Arthur, J. F., Stokes, C. R., Jamieson, S. S. R., Carr, J. R., and Leeson, A. A.: Distribution and seasonal evolution of supraglacial lakes on Shackleton Ice Shelf, East Antarctica, The Cryosphere, 14, 4103–4120, https://doi.org/10.5194/tc-14-4103-2020, 2020.
Banwell, A.: Glaciology: Ice-shelf stability questioned, Nature, 544,
306–307, https://doi.org/doi.org/10.1038/544306a, 2017.
Banwell, A. F., MacAyeal, D. R., and Sergienko, O. V.: Breakup of the Larsen
B Ice Shelf triggered by chain reaction drainage of supraglacial lakes,
Geophys. Res. Lett., 40, 5872–5876, https://doi.org/10.1002/2013GL057694,
2013.
Bassis, J. N.: The statistical physics of iceberg calving and the emergence
of universal calving laws, J. Glaciol., 57, 3–16, 2011.
Bassis, J. N. and Walker, C. C.: Upper and lower limits on the stability of
calving glaciers from the yield strength envelope of ice, Proc. R. Soc.-Math. Phys. Eng. Sci., 468, 913–931,
https://doi.org/10.1098/rspa.2011.0422, 2012.
Bassis, J. N., Fricker, H. A., Coleman, R., and Minster, J.-B.: An
investigation into the forces that drive ice-shelf rift propagation on the
Amery Ice Shelf, East Antarctica, J. Glaciol., 54, 17–27, 2008.
Baumhoer, C. A: IceLines Antarctic Coastline 2018, available at: https://download.geoservice.dlr.de/icelines/files/, last access: 17 May 2021.
Baumhoer, C. A., Dietz, A., Dech, S., and Kuenzer, C.: Remote Sensing of Antarctic
Glacier and Ice-Shelf Front Dynamics – A Review, Remote Sens., 10, 1445,
https://doi.org/10.3390/rs10091445, 2018.
Baumhoer, C. A., Dietz, A. J., Kneisel, C., and Kuenzer, C.: Automated
Extraction of Antarctic Glacier and Ice Shelf Fronts from Sentinel-1 Imagery
Using Deep Learning, Remote Sens., 11, 2529,
https://doi.org/10.3390/rs11212529, 2019.
Belmonte Rivas, M. and Stoffelen, A.: Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT, Ocean Sci., 15, 831–852, https://doi.org/10.5194/os-15-831-2019, 2019.
Benn, D. I., Warren, C. R., and Mottram, R. H.: Calving processes and the
dynamics of calving glaciers, Earth-Sci. Rev., 82, 143–179, 2007.
Bindschadler, R. A.: History of lower Pine Island Glacier, West Antarctica,
from Landsat imagery, J. Glaciol., 48, 536–544,
https://doi.org/10.3189/172756502781831052, 2002.
Bindschadler, R. A., Vornberger, P., Fleming, A., Fox, A., Mullins, J.,
Binnie, D., Paulsen, S. J., Granneman, B., and Gorodetzky, D.: The Landsat
image mosaic of Antarctica, Remote Sens. Environ., 112, 4214–4226, 2008.
Brandt-Kreiner, M., Lavelle, J., Tonboe, R., Howe, E., Lavergne, T., Killie,
M. A., Sorensen, A., Eastwood, S., and Neuville, A.: Global Sea Ice
ConcentrationClimate Data RecordValidation Report, Climate Data Store, OSI-450 and OSI-430-b, Version 1.1,
available at: http://osisaf.met.no/docs/osisaf_cdop3_ss2_valrep_sea-ice-conc-climate-data-record_v1p1.pdf (last access: 20 March 2020),
2019.
Braun, M. and Humbert, A.: Recent Retreat of Wilkins Ice Shelf Reveals New
Insights in Ice Shelf Breakup Mechanisms, IEEE Geosci. Remote Sens. Lett.,
6, 263–267, https://doi.org/10.1109/LGRS.2008.2011925, 2009.
Braun, M., Humbert, A., and Moll, A.: Changes of Wilkins Ice Shelf over the past 15 years and inferences on its stability, The Cryosphere, 3, 41–56, https://doi.org/10.5194/tc-3-41-2009, 2009.
Budge, J. S. and Long, D. G.: A Comprehensive Database for Antarctic Iceberg
Tracking Using Scatterometer Data, IEEE J. Sel. Top. Appl., 11, 434–442, https://doi.org/10.1109/JSTARS.2017.2784186, 2018.
Cape, M. R., Vernet, M., Skvarca, P., Marinsek, S., Scambos, T. A., and
Domack, E.: Foehn winds link climate-driven warming to ice shelf evolution
in Antarctica: Foehn winds link climate driven warming, J. Geophys. Res.-Atmos., 120, 11037–11057, https://doi.org/10.1002/2015JD023465, 2015.
Catania, G. A., Stearns, L. A., Sutherland, D. A., Fried, M. J.,
Bartholomaus, T. C., Morlighem, M., Shroyer, E., and Nash, J.: Geometric
Controls on Tidewater Glacier Retreat in Central Western Greenland, J.
Geophys. Res.-Earth, 123, 2024–2038,
https://doi.org/10.1029/2017JF004499, 2018.
Christianson, K., Bushuk, M., Dutrieux, P., Parizek, B. R., Joughin, I. R.,
Alley, R. B., Shean, D. E., Abrahamsen, E. P., Anandakrishnan, S., Heywood,
K. J., Kim, T.-W., Lee, S. H., Nicholls, K., Stanton, T., Truffer, M.,
Webber, B. G. M., Jenkins, A., Jacobs, S., Bindschadler, R. A., and Holland,
D. M.: Sensitivity of Pine Island Glacier to observed ocean forcing: PIG
response to ocean forcing, Geophys. Res. Lett., 43, 10817–10825,
https://doi.org/10.1002/2016GL070500, 2016.
Christie, F. D. W., Bingham, R. G., Gourmelen, N., Tett, S. F. B., and Muto,
A.: Four-decade record of pervasive grounding line retreat along the
Bellingshausen margin of West Antarctica: West Antarctic Ice Retreat,
Geophys. Res. Lett., 43, 5741–5749, https://doi.org/10.1002/2016GL068972,
2016.
Christie, F. D. W., Bingham, R. G., Gourmelen, N., Steig, E. J., Bisset, R. R., Pritchard, H. D., Snow, K., and Tett, S. F. B.: Glacier change along West Antarctica's Marie Byrd Land Sector and links to inter-decadal atmosphere–ocean variability, The Cryosphere, 12, 2461–2479, https://doi.org/10.5194/tc-12-2461-2018, 2018.
Chuter, S. J., Martín-Español, A., Wouters, B., and Bamber, J. L.:
Mass balance reassessment of glaciers draining into the Abbot and Getz Ice
Shelves of West Antarctica: Getz and Abbot Mass Balance Reassessment,
Geophys. Res. Lett., 44, 7328–7337, https://doi.org/10.1002/2017GL073087,
2017.
Cook, A. J. and Vaughan, D. G.: Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years, The Cryosphere, 4, 77–98, https://doi.org/10.5194/tc-4-77-2010, 2010.
Cook, A. J., Holland, P. R., Meredith, M. P., Murray, T., Luckman, A., and
Vaughan, D. G.: Ocean forcing of glacier retreat in the western Antarctic
Peninsula, Science, 353, 283–286, 2016.
Copernicus Climate Change Service: ERA5 monthly averaged data on single
levels from 1979 to present, Climate Data Store, https://doi.org/10.24381/CDS.F17050D7, 2019a.
Copernicus Climate Change Service: ERA5-Land monthly averaged data from 1981
to present, Climate Data Store, https://doi.org/10.24381/CDS.68D2BB30, 2019b.
Cowton, T. R., Sole, A. J., Nienow, P. W., Slater, D. A., and
Christoffersen, P.: Linear response of east Greenland's tidewater glaciers
to ocean/atmosphere warming, P. Natl. Acad. Sci. USA, 115, 7907–7912,
https://doi.org/10.1073/pnas.1801769115, 2018.
Darelius, E., Fer, I., and Nicholls, K. W.: Observed vulnerability of
Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water, Nat.
Commun., 7, 12300, https://doi.org/10.1038/ncomms12300, 2016.
De Angelis, H. and Skvarca, P.: Glacier Surge After Ice Shelf Collapse,
Science, 299, 1560–1562, https://doi.org/10.1126/science.1077987, 2003.
Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T. M.,
Ligtenberg, S. R. M., Van den Broeke, M. R., and Moholdt, G.: Calving fluxes
and basal melt rates of Antarctic ice shelves, Nature, 502, p. 89,
https://doi.org/10.1038/nature12567, 2013.
De Rydt, J., Gudmundsson, G. H., Rott, H., and Bamber, J. L.: Modeling the
instantaneous response of glaciers after the collapse of the Larsen B Ice
Shelf, Geophys. Res. Lett., 42, 5355–5363,
https://doi.org/10.1002/2015GL064355, 2015.
Dirscherl, M., Dietz, A. J., Kneisel, C., and Kuenzer, C.: Automated Mapping
of Antarctic Supraglacial Lakes Using a Machine Learning Approach, Remote
Sens., 12, 1203, https://doi.org/10.3390/rs12071203, 2020.
Domack, E., Duran, D., Leventer, A., Ishman, S., Doane, S., McCallum, S.,
Amblas, D., Ring, J., Gilbert, R., and Prentice, M.: Stability of the Larsen
B ice shelf on the Antarctic Peninsula during the Holocene epoch, Nature,
436, 681–685, https://doi.org/10.1038/nature03908, 2005.
Dutrieux, P., De Rydt, J., Jenkins, A., Holland, P. R., Ha, H. K., Lee, S.
H., Steig, E. J., Ding, Q., Abrahamsen, E. P., and Schroder, M.: Strong
Sensitivity of Pine Island Ice-Shelf Melting to Climatic Variability,
Science, 343, 174–178, https://doi.org/10.1126/science.1244341, 2014.
Embury, O.: Product Quality Assessment Report, Sea Surface Temperature, available at:
https://datastore.copernicus-climate.eu/documents/satellite-sea-surface-temperature/v2.0/D2.SST.2-v2.2_PQAR_of_v2SST_products_v4.1_APPROVED_Ver1.pdf (last access: 17 May 2021), 28 September 2019.
Feldmann, J. and Levermann, A.: Collapse of the West Antarctic Ice Sheet
after local destabilization of the Amundsen Basin, P. Natl. Acad. Sci. USA,
112, 14191–14196, https://doi.org/10.1073/pnas.1512482112, 2015.
Ferrigno, J., Foley, K. M., Swithinbank, C., Williams Jr., R. S., and Dailide,
L.: Coastal-Change And Glaciological Map Of The Ronne Ice Shelf
Area, Antarctica: 1974–2002, USGS Coast. Change Maps, I-2600-D, 1–11, 2005.
Ferrigno, J., Foley, K. M., Swithinbank, C., and Williams Jr., R. S.:
Coastal-Change and Glaciological Mapof the Northern Ross Ice Shelf
Area,Antarctica: 1962–2004, USGS Coast. Change Maps, 1–11, 2007.
Fountain, A. G., Glenn, B., and Scambos, T. A.: The changing extent of the
glaciers along the western Ross Sea, Antarctica, Geology, 45, 927–930,
2017.
Fricker, H. A., Young, N. W., Allison, I., and Coleman, R.: Iceberg calving
from the Amery Ice Shelf, East Antarctica, Ann. Glaciol., 34,
241–246, https://doi.org/10.3189/172756402781817581, 2002.
Friedl, P., Seehaus, T. C., Wendt, A., Braun, M. H., and Höppner, K.: Recent dynamic changes on Fleming Glacier after the disintegration of Wordie Ice Shelf, Antarctic Peninsula, The Cryosphere, 12, 1347–1365, https://doi.org/10.5194/tc-12-1347-2018, 2018.
Fürst, J. J., Durand, G., Gillet-Chaulet, F., Tavard, L., Rankl, M.,
Braun, M., and Gagliardini, O.: The safety band of Antarctic ice shelves,
Nat. Clim. Change, 6, 479–482, 2016.
Gagliardini, O., Durand, G., Zwinger, T., Hindmarsh, R. C. A., and Le Meur,
E.: Coupling of ice-shelf melting and buttressing is a key process in
ice-sheets dynamics, Geophys. Res. Lett., 37,
https://doi.org/10.1029/2010gl043334, 2010.
Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M., Ligtenberg, S., van den Broeke, M., and Nilsson, J.: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years, The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, 2018.
Giles, A. B.: The Mertz Glacier Tongue, East Antarctica. Changes in the past
100 years and its cyclic nature – Past, present and future, Remote Sens.
Environ., 191, 30–37, https://doi.org/10.1016/j.rse.2017.01.003, 2017.
Goel, V., Matsuoka, K., Berger, C. D., Lee, I., Dall, J., and Forsberg, R.:
Characteristics of ice rises and ice rumples in Dronning Maud Land and
Enderby Land, Antarctica, J. Glaciol., 66, 1064–1078,
https://doi.org/10.1017/jog.2020.77, 2020.
Gossart, A., Helsen, S., Lenaerts, J. T. M., Broucke, S. V., van Lipzig, N.
P. M., and Souverijns, N.: An Evaluation of Surface Climatology in
State-of-the-Art Reanalyses over the Antarctic Ice Sheet, J. Climate, 32,
6899–6915, https://doi.org/10.1175/JCLI-D-19-0030.1, 2019.
Haran, T., Bohlander, J., Scambos, T., Painter, T., and Fahnestock, M.:
MODIS Mosaic of Antarctica 2008–2009 (MOA2009) Image Map, Version 1,
[Antarctic Coastline 2009], NSIDC: National Snow and Ice Data Center,
Boulder, Colorado USA, https://doi.org/10.7265/N5KP8037, 2014.
Hazel, J. E. and Stewart, A. L.: Are the Near-Antarctic Easterly Winds
Weakening in Response to Enhancement of the Southern Annular Mode?, J.
Climate, 32, 1895–1918, https://doi.org/10.1175/JCLI-D-18-0402.1, 2019.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hogg, A. E. and Gudmundsson, G. H.: Impacts of the Larsen-C Ice Shelf
calving event, Nat. Clim. Change, 7, 540–542,
https://doi.org/10.1038/nclimate3359, 2017.
Holt, T. O., Glasser, N. F., Quincey, D. J., and Siegfried, M. R.: Speedup and fracturing of George VI Ice Shelf, Antarctic Peninsula, The Cryosphere, 7, 797–816, https://doi.org/10.5194/tc-7-797-2013, 2013.
Howat, I. M., Joughin, I., Fahnestock, M., Smith, B. E., and Scambos, T. A.:
Synchronous retreat and acceleration of southeast Greenland outlet glaciers
2000–06: ice dynamics and coupling to climate, J. Glaciol., 54, 646–660,
https://doi.org/10.3189/002214308786570908, 2008.
Hughes, T.: The weak underbelly of the West Antarctic ice sheet, J.
Glaciol., 27, 518–525, 1981.
Humbert, A., Gross, D., Müller, R., Braun, M., van de Wal, R. S. W., van
den Broeke, M. R., Vaughan, D. G., and van de Berg, W. J.: Deformation and
failure of the ice bridge on the Wilkins Ice Shelf, Antarctica, Ann.
Glaciol., 51, 49–55, https://doi.org/10.3189/172756410791392709,
2010.
IMBIE: Mass balance of the Antarctic Ice Sheet from 1992 to 2017, Nature,
558, 219–222, https://doi.org/10.1038/s41586-018-0179-y, 2018.
Jacobs, S. S., Jenkins, A., Giulivi, C. F., and Dutrieux, P.: Stronger ocean
circulation and increased melting under Pine Island Glacier ice shelf, Nat.
Geosci., 4, 519–523, 2011.
Jenkins, A., Shoosmith, D., Dutrieux, P., Jacobs, S., Kim, T. W., Lee, S.
H., Ha, H. K., and Stammerjohn, S.: West Antarctic Ice Sheet retreat in the
Amundsen Sea driven by decadal oceanic variability, Nat. Geosci., 11,
733–738, https://doi.org/10.1038/s41561-018-0207-4, 2018.
Jezek, K. C.: RADARSAT-1 Antarctic Mapping Project: change-detection and
surface velocity campaign, Ann. Glaciol., 34, 263–268, 2002.
Jezek, K. C., Curlander, J. C., Carsey, F., Wales, C., and Barry, R. G.:
RAMP AMM-1 SAR Image Mosaic of Antarctica, Version 2, [Antarctic Coastline
1997], NASA National Snow and Ice Data Center Distributed Active Archive
Center, Boulder, Colorado, https://doi.org/10.5067/8AF4ZRPULS4H, 2013.
Joughin, I. and Alley, R. B.: Stability of the West Antarctic ice sheet in a
warming world, Nat. Geosci., 4, 506–513, 2011.
Joughin, I. and MacAyeal, D. R.: Calving of large tabular icebergs from ice
shelf rift systems, Geophys. Res. Lett., 32, L02501,
https://doi.org/10.1029/2004GL020978, 2005.
Joughin, I., Smith, B. E., and Medley, B.: Marine Ice Sheet Collapse
Potentially Under Way for the Thwaites Glacier Basin, West Antarctica,
Science, 344, 735–738, https://doi.org/10.1126/science.1249055, 2014.
Khazendar, A., Rignot, E., and Larour, E.: Larsen B Ice Shelf rheology
preceding its disintegration inferred by a control method, Geophys. Res.
Lett., 34, L19503, https://doi.org/10.1029/2007GL030980, 2007.
Kim, K. T., Jezek, K. C., and Sohn, H. G.: Ice shelf advance and retreat
rates along the coast of Queen Maud Land, Antarctica, J. Geophys.
Res.-Oceans, 106, 7097–7106,
https://doi.org/10.1029/2000JC000317, 2001.
Konrad, H., Shepherd, A., Gilbert, L., Hogg, A. E., McMillan, M., Muir, A.,
and Slater, T.: Net retreat of Antarctic glacier grounding lines, Nat.
Geosci., 11, 258–258, 2018.
Kopp, R. E., DeConto, R. M., Bader, D. A., Hay, C. C., Horton, R. M., Kulp,
S., Oppenheimer, M., Pollard, D., and Strauss, B. H.: Evolving Understanding
of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level
Projections, Earths Future, 5, 1217–1233,
https://doi.org/10.1002/2017EF000663, 2017.
Kwok, R. and Comiso, J. C.: Spatial patterns of variability in Antarctic
surface temperature: Connections to the Southern Hemisphere Annular Mode and
the Southern Oscillation: Antarctic Surface Temperature, Geophys. Res.
Lett., 29, 50-1–50-4, https://doi.org/10.1029/2002GL015415, 2002.
Larour, E.: Modelling of rift propagation on Ronne Ice Shelf, Antarctica,
and sensitivity to climate change, Geophys. Res. Lett., 31, L16404,
https://doi.org/10.1029/2004GL020077, 2004.
Lavergne, T., Sørensen, A. M., Kern, S., Tonboe, R., Notz, D., Aaboe, S., Bell, L., Dybkjær, G., Eastwood, S., Gabarro, C., Heygster, G., Killie, M. A., Brandt Kreiner, M., Lavelle, J., Saldo, R., Sandven, S., and Pedersen, L. T.: Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records, The Cryosphere, 13, 49–78, https://doi.org/10.5194/tc-13-49-2019, 2019.
Leeson, A. A., Van Wessem, J. M., Ligtenberg, S. R. M., Shepherd, A., Van
Den Broeke, M. R., Killick, R., Skvarca, P., Marinsek, S., and Colwell, S.:
Regional climate of the Larsen B embayment 1980–2014, J. Glaciol., 63,
683–690, https://doi.org/10.1017/jog.2017.39, 2017.
Leeson, A. A., Forster, E., Rice, A., Gourmelen, N., and Wessem, J. M.:
Evolution of Supraglacial Lakes on the Larsen B Ice Shelf in the Decades
Before it Collapsed, Geophys. Res. Lett., 47, e2019GL085591,
https://doi.org/10.1029/2019GL085591, 2020.
Lipovsky, B. P.: Ice shelf rift propagation: stability, three-dimensional effects, and the role of marginal weakening, The Cryosphere, 14, 1673–1683, https://doi.org/10.5194/tc-14-1673-2020, 2020.
Liu, H. and Jezek, K. C.: A complete high-resolution coastline of Antarctica
extracted from orthorectified Radarsat SAR imagery, Photogramm. Eng. Rem.
S., 70, 605–616, https://doi.org/10.14358/pers.70.5.605, 2004.
Liu, Y., Moore, J. C., Cheng, X., Gladstone, R. M., Bassis, J. N., Liu, H.,
Wen, J., and Hui, F.: Ocean-driven thinning enhances iceberg calving and
retreat of Antarctic ice shelves, P. Natl. Acad. Sci. USA, 112, 3263–3268,
2015.
Lovell, A. M., Stokes, C. R., and Jamieson, S. S. R.: Sub-decadal variations
in outlet glacier terminus positions in Victoria Land, Oates Land and George
V Land, East Antarctica (1972–2013), Antarct. Sci., 29, 468–483,
https://doi.org/10.1017/S0954102017000074, 2017.
Lucchitta, B. K. and Rosanova, C. E.: Retreat of northern margins of George
VI and Wilkins Ice Shelves, Antarctic Peninsula, Ann. Glaciol.,
27, 41–46, 1998.
Luckman, A., Benn, D. I., Cottier, F., Bevan, S., Nilsen, F., and Inall, M.:
Calving rates at tidewater glaciers vary strongly with ocean temperature,
Nat. Commun., 6, 8566, https://doi.org/10.1038/ncomms9566, 2015.
Ludescher, J., Yuan, N., and Bunde, A.: Detecting the statistical
significance of the trends in the Antarctic sea ice extent: an indication
for a turning point, Clim. Dynam., 53, 237–244,
https://doi.org/10.1007/s00382-018-4579-3, 2019.
MacAyeal, D. R., Padman, L., Drinkwater, M., Fahnestock, M., Gotis, T. T.,
A., Gray, L., Kerman, B., Lazzara, M., Rignot, E., Scambos, T., and Stearns,
C.: Effects of Rigid Body Collisions and Tide-Forced Drift on Large Tabular
Icebergs of the Antarctic, The University of Chicago, Department of the Geophysical Sciences,
available at: http://geosci.uchicago.edu/~drm7/research/Icebergs_of_Y2k.pdf (last access: 2 December 2020), 2001.
Marshall, G. J.: Trends in the Southern Annular Mode from Observations and
Reanalyses, J. Climate, 16, 4134–4143, https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2, 2003.
Marshall, G. J.: Half-century seasonal relationships between the Southern
Annular mode and Antarctic temperatures, Int. J. Climatol., 27, 373–383,
https://doi.org/10.1002/joc.1407, 2007.
Marshall, G. J.: The Climate Data Guide: Marshall Southern Annular Mode
(SAM) Index (Station-based), edited by: National Center for Atmospheric Research Staff, available at: https://climatedataguide.ucar.edu/climate-data/marshall-southern-annular-mode-sam-index-station-based (last access: 5 March 2020),
2018.
Massom, R., Reid, P., Stammerjohn, S., Raymond, B., Fraser, A., and Ushio,
S.: Change and Variability in East Antarctic Sea Ice Seasonality,
1979/80–2009/10, PLoS ONE, 8, e64756,
https://doi.org/10.1371/journal.pone.0064756, 2013.
Massom, R. A., Giles, A. B., Warner, R. C., Fricker, H. A., Legresy, B.,
Hyland, G., Lescarmontier, L., and Young, N.: External influences on the
Mertz Glacier Tongue (East Antarctica) in the decade leading up to its
calving in 2010, J. Geophys. Res.-Earth, 120, 490–506,
https://doi.org/10.1002/2014JF003223, 2015.
Massom, R. A., Scambos, T. A., Bennetts, L. G., Reid, P., Squire, V. A., and
Stammerjohn, S. E.: Antarctic ice shelf disintegration triggered by sea ice
loss and ocean swell, Nature, 558, 383–389,
https://doi.org/10.1038/s41586-018-0212-1, 2018.
Matsuoka, K., Hindmarsh, R. C. A., Moholdt, G., Bentley, M. J., Pritchard,
H. D., Brown, J., Conway, H., Drews, R., Durand, G., Goldberg, D.,
Hattermann, T., Kingslake, J., Lenaerts, J. T. M., Martín, C.,
Mulvaney, R., Nicholls, K. W., Pattyn, F., Ross, N., Scambos, T., and
Whitehouse, P. L.: Antarctic ice rises and rumples: Their properties and
significance for ice-sheet dynamics and evolution, Earth-Sci. Rev., 150,
724–745, https://doi.org/10.1016/j.earscirev.2015.09.004, 2015.
Mercer, J. H.: West Antarctic ice sheet and CO2 greenhouse effect: a threat
of disaster, Nature, 271, 321–325, 1978.
Miles, B. W. J., Stokes, C. R., and Jamieson, S. S. R.: Pan–ice-sheet
glacier terminus change in East Antarctica reveals sensitivity of Wilkes
Land to sea-ice changes, Sci. Adv., 2, e1501350,
https://doi.org/10.1126/sciadv.1501350, 2016.
Miles, B. W. J., Stokes, C. R., Jenkins, A., Jordan, J. R., Jamieson, S. S.
R., and Gudmundsson, G. H.: Intermittent structural weakening and
acceleration of the Thwaites Glacier Tongue between 2000 and 2018, J.
Glaciol., 66, 1–11, https://doi.org/10.1017/jog.2020.20, 2020.
Milillo, P., Rignot, E., Rizzoli, P., Scheuchl, B., Mouginot, J.,
Bueso-Bello, J., and Prats-Iraola, P.: Heterogeneous retreat and ice melt of
Thwaites Glacier, West Antarctica, Sci. Adv., 5, eaau3433,
https://doi.org/10.1126/sciadv.aau3433, 2019.
Mosbeux, C., Wagner, T. J. W., Becker, M. K., and Fricker, H. A.: Viscous
and elastic buoyancy stresses as drivers of ice-shelf calving, J. Glaciol.,
1–15, https://doi.org/10.1017/jog.2020.35, 2020.
Mouginot, J.: MEaSURES Antarctic Boundaries for IPY 2007–2009 from Satellite
Radar, Version 2, https://doi.org/10.5067/AXE4121732AD, 2017.
Mouginot, J., Rignot, E., and Scheuchl, B.: Continent-Wide, Interferometric
SAR Phase, Mapping of Antarctic Ice Velocity, Geophys. Res. Lett., 46,
9710–9718, https://doi.org/10.1029/2019GL083826, 2019.
Nakamura, K., Doi, K., and Shibuya, K.: Why is Shirase Glacier turning its
flow direction eastward?, Polar Sci., 1, 63–71,
https://doi.org/10.1016/j.polar.2007.09.003, 2007.
OSI SAF: OSI-450 Global Sea Ice Concentration Climate Data Record v2.0 –
Multimission (2.0), https://doi.org/10.15770/EUM_SAF_OSI_0008, 2017.
Paeth, H. and Pollinger, F.: Enhanced evidence in climate models for changes
in extratropical atmospheric circulation, Tellus Dyn. Meteorol. Oceanogr.,
62, 647–660, https://doi.org/10.1111/j.1600-0870.2010.00455.x, 2010.
Paolo, F. S., Fricker, H. A., and Padman, L.: Volume loss from Antarctic ice
shelves is accelerating, Science, 348, 327–331, 2015.
Parizek, B. R., Christianson, K., Anandakrishnan, S., Alley, R. B., Walker,
R. T., Edwards, R. A., Wolfe, D. S., Bertini, G. T., Rinehart, S. K.,
Bindschadler, R. A., and Nowicki, S. M. J.: Dynamic (in)stability of
Thwaites Glacier, West Antarctica: Thwaites Dynamics, J. Geophys. Res.-Earth, 118, 638–655, https://doi.org/10.1002/jgrf.20044, 2013.
Parkinson, C. L.: A 40-y record reveals gradual Antarctic sea ice increases
followed by decreases at rates far exceeding the rates seen in the Arctic,
P. Natl. Acad. Sci. USA, 116, 14414–14423,
https://doi.org/10.1073/pnas.1906556116, 2019.
Pattyn, F., Ritz, C., Hanna, E., Asay-Davis, X., DeConto, R., Durand, G.,
Favier, L., Fettweis, X., Goelzer, H., Golledge, N. R., Munneke, P. K.,
Lenaerts, J. T. M., Nowicki, S., Payne, A. J., Robinson, A., Seroussi, H.,
Trusel, L. D., and Broeke, M. van den: The Greenland and Antarctic ice
sheets under 1.5 ∘C global warming, Nat. Clim. Change, 1,
https://doi.org/10.1038/s41558-018-0305-8, 2018.
Pollard, D., DeConto, R. M., and Alley, R. B.: Potential Antarctic Ice Sheet
retreat driven by hydrofracturing and ice cliff failure, Earth Planet. Sc.
Lett., 412, 112–121, https://doi.org/10.1016/j.epsl.2014.12.035, 2015.
Rack, W. and Rott, H.: Pattern of retreat and disintegration of the Larsen B
ice shelf, Antarctic Peninsula, Ann. Glaciol., 39, 505–510, 2004.
Rankl, M., Fürst, J. J., Humbert, A., and Braun, M. H.: Dynamic changes on the Wilkins Ice Shelf during the 2006–2009 retreat derived from satellite observations, The Cryosphere, 11, 1199–1211, https://doi.org/10.5194/tc-11-1199-2017, 2017.
Rignot, E.: Ice-shelf changes in Pine Island Bay, Antarctica, 1947–2000, J.
Glaciol., 48, 247–256, https://doi.org/10.3189/172756502781831386, 2002.
Rignot, E., Mouginot, J., and Scheuchl, B.: Ice Flow of the Antarctic Ice
Sheet, Science, 333, 1427–1430, https://doi.org/10.1126/science.1208336,
2011.
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.: Ice-Shelf Melting
Around Antarctica, Science, 341, 266–270,
https://doi.org/10.1126/science.1235798, 2013.
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., and Scheuchl, B.:
Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith,
and Kohler glaciers, West Antarctica, from 1992 to 2011, Geophys. Res.
Lett., 41, 3502–3509, https://doi.org/10.1002/2014GL060140, 2014.
Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M.
J., and Morlighem, M.: Four decades of Antarctic Ice Sheet mass balance from
1979–2017, P. Natl. Acad. Sci. USA, 116, 1095–1103,
https://doi.org/10.1073/pnas.1812883116, 2019.
Robel, A. A., Seroussi, H., and Roe, G. H.: Marine ice sheet instability
amplifies and skews uncertainty in projections of future sea-level rise,
P. Natl. Acad. Sci. USA, 116, 14887–14892,
https://doi.org/10.1073/pnas.1904822116, 2019.
Rosier, S. H. R., Green, J. A. M., Scourse, J. D., and Winkelmann, R.:
Modeling Antarctic tides in response to ice shelf thinning and retreat, J.
Geophys. Res.-Oceans, 119, 87–97, https://doi.org/10.1002/2013JC009240,
2014.
Rott, H., Müller, F., Nagler, T., and Floricioiu, D.: The imbalance of glaciers after disintegration of Larsen-B ice shelf, Antarctic Peninsula, The Cryosphere, 5, 125–134, https://doi.org/10.5194/tc-5-125-2011, 2011.
Royston, S. and Gudmundsson, G. H.: Changes in ice-shelf buttressing
following the collapse of Larsen A Ice Shelf, Antarctica, and the resulting
impact on tributaries, J. Glaciol., 62, 905–911, 2016.
Scambos, T. A., Hulbe, C., Fahnestock, M., and Bohlander, J.: The link
between climate warming and break-up of ice shelves in the Antarctic
Peninsula, J. Glaciol., 46, 516–530,
https://doi.org/10.3189/172756500781833043, 2000.
Scambos, T. A., Haran, T. M., Fahnestock, M. A., Painter, T. H., and
Bohlander, J.: MODIS-based Mosaic of Antarctica (MOA) data sets:
Continent-wide surface morphology and snow grain size, Remote Sens.
Environ., 111, 242–257, https://doi.org/10.1016/j.rse.2006.12.020, 2007.
Scambos, T. A., Fricker, H. A., Liu, C.-C., Bohlander, J., Fastook, J.,
Sargent, A., Massom, R., and Wu, A.-M.: Ice shelf disintegration by plate
bending and hydro-fracture: Satellite observations and model results of the
2008 Wilkins ice shelf break-ups, Earth Planet. Sc. Lett., 280, 51–60,
https://doi.org/10.1016/j.epsl.2008.12.027, 2009.
Scambos, T. A., Bell, R. E., Alley, R. B., Anandakrishnan, S., Bromwich, D. H., Brunt, K., Christianson, K., Creyts, T., Das, S. B., DeConto, R., Dutrieux, P., Fricker, H. A., Holland, D., MacGregor, J., Medley, B., Nicolas, J. P., Pollard, D., Siegfried, M. R., Smith, A. M., Steig, E. J., Trusel, L. D., Vaughan, D. G., and Yager, P. L.: How much, how fast?: A science review and outlook for research on the instability of Antarctica's Thwaites Glacier in the 21st century, Global Planet. Change, 153, 16–34, https://doi.org/10.1016/j.gloplacha.2017.04.008, 2017.
Scheuchl, B., Mouginot, J., Rignot, E., Morlighem, M., and Khazendar, A.:
Grounding line retreat of Pope, Smith, and Kohler Glaciers, West Antarctica,
measured with Sentinel-1a radar interferometry data, Geophys. Res. Lett.,
43, 8572–8579, https://doi.org/10.1002/2016GL069287, 2016.
Seehaus, T., Marinsek, S., Helm, V., Skvarca, P., and Braun, M.: Changes in
ice dynamics, elevation and mass discharge of
Dinsmoor–Bombardier–Edgeworth glacier system, Antarctic Peninsula, Earth
Planet. Sc. Lett., 427, 125–135,
https://doi.org/10.1016/j.epsl.2015.06.047, 2015.
Spence, P., Griffies, S. M., England, M. H., Hogg, A. McC., Saenko, O. A.,
and Jourdain, N. C.: Rapid subsurface warming and circulation changes of
Antarctic coastal waters by poleward shifting winds: Antarctic subsurface
ocean warming, Geophys. Res. Lett., 41, 4601–4610,
https://doi.org/10.1002/2014GL060613, 2014.
Stewart, A. L., Klocker, A., and Menemenlis, D.: Circum-Antarctic Shoreward
Heat Transport Derived From an Eddy- and Tide-Resolving Simulation, Geophys.
Res. Lett., 45, 834–845, https://doi.org/10.1002/2017GL075677, 2018.
Tedesco, M. and Monaghan, A. J.: An updated Antarctic melt record through
2009 and its linkages to high-latitude and tropical climate variability,
Geophys. Res. Lett., 36, L18502, https://doi.org/10.1029/2009GL039186, 2009.
Tetzner, D., Thomas, E., and Allen, C.: A Validation of ERA5 Reanalysis Data
in the Southern Antarctic Peninsula – Ellsworth Land Region, and Its
Implications for Ice Core Studies, Geosciences, 9, 289,
https://doi.org/10.3390/geosciences9070289, 2019.
Thoma, M., Jenkins, A., Holland, D., and Jacobs, S.: Modelling Circumpolar
Deep Water intrusions on the Amundsen Sea continental shelf, Antarctica,
Geophys. Res. Lett., 35, L18602, https://doi.org/10.1029/2008GL034939, 2008.
Trusel, L. D., Frey, K. E., Das, S. B., Munneke, P. K., and van den Broeke,
M. R.: Satellite-based estimates of Antarctic surface meltwater fluxes:
Satellite-Based Antarctic Melt Fluxes, Geophys. Res. Lett., 40, 6148–6153,
https://doi.org/10.1002/2013GL058138, 2013.
Vaughan, D. G. and Doake, C. S. M.: Recent atmospheric warming and retreat
of ice shelves on the Antarctic Peninsula, Nature, 379, 328–328, 1996.
Verdy, A., Marshall, J., and Czaja, A.: Sea surface temperature variability
along the path of the Antarctic Circumpolar Current, J. Phys. Oceanogr.,
36, 1317–1331, 2006.
Walker, C. C. and Gardner, A. S.: Rapid drawdown of Antarctica's Wordie Ice
Shelf glaciers in response to ENSO/Southern Annular Mode-driven warming in
the Southern Ocean, Earth Planet. Sc. Lett., 476, 100–110,
https://doi.org/10.1016/j.epsl.2017.08.005, 2017.
Walker, C. C., Bassis, J. N., Fricker, H. A., and Czerwinski, R. J.:
Structural and environmental controls on Antarctic ice shelf rift
propagation inferred from satellite monitoring: Antarctic Ice Shelf Rifting,
J. Geophys. Res.-Earth, 118, 2354–2364,
https://doi.org/10.1002/2013JF002742, 2013.
Walker, C. C., Gardner, A. S., Neumann, T., Fricker, H. A., Bassis, J. N.,
and Paolo, F. S.: Iceberg, right ahead!: The surprising and ongoing collapse
of an East Antarctic ice shelf in response to changes in the ocean
environment, in: AGU Fall Meeting Abstracts, C13A-06, 2019.
Wang, G., Cai, W., and Purich, A.: Trends in Southern Hemisphere wind-driven
circulation in CMIP5 models over the 21st century: Ozone recovery versus
greenhouse forcing, J. Geophys. Res.-Oceans, 119, 2974–2986,
https://doi.org/10.1002/2013JC009589, 2014.
Wessel, B., Huber, M., Wohlfart, C., Bertram, A., Osterkamp, N., Marschalk, U., Gruber, A., Reuß, F., Abdullahi, S., Georg, I., and Roth, A.: TanDEM-X PolarDEM 90 m of Antarctica: Generation and error characterization, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2021-19, in review, 2021.
Wouters, B., Martin-Espanol, A., Helm, V., Flament, T., van Wessem, J. M.,
Ligtenberg, S. R. M., van den Broeke, M. R., and Bamber, J. L.: Dynamic
thinning of glaciers on the Southern Antarctic Peninsula, Science, 348,
899–903, https://doi.org/10.1126/science.aaa5727, 2015.
Wuite, J., Nagler, T., Gourmelen, N., Escorihuela, M. J., Hogg, A. E., and
Drinkwater, M. R.: Sub-Annual Calving Front Migration, Area Change and
Calving Rates from Swath Mode CryoSat-2 Altimetry, on Filchner-Ronne Ice
Shelf, Antarctica, Remote Sens., 11, 2761,
https://doi.org/10.3390/rs11232761, 2019.
Short summary
We present a record of circum-Antarctic glacier and ice shelf front change over the last two decades in combination with potential environmental variables forcing frontal retreat. Along the Antarctic coastline, glacier and ice shelf front retreat dominated between 1997–2008 and advance between 2009–2018. Decreasing sea ice days, intense snowmelt, weakening easterly winds, and relative changes in sea surface temperature were identified as enabling factors for glacier and ice shelf front retreat.
We present a record of circum-Antarctic glacier and ice shelf front change over the last two...