Articles | Volume 15, issue 5
https://doi.org/10.5194/tc-15-2251-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-2251-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comment on “Exceptionally high heat flux needed to sustain the Northeast Greenland Ice Stream” by Smith-Johnsen et al. (2020)
School of Earth Science and Resources, China University of Geosciences, Beijing, China
Department of Geosciences, Eberhard Karls University Tübingen,
Tübingen, Germany
Tamara de Riese
Department of Geosciences, Eberhard Karls University Tübingen,
Tübingen, Germany
Steven Franke
Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, Bremerhaven, Germany
Maria-Gema Llorens
Geosciences Barcelona, CSIC, Barcelona, Spain
Till Sachau
Department of Geosciences, Eberhard Karls University Tübingen,
Tübingen, Germany
Nicolas Stoll
Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, Bremerhaven, Germany
Ilka Weikusat
Department of Geosciences, Eberhard Karls University Tübingen,
Tübingen, Germany
Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, Bremerhaven, Germany
Julien Westhoff
Physics of Ice, Climate and Earth, University of Copenhagen,
Copenhagen, Denmark
Department of Geosciences, Eberhard Karls University Tübingen,
Tübingen, Germany
Related authors
Nicolas Stoll, Ilka Weikusat, Daniela Jansen, Paul Bons, Kyra Darányi, Julien Westhoff, Mária-Gema Llorens, David Wallis, Jan Eichler, Tomotaka Saruya, Tomoyuki Homma, Martyn Drury, Frank Wilhelms, Sepp Kipfstuhl, Dorthe Dahl-Jensen, and Johanna Kerch
EGUsphere, https://doi.org/10.5194/egusphere-2024-2653, https://doi.org/10.5194/egusphere-2024-2653, 2024
Short summary
Short summary
A better understanding of ice flow requires more observational data. The EastGRIP core is the first ice core through an active ice stream. We discuss crystal orientation data to determine the present deformation regimes. A comparison with other deep ice cores shows the unique properties of EastGRIP and that deep ice originates from the Eemian. We further show that the overall plug flow of NEGIS is characterised by many small-scale variations, which remain to be considered in ice-flow models.
Steven Franke, Daniel Steinhage, Veit Helm, Alexandra M. Zuhr, Julien A. Bodart, Olaf Eisen, and Paul Bons
EGUsphere, https://doi.org/10.5194/egusphere-2024-2349, https://doi.org/10.5194/egusphere-2024-2349, 2024
Short summary
Short summary
We use radar technology to study the internal architecture of the ice sheet in western DML, East Antarctica. We identified and dated nine internal reflection horizons (IRHs), revealing important information about the ice sheet's history and dynamics. Some IRHs can be linked to past volcanic eruptions and are of similar age to IRHs detected in other parts of Antarctica. Our findings enhance our understanding of ice sheet behaviour and aid in developing better models for predicting future changes.
Till Sachau, Haibin Yang, Justin Lang, Paul D. Bons, and Louis Moresi
Geosci. Model Dev., 15, 8749–8764, https://doi.org/10.5194/gmd-15-8749-2022, https://doi.org/10.5194/gmd-15-8749-2022, 2022
Short summary
Short summary
Knowledge of the internal structures of the major continental ice sheets is improving, thanks to new investigative techniques. These structures are an essential indication of the flow behavior and dynamics of ice transport, which in turn is important for understanding the actual impact of the vast amounts of water trapped in continental ice sheets on global sea-level rise. The software studied here is specifically designed to simulate such structures and their evolution.
Maria-Gema Llorens, Albert Griera, Paul D. Bons, Ilka Weikusat, David J. Prior, Enrique Gomez-Rivas, Tamara de Riese, Ivone Jimenez-Munt, Daniel García-Castellanos, and Ricardo A. Lebensohn
The Cryosphere, 16, 2009–2024, https://doi.org/10.5194/tc-16-2009-2022, https://doi.org/10.5194/tc-16-2009-2022, 2022
Short summary
Short summary
Polar ice is formed by ice crystals, which form fabrics that are utilised to interpret how ice sheets flow. It is unclear whether fabrics result from the current flow regime or if they are inherited. To understand the extent to which ice crystals can be reoriented when ice flow conditions change, we simulate and evaluate multi-stage ice flow scenarios according to natural cases. We find that second deformation regimes normally overprint inherited fabrics, with a range of transitional fabrics.
Chao Qi, David J. Prior, Lisa Craw, Sheng Fan, Maria-Gema Llorens, Albert Griera, Marianne Negrini, Paul D. Bons, and David L. Goldsby
The Cryosphere, 13, 351–371, https://doi.org/10.5194/tc-13-351-2019, https://doi.org/10.5194/tc-13-351-2019, 2019
Short summary
Short summary
Ice deformed in nature develops crystallographic preferred orientations, CPOs, which induce an anisotropy in ice viscosity. Shear experiments of ice revealed a transition in CPO with changing temperature/strain, which is due to the change of dominant CPO-formation mechanism: strain-induced grain boundary migration dominates at higher temperatures and lower strains, while lattice rotation dominates at other conditions. Understanding these mechanisms aids the interpretation of CPOs in natural ice.
Florian Steinbach, Paul D. Bons, Albert Griera, Daniela Jansen, Maria-Gema Llorens, Jens Roessiger, and Ilka Weikusat
The Cryosphere, 10, 3071–3089, https://doi.org/10.5194/tc-10-3071-2016, https://doi.org/10.5194/tc-10-3071-2016, 2016
Short summary
Short summary
How glaciers or ice sheets flow is a result of microscopic processes controlled by the properties of individual ice crystals. We performed computer simulations on these processes and the effect of air bubbles between crystals. The simulations show that small-scale ice deformation is locally stronger than in other regions, which is enhanced by bubbles. This causes the ice crystals to recrystallise and change their properties in a way that potentially also affects the large-scale flow properties.
D. Jansen, M.-G. Llorens, J. Westhoff, F. Steinbach, S. Kipfstuhl, P. D. Bons, A. Griera, and I. Weikusat
The Cryosphere, 10, 359–370, https://doi.org/10.5194/tc-10-359-2016, https://doi.org/10.5194/tc-10-359-2016, 2016
Short summary
Short summary
In this study we present examples of typical small-scale folds observed in the NEEM ice core, North Greenland, and discuss their characteristics. Numerical modelling of viscoplastic deformation and dynamic recrystallisation was used to improve the understanding of the formation of the observed structures under simple shear boundary conditions. We conclude that the folds originate from bands of grains with a tilted lattice relative to the strong lattice preferred orientation below 1500 m depth.
Z. Zhao, P. D. Bons, G. Wang, A. Soesoo, and Y. Liu
Solid Earth, 6, 457–473, https://doi.org/10.5194/se-6-457-2015, https://doi.org/10.5194/se-6-457-2015, 2015
Short summary
Short summary
The early Mesozoic tectonic history of the Qiangtang terrane in central Tibet is hotly debated. We argue that the north and south Qiangtang terranes were separated by an ocean (Paleo-Tethys) until the late Triassic. Subduction was mainly to the north, underneath the north Qiangtang terrane. The high-pressure rocks were exhumed in a lithospheric-scale core complex. Together with non-metamorphic sedimentary and ophiolitic mélange, these were finally thrust on top of the south Qiangtang.
Julien Westhoff, Grant Vernon Boeckmann, Nicholas Mossor Rathmann, and Steffen Bo Hansen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3081, https://doi.org/10.5194/egusphere-2024-3081, 2024
Short summary
Short summary
We report on the successful test of a new replicate drilling system for ice cores. This system allows us to deviate the ice core drill from the parent, the original, borehole, and drill into the side of the wall. Thus, we can produce a second ice core from any desired depth, increasing the amount of sample available for scientific purposes. In the manuscript, we present the results from the first field tests and the challenges we encountered.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Nicolas Stoll, Ilka Weikusat, Daniela Jansen, Paul Bons, Kyra Darányi, Julien Westhoff, Mária-Gema Llorens, David Wallis, Jan Eichler, Tomotaka Saruya, Tomoyuki Homma, Martyn Drury, Frank Wilhelms, Sepp Kipfstuhl, Dorthe Dahl-Jensen, and Johanna Kerch
EGUsphere, https://doi.org/10.5194/egusphere-2024-2653, https://doi.org/10.5194/egusphere-2024-2653, 2024
Short summary
Short summary
A better understanding of ice flow requires more observational data. The EastGRIP core is the first ice core through an active ice stream. We discuss crystal orientation data to determine the present deformation regimes. A comparison with other deep ice cores shows the unique properties of EastGRIP and that deep ice originates from the Eemian. We further show that the overall plug flow of NEGIS is characterised by many small-scale variations, which remain to be considered in ice-flow models.
Julien Westhoff, Johannes Freitag, Anaïs Orsi, Patricia Martinerie, Ilka Weikusat, Michael Dyonisius, Xavier Faïn, Kevin Fourteau, and Thomas Blunier
The Cryosphere, 18, 4379–4397, https://doi.org/10.5194/tc-18-4379-2024, https://doi.org/10.5194/tc-18-4379-2024, 2024
Short summary
Short summary
We study the EastGRIP area, Greenland, in detail with traditional and novel techniques. Due to the compaction of the ice, at a certain depth, atmospheric gases can no longer exchange, and the atmosphere is trapped in air bubbles in the ice. We find this depth by pumping air from a borehole, modeling, and using a new technique based on the optical appearance of the ice. Our results suggest that the close-off depth lies at around 58–61 m depth and more precisely at 58.3 m depth.
Steven Franke, Daniel Steinhage, Veit Helm, Alexandra M. Zuhr, Julien A. Bodart, Olaf Eisen, and Paul Bons
EGUsphere, https://doi.org/10.5194/egusphere-2024-2349, https://doi.org/10.5194/egusphere-2024-2349, 2024
Short summary
Short summary
We use radar technology to study the internal architecture of the ice sheet in western DML, East Antarctica. We identified and dated nine internal reflection horizons (IRHs), revealing important information about the ice sheet's history and dynamics. Some IRHs can be linked to past volcanic eruptions and are of similar age to IRHs detected in other parts of Antarctica. Our findings enhance our understanding of ice sheet behaviour and aid in developing better models for predicting future changes.
Piers Larkman, Rachael H. Rhodes, Nicolas Stoll, Carlo Barbante, and Pascal Bohleber
EGUsphere, https://doi.org/10.5194/egusphere-2024-1723, https://doi.org/10.5194/egusphere-2024-1723, 2024
Short summary
Short summary
Impurities in ice cores can be preferentially located at the boundaries between crystals of ice, impacting the interpretation of high-resolution data collected from ice core samples. This work finds that one dimensional signals can be significantly effected by this association, meaning experiments collecting data at high resolution must be carefully designed. Accounting for this effect is important for interpreting ice core data, especially for deep ice samples.
Nicolas Stoll, Matthias Wietz, Stephan Juricke, Franziska Pausch, Corina Peter, Miriam Seifert, Jana C. Massing, Moritz Zeising, Rebecca A. McPherson, Melissa Käß, and Björn Suckow
Polarforschung, 91, 31–43, https://doi.org/10.5194/polf-91-31-2023, https://doi.org/10.5194/polf-91-31-2023, 2023
Short summary
Short summary
Global crises, such as climate change and the COVID-19 pandemic, show the importance of communicating science to the public. We introduce the YouTube channel "Wissenschaft fürs Wohnzimmer", which livestreams presentations on climate-related topics weekly and is accessible to all. The project encourages interaction between scientists and the public and has been running successfully for over 2 years. We present the concept, what we have learnt, and the challenges after 100 streamed episodes.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Nicolas Stoll, Julien Westhoff, Pascal Bohleber, Anders Svensson, Dorthe Dahl-Jensen, Carlo Barbante, and Ilka Weikusat
The Cryosphere, 17, 2021–2043, https://doi.org/10.5194/tc-17-2021-2023, https://doi.org/10.5194/tc-17-2021-2023, 2023
Short summary
Short summary
Impurities in polar ice play a role regarding its climate signal and internal deformation. We bridge different scales using different methods to investigate ice from the Last Glacial Period derived from the EGRIP ice core in Greenland. We characterise different types of cloudy bands, i.e. frequently occurring milky layers in the ice, and analyse their chemistry with Raman spectroscopy and 2D imaging. We derive new insights into impurity localisation and deposition conditions.
Ole Zeising, Tamara Annina Gerber, Olaf Eisen, M. Reza Ershadi, Nicolas Stoll, Ilka Weikusat, and Angelika Humbert
The Cryosphere, 17, 1097–1105, https://doi.org/10.5194/tc-17-1097-2023, https://doi.org/10.5194/tc-17-1097-2023, 2023
Short summary
Short summary
The flow of glaciers and ice streams is influenced by crystal fabric orientation. Besides sparse ice cores, these can be investigated by radar measurements. Here, we present an improved method which allows us to infer the horizontal fabric asymmetry using polarimetric phase-sensitive radar data. A validation of the method on a deep ice core from the Greenland Ice Sheet shows an excellent agreement, which is a large improvement over previously used methods.
Steven Franke, Alfons Eckstaller, Tim Heitland, Thomas Schaefer, and Jölund Asseng
Polarforschung, 90, 65–79, https://doi.org/10.5194/polf-90-65-2022, https://doi.org/10.5194/polf-90-65-2022, 2022
Short summary
Short summary
For over 45 years, teams composed of scientists, technicians, doctors, and cooks have been wintering in Antarctica in the service of German Antarctic research. They thus form a cornerstone of long-term scientific measurements in this remote and unique place with regard to future scientific investigations. In this article, we highlight the research being conducted at the permanently crewed Neumayer Station III and its predecessors and the role of the overwinterers in this research endeavour.
Till Sachau, Haibin Yang, Justin Lang, Paul D. Bons, and Louis Moresi
Geosci. Model Dev., 15, 8749–8764, https://doi.org/10.5194/gmd-15-8749-2022, https://doi.org/10.5194/gmd-15-8749-2022, 2022
Short summary
Short summary
Knowledge of the internal structures of the major continental ice sheets is improving, thanks to new investigative techniques. These structures are an essential indication of the flow behavior and dynamics of ice transport, which in turn is important for understanding the actual impact of the vast amounts of water trapped in continental ice sheets on global sea-level rise. The software studied here is specifically designed to simulate such structures and their evolution.
Vjeran Višnjević, Reinhard Drews, Clemens Schannwell, Inka Koch, Steven Franke, Daniela Jansen, and Olaf Eisen
The Cryosphere, 16, 4763–4777, https://doi.org/10.5194/tc-16-4763-2022, https://doi.org/10.5194/tc-16-4763-2022, 2022
Short summary
Short summary
We present a simple way to model the internal layers of an ice shelf and apply the method to the Roi Baudouin Ice Shelf in East Antarctica. Modeled results are compared to measurements obtained by radar. We distinguish between ice directly formed on the shelf and ice transported from the ice sheet, and we map the spatial changes in the volume of the locally accumulated ice. In this context, we discuss the sensitivity of the ice shelf to future changes in surface accumulation and basal melt.
Alfons Eckstaller, Jölund Asseng, Erich Lippmann, and Steven Franke
Geosci. Instrum. Method. Data Syst., 11, 235–245, https://doi.org/10.5194/gi-11-235-2022, https://doi.org/10.5194/gi-11-235-2022, 2022
Short summary
Short summary
We present a mobile and self-sufficient seismometer station concept for operation in polar regions. The energy supply can be adapted as required using the modular cascading of battery boxes, wind generators, solar cells, or backup batteries, which enables optimum use of limited resources. Our system concept is not limited to the applications using seismological stations. It is a suitable system for managing the power supply of all types of self-sufficient measuring systems in polar regions.
Maria-Gema Llorens, Albert Griera, Paul D. Bons, Ilka Weikusat, David J. Prior, Enrique Gomez-Rivas, Tamara de Riese, Ivone Jimenez-Munt, Daniel García-Castellanos, and Ricardo A. Lebensohn
The Cryosphere, 16, 2009–2024, https://doi.org/10.5194/tc-16-2009-2022, https://doi.org/10.5194/tc-16-2009-2022, 2022
Short summary
Short summary
Polar ice is formed by ice crystals, which form fabrics that are utilised to interpret how ice sheets flow. It is unclear whether fabrics result from the current flow regime or if they are inherited. To understand the extent to which ice crystals can be reoriented when ice flow conditions change, we simulate and evaluate multi-stage ice flow scenarios according to natural cases. We find that second deformation regimes normally overprint inherited fabrics, with a range of transitional fabrics.
Julien Westhoff, Giulia Sinnl, Anders Svensson, Johannes Freitag, Helle Astrid Kjær, Paul Vallelonga, Bo Vinther, Sepp Kipfstuhl, Dorthe Dahl-Jensen, and Ilka Weikusat
Clim. Past, 18, 1011–1034, https://doi.org/10.5194/cp-18-1011-2022, https://doi.org/10.5194/cp-18-1011-2022, 2022
Short summary
Short summary
We present a melt event record from an ice core from central Greenland, which covers the past 10 000 years. Our record displays warm summer events, which can be used to enhance our understanding of the past climate. We compare our data to anomalies in tree ring width, which also represents summer temperatures, and find a good correlation. Furthermore, we investigate an outstandingly warm event in the year 986 AD or 991 AD, which has not been analyzed before.
Nicolas Stoll, Maria Hörhold, Tobias Erhardt, Jan Eichler, Camilla Jensen, and Ilka Weikusat
The Cryosphere, 16, 667–688, https://doi.org/10.5194/tc-16-667-2022, https://doi.org/10.5194/tc-16-667-2022, 2022
Short summary
Short summary
We mapped and analysed solid inclusion in the upper 1340 m of the EGRIP ice core with Raman spectroscopy and microstructure mapping, based on bulk dust content derived via continuous flow analysis. We observe a large variety in mineralogy throughout the core and samples. The main minerals are sulfates, especially gypsum, and terrestrial dust minerals, such as quartz, mica, and feldspar. A change in mineralogy occurs around 900 m depth indicating a climate-related imprint.
Steven Franke, Daniela Jansen, Tobias Binder, John D. Paden, Nils Dörr, Tamara A. Gerber, Heinrich Miller, Dorthe Dahl-Jensen, Veit Helm, Daniel Steinhage, Ilka Weikusat, Frank Wilhelms, and Olaf Eisen
Earth Syst. Sci. Data, 14, 763–779, https://doi.org/10.5194/essd-14-763-2022, https://doi.org/10.5194/essd-14-763-2022, 2022
Short summary
Short summary
The Northeast Greenland Ice Stream (NEGIS) is the largest ice stream in Greenland. In order to better understand the past and future dynamics of the NEGIS, we present a high-resolution airborne radar data set (EGRIP-NOR-2018) for the onset region of the NEGIS. The survey area is centered at the location of the drill site of the East Greenland Ice-Core Project (EastGRIP), and radar profiles cover both shear margins and are aligned parallel to several flow lines.
Nicolas Stoll, Jan Eichler, Maria Hörhold, Tobias Erhardt, Camilla Jensen, and Ilka Weikusat
The Cryosphere, 15, 5717–5737, https://doi.org/10.5194/tc-15-5717-2021, https://doi.org/10.5194/tc-15-5717-2021, 2021
Short summary
Short summary
We did a systematic analysis of the location of inclusions in the EGRIP ice core, the first ice core from an ice stream. We combine this with crystal orientation and grain size data, enabling the first overview about the microstructure of this unique ice core. Micro-inclusions show a strong spatial variability and patterns (clusters or horizontal layers); roughly one-third is located at grain boundaries. More holistic approaches are needed to understand deformation processes in the ice better.
Tamara Annina Gerber, Christine Schøtt Hvidberg, Sune Olander Rasmussen, Steven Franke, Giulia Sinnl, Aslak Grinsted, Daniela Jansen, and Dorthe Dahl-Jensen
The Cryosphere, 15, 3655–3679, https://doi.org/10.5194/tc-15-3655-2021, https://doi.org/10.5194/tc-15-3655-2021, 2021
Short summary
Short summary
We simulate the ice flow in the onset region of the Northeast Greenland Ice Stream to determine the source area and past accumulation rates of ice found in the EastGRIP ice core. This information is required to correct for bias in ice-core records introduced by the upstream flow effects. Our results reveal that the increasing accumulation rate with increasing upstream distance is predominantly responsible for the constant annual layer thicknesses observed in the upper 900 m of the ice core.
Sebastian Hellmann, Melchior Grab, Johanna Kerch, Henning Löwe, Andreas Bauder, Ilka Weikusat, and Hansruedi Maurer
The Cryosphere, 15, 3507–3521, https://doi.org/10.5194/tc-15-3507-2021, https://doi.org/10.5194/tc-15-3507-2021, 2021
Short summary
Short summary
In this study, we analyse whether ultrasonic measurements on ice core samples could be employed to derive information about the particular ice crystal orientation in these samples. We discuss if such ultrasonic scans of ice core samples could provide similarly detailed results as the established methods, which usually destroy the ice samples. Our geophysical approach is minimally invasive and could support the existing methods with additional and (semi-)continuous data points along the ice core.
Sebastian Hellmann, Johanna Kerch, Ilka Weikusat, Andreas Bauder, Melchior Grab, Guillaume Jouvet, Margit Schwikowski, and Hansruedi Maurer
The Cryosphere, 15, 677–694, https://doi.org/10.5194/tc-15-677-2021, https://doi.org/10.5194/tc-15-677-2021, 2021
Short summary
Short summary
We analyse the orientation of ice crystals in an Alpine glacier and compare this orientation with the ice flow direction. We found that the crystals orient in the direction of the largest stress which is in the flow direction in the upper parts of the glacier and in the vertical direction for deeper zones of the glacier. The grains cluster around this maximum stress direction, in particular four-point maxima, most likely as a result of recrystallisation under relatively warm conditions.
Ernst-Jan N. Kuiper, Ilka Weikusat, Johannes H. P. de Bresser, Daniela Jansen, Gill M. Pennock, and Martyn R. Drury
The Cryosphere, 14, 2429–2448, https://doi.org/10.5194/tc-14-2429-2020, https://doi.org/10.5194/tc-14-2429-2020, 2020
Short summary
Short summary
A composite flow law model applied to crystal size distributions from the NEEM deep ice core predicts that fine-grained layers in ice from the last Glacial period localize deformation as internal shear zones in the Greenland ice sheet deforming by grain-size-sensitive creep. This prediction is consistent with microstructures in Glacial age ice.
Ernst-Jan N. Kuiper, Johannes H. P. de Bresser, Martyn R. Drury, Jan Eichler, Gill M. Pennock, and Ilka Weikusat
The Cryosphere, 14, 2449–2467, https://doi.org/10.5194/tc-14-2449-2020, https://doi.org/10.5194/tc-14-2449-2020, 2020
Short summary
Short summary
Fast ice flow occurs in deeper parts of polar ice sheets, driven by high stress and high temperatures. Above 262 K ice flow is further enhanced, probably by the formation of thin melt layers between ice crystals. A model applying an experimentally derived composite flow law, using temperature and grain size values from the deepest 540 m of the NEEM ice core, predicts that flow in fine-grained layers is enhanced by a factor of 10 compared to coarse-grained layers in the Greenland ice sheet.
Chao Qi, David J. Prior, Lisa Craw, Sheng Fan, Maria-Gema Llorens, Albert Griera, Marianne Negrini, Paul D. Bons, and David L. Goldsby
The Cryosphere, 13, 351–371, https://doi.org/10.5194/tc-13-351-2019, https://doi.org/10.5194/tc-13-351-2019, 2019
Short summary
Short summary
Ice deformed in nature develops crystallographic preferred orientations, CPOs, which induce an anisotropy in ice viscosity. Shear experiments of ice revealed a transition in CPO with changing temperature/strain, which is due to the change of dominant CPO-formation mechanism: strain-induced grain boundary migration dominates at higher temperatures and lower strains, while lattice rotation dominates at other conditions. Understanding these mechanisms aids the interpretation of CPOs in natural ice.
Jilu Li, Jose A. Vélez González, Carl Leuschen, Ayyangar Harish, Prasad Gogineni, Maurine Montagnat, Ilka Weikusat, Fernando Rodriguez-Morales, and John Paden
The Cryosphere, 12, 2689–2705, https://doi.org/10.5194/tc-12-2689-2018, https://doi.org/10.5194/tc-12-2689-2018, 2018
Short summary
Short summary
Ice properties inferred from multi-polarization measurements can provide insight into ice strain, viscosity, and ice flow. The Center for Remote Sensing of Ice Sheets used a ground-based radar for multi-channel and multi-polarization measurements at the NEEM site. This paper describes the radar system, antenna configurations, data collection, and processing and analysis of this data set. Comparisons between the radar observations, simulations, and ice core fabric data are in very good agreement.
Johanna Kerch, Anja Diez, Ilka Weikusat, and Olaf Eisen
The Cryosphere, 12, 1715–1734, https://doi.org/10.5194/tc-12-1715-2018, https://doi.org/10.5194/tc-12-1715-2018, 2018
Short summary
Short summary
We investigate the effect of crystal anisotropy on seismic velocities in glacier ice by calculating seismic phase velocities using the exact c axis angles to describe the crystal orientations in ice-core samples for an alpine and a polar ice core. Our results provide uncertainty estimates for earlier established approximative calculations. Additionally, our findings highlight the variation in seismic velocity at non-vertical incidence as a function of the horizontal azimuth of the seismic plane.
Ilka Weikusat, Ernst-Jan N. Kuiper, Gill M. Pennock, Sepp Kipfstuhl, and Martyn R. Drury
Solid Earth, 8, 883–898, https://doi.org/10.5194/se-8-883-2017, https://doi.org/10.5194/se-8-883-2017, 2017
Short summary
Short summary
Understanding the flow of large ice masses on Earth is a major challenge in our changing climate. Deformation mechanisms are governed by the strong anisotropy of ice. As anisotropy is currently moving into the focus of ice sheet flow studies, we provide a detailed analysis of microstructure data from natural ice core samples which directly relate to anisotropic plasticity. Our findings reveal surprising dislocation activity which seems to contradict the concept of macroscopic ice anisotropy.
Jan Eichler, Ina Kleitz, Maddalena Bayer-Giraldi, Daniela Jansen, Sepp Kipfstuhl, Wataru Shigeyama, Christian Weikusat, and Ilka Weikusat
The Cryosphere, 11, 1075–1090, https://doi.org/10.5194/tc-11-1075-2017, https://doi.org/10.5194/tc-11-1075-2017, 2017
Short summary
Short summary
This study contributes to investigations of the effect of impurities on ice microstructure and flow properties. For the first time we mapped over 5000 micro-inclusions in four samples from the EDML and NEEM polar ice cores. The particle distributions show no correlation with grain boundaries and thus we conclude that particle pinning plays only a secondary role for the microstructure evolution. Alternative mechanisms are discussed.
Florian Steinbach, Paul D. Bons, Albert Griera, Daniela Jansen, Maria-Gema Llorens, Jens Roessiger, and Ilka Weikusat
The Cryosphere, 10, 3071–3089, https://doi.org/10.5194/tc-10-3071-2016, https://doi.org/10.5194/tc-10-3071-2016, 2016
Short summary
Short summary
How glaciers or ice sheets flow is a result of microscopic processes controlled by the properties of individual ice crystals. We performed computer simulations on these processes and the effect of air bubbles between crystals. The simulations show that small-scale ice deformation is locally stronger than in other regions, which is enhanced by bubbles. This causes the ice crystals to recrystallise and change their properties in a way that potentially also affects the large-scale flow properties.
D. Jansen, M.-G. Llorens, J. Westhoff, F. Steinbach, S. Kipfstuhl, P. D. Bons, A. Griera, and I. Weikusat
The Cryosphere, 10, 359–370, https://doi.org/10.5194/tc-10-359-2016, https://doi.org/10.5194/tc-10-359-2016, 2016
Short summary
Short summary
In this study we present examples of typical small-scale folds observed in the NEEM ice core, North Greenland, and discuss their characteristics. Numerical modelling of viscoplastic deformation and dynamic recrystallisation was used to improve the understanding of the formation of the observed structures under simple shear boundary conditions. We conclude that the folds originate from bands of grains with a tilted lattice relative to the strong lattice preferred orientation below 1500 m depth.
E. Gomez-Rivas, A. Griera, and M.-G. Llorens
Solid Earth, 6, 497–514, https://doi.org/10.5194/se-6-497-2015, https://doi.org/10.5194/se-6-497-2015, 2015
Z. Zhao, P. D. Bons, G. Wang, A. Soesoo, and Y. Liu
Solid Earth, 6, 457–473, https://doi.org/10.5194/se-6-457-2015, https://doi.org/10.5194/se-6-457-2015, 2015
Short summary
Short summary
The early Mesozoic tectonic history of the Qiangtang terrane in central Tibet is hotly debated. We argue that the north and south Qiangtang terranes were separated by an ocean (Paleo-Tethys) until the late Triassic. Subduction was mainly to the north, underneath the north Qiangtang terrane. The high-pressure rocks were exhumed in a lithospheric-scale core complex. Together with non-metamorphic sedimentary and ophiolitic mélange, these were finally thrust on top of the south Qiangtang.
A. Diez, O. Eisen, C. Hofstede, A. Lambrecht, C. Mayer, H. Miller, D. Steinhage, T. Binder, and I. Weikusat
The Cryosphere, 9, 385–398, https://doi.org/10.5194/tc-9-385-2015, https://doi.org/10.5194/tc-9-385-2015, 2015
M. Montagnat, N. Azuma, D. Dahl-Jensen, J. Eichler, S. Fujita, F. Gillet-Chaulet, S. Kipfstuhl, D. Samyn, A. Svensson, and I. Weikusat
The Cryosphere, 8, 1129–1138, https://doi.org/10.5194/tc-8-1129-2014, https://doi.org/10.5194/tc-8-1129-2014, 2014
T. Sachau and D. Koehn
Geosci. Model Dev., 7, 243–247, https://doi.org/10.5194/gmd-7-243-2014, https://doi.org/10.5194/gmd-7-243-2014, 2014
Related subject area
Discipline: Ice sheets | Subject: Arctic (e.g. Greenland)
Sensitivity to forecast surface mass balance outweighs sensitivity to basal sliding descriptions for 21st century mass loss from three major Greenland outlet glaciers
Recent warming trends of the Greenland ice sheet documented by historical firn and ice temperature observations and machine learning
Spatially heterogeneous effect of climate warming on the Arctic land ice
Improving modelled albedo over the Greenland ice sheet through parameter optimisation and MODIS snow albedo retrievals
Hydraulic suppression of basal glacier melt in sill fjords
Direct measurement of warm Atlantic Intermediate Water close to the grounding line of Nioghalvfjerdsfjorden (79° N) Glacier, northeast Greenland
Brief communication: Preliminary ICESat-2 (Ice, Cloud and land Elevation Satellite-2) measurements of outlet glaciers reveal heterogeneous patterns of seasonal dynamic thickness change
Uncertainties in projected surface mass balance over the polar ice sheets from dynamically downscaled EC-Earth models
Thinning leads to calving-style changes at Bowdoin Glacier, Greenland
Possible impacts of a 1000 km long hypothetical subglacial river valley towards Petermann Glacier in northern Greenland
Greenland Ice Sheet late-season melt: investigating multiscale drivers of K-transect events
In situ observed relationships between snow and ice surface skin temperatures and 2 m air temperatures in the Arctic
J. Rachel Carr, Emily A. Hill, and G. Hilmar Gudmundsson
The Cryosphere, 18, 2719–2737, https://doi.org/10.5194/tc-18-2719-2024, https://doi.org/10.5194/tc-18-2719-2024, 2024
Short summary
Short summary
The Greenland Ice Sheet is one of the world's largest glaciers and is melting quickly in response to climate change. It contains fast-flowing channels of ice that move ice from Greenland's centre to its coasts and allow Greenland to react quickly to climate warming. As a result, we want to predict how these glaciers will behave in the future, but there are lots of uncertainties. Here we assess the impacts of two main sources of uncertainties in glacier models.
Baptiste Vandecrux, Robert S. Fausto, Jason E. Box, Federico Covi, Regine Hock, Åsa K. Rennermalm, Achim Heilig, Jakob Abermann, Dirk van As, Elisa Bjerre, Xavier Fettweis, Paul C. J. P. Smeets, Peter Kuipers Munneke, Michiel R. van den Broeke, Max Brils, Peter L. Langen, Ruth Mottram, and Andreas P. Ahlstrøm
The Cryosphere, 18, 609–631, https://doi.org/10.5194/tc-18-609-2024, https://doi.org/10.5194/tc-18-609-2024, 2024
Short summary
Short summary
How fast is the Greenland ice sheet warming? In this study, we compiled 4500+ temperature measurements at 10 m below the ice sheet surface (T10m) from 1912 to 2022. We trained a machine learning model on these data and reconstructed T10m for the ice sheet during 1950–2022. After a slight cooling during 1950–1985, the ice sheet warmed at a rate of 0.7 °C per decade until 2022. Climate models showed mixed results compared to our observations and underestimated the warming in key regions.
Damien Maure, Christoph Kittel, Clara Lambin, Alison Delhasse, and Xavier Fettweis
The Cryosphere, 17, 4645–4659, https://doi.org/10.5194/tc-17-4645-2023, https://doi.org/10.5194/tc-17-4645-2023, 2023
Short summary
Short summary
The Arctic is warming faster than the rest of the Earth. Studies have already shown that Greenland and the Canadian Arctic are experiencing a record increase in melting rates, while Svalbard has been relatively less impacted. Looking at those regions but also extending the study to Iceland and the Russian Arctic archipelagoes, we see a heterogeneity in the melting-rate response to the Arctic warming, with the Russian archipelagoes experiencing lower melting rates than other regions.
Nina Raoult, Sylvie Charbit, Christophe Dumas, Fabienne Maignan, Catherine Ottlé, and Vladislav Bastrikov
The Cryosphere, 17, 2705–2724, https://doi.org/10.5194/tc-17-2705-2023, https://doi.org/10.5194/tc-17-2705-2023, 2023
Short summary
Short summary
Greenland ice sheet melting due to global warming could significantly impact global sea-level rise. The ice sheet's albedo, i.e. how reflective the surface is, affects the melting speed. The ORCHIDEE computer model is used to simulate albedo and snowmelt to make predictions. However, the albedo in ORCHIDEE is lower than that observed using satellites. To correct this, we change model parameters (e.g. the rate of snow decay) to reduce the difference between simulated and observed values.
Johan Nilsson, Eef van Dongen, Martin Jakobsson, Matt O'Regan, and Christian Stranne
The Cryosphere, 17, 2455–2476, https://doi.org/10.5194/tc-17-2455-2023, https://doi.org/10.5194/tc-17-2455-2023, 2023
Short summary
Short summary
We investigate how topographical sills suppress basal glacier melt in Greenlandic fjords. The basal melt drives an exchange flow over the sill, but there is an upper flow limit set by the Atlantic Water features outside the fjord. If this limit is reached, the flow enters a new regime where the melt is suppressed and its sensitivity to the Atlantic Water temperature is reduced.
Michael J. Bentley, James A. Smith, Stewart S. R. Jamieson, Margaret R. Lindeman, Brice R. Rea, Angelika Humbert, Timothy P. Lane, Christopher M. Darvill, Jeremy M. Lloyd, Fiamma Straneo, Veit Helm, and David H. Roberts
The Cryosphere, 17, 1821–1837, https://doi.org/10.5194/tc-17-1821-2023, https://doi.org/10.5194/tc-17-1821-2023, 2023
Short summary
Short summary
The Northeast Greenland Ice Stream is a major outlet of the Greenland Ice Sheet. Some of its outlet glaciers and ice shelves have been breaking up and retreating, with inflows of warm ocean water identified as the likely reason. Here we report direct measurements of warm ocean water in an unusual lake that is connected to the ocean beneath the ice shelf in front of the 79° N Glacier. This glacier has not yet shown much retreat, but the presence of warm water makes future retreat more likely.
Christian J. Taubenberger, Denis Felikson, and Thomas Neumann
The Cryosphere, 16, 1341–1348, https://doi.org/10.5194/tc-16-1341-2022, https://doi.org/10.5194/tc-16-1341-2022, 2022
Short summary
Short summary
Outlet glaciers are projected to account for half of the total ice loss from the Greenland Ice Sheet over the 21st century. We classify patterns of seasonal dynamic thickness changes of outlet glaciers using new observations from the Ice, Cloud and land Elevation Satellite-2 (ICESat-2). Our results reveal seven distinct patterns that differ across glaciers even within the same region. Future work can use our results to improve our understanding of processes that drive seasonal ice sheet changes.
Fredrik Boberg, Ruth Mottram, Nicolaj Hansen, Shuting Yang, and Peter L. Langen
The Cryosphere, 16, 17–33, https://doi.org/10.5194/tc-16-17-2022, https://doi.org/10.5194/tc-16-17-2022, 2022
Short summary
Short summary
Using the regional climate model HIRHAM5, we compare two versions (v2 and v3) of the global climate model EC-Earth for the Greenland and Antarctica ice sheets. We are interested in the surface mass balance of the ice sheets due to its importance when making estimates of future sea level rise. We find that the end-of-century change in the surface mass balance for Antarctica is 420 Gt yr−1 (v2) and 80 Gt yr−1 (v3), and for Greenland it is −290 Gt yr−1 (v2) and −1640 Gt yr−1 (v3).
Eef C. H. van Dongen, Guillaume Jouvet, Shin Sugiyama, Evgeny A. Podolskiy, Martin Funk, Douglas I. Benn, Fabian Lindner, Andreas Bauder, Julien Seguinot, Silvan Leinss, and Fabian Walter
The Cryosphere, 15, 485–500, https://doi.org/10.5194/tc-15-485-2021, https://doi.org/10.5194/tc-15-485-2021, 2021
Short summary
Short summary
The dynamic mass loss of tidewater glaciers is strongly linked to glacier calving. We study calving mechanisms under a thinning regime, based on 5 years of field and remote-sensing data of Bowdoin Glacier. Our data suggest that Bowdoin Glacier ungrounded recently, and its calving behaviour changed from calving due to surface crevasses to buoyancy-induced calving resulting from basal crevasses. This change may be a precursor to glacier retreat.
Christopher Chambers, Ralf Greve, Bas Altena, and Pierre-Marie Lefeuvre
The Cryosphere, 14, 3747–3759, https://doi.org/10.5194/tc-14-3747-2020, https://doi.org/10.5194/tc-14-3747-2020, 2020
Short summary
Short summary
The topography of the rock below the Greenland ice sheet is not well known. One long valley appears as a line of dips because of incomplete data. So we use ice model simulations that unblock this valley, and these create a watercourse that may represent a form of river over 1000 km long under the ice. When we melt ice at the bottom of the ice sheet only in the deep interior, water can flow down the valley only when the valley is unblocked. It may have developed while an ice sheet was present.
Thomas J. Ballinger, Thomas L. Mote, Kyle Mattingly, Angela C. Bliss, Edward Hanna, Dirk van As, Melissa Prieto, Saeideh Gharehchahi, Xavier Fettweis, Brice Noël, Paul C. J. P. Smeets, Carleen H. Reijmer, Mads H. Ribergaard, and John Cappelen
The Cryosphere, 13, 2241–2257, https://doi.org/10.5194/tc-13-2241-2019, https://doi.org/10.5194/tc-13-2241-2019, 2019
Short summary
Short summary
Arctic sea ice and the Greenland Ice Sheet (GrIS) are melting later in the year due to a warming climate. Through analyses of weather station, climate model, and reanalysis data, physical links are evaluated between Baffin Bay open water duration and western GrIS melt conditions. We show that sub-Arctic air mass movement across this portion of the GrIS strongly influences late summer and autumn melt, while near-surface, off-ice winds inhibit westerly atmospheric heat transfer from Baffin Bay.
Pia Nielsen-Englyst, Jacob L. Høyer, Kristine S. Madsen, Rasmus Tonboe, Gorm Dybkjær, and Emy Alerskans
The Cryosphere, 13, 1005–1024, https://doi.org/10.5194/tc-13-1005-2019, https://doi.org/10.5194/tc-13-1005-2019, 2019
Short summary
Short summary
The paper facilitates the construction of a satellite-derived 2 m air temperature (T2m) product for Arctic snow/ice areas. The relationship between skin temperature (Tskin) and T2m is analysed using weather stations. The main factors influencing the relationship are seasonal variations, wind speed and clouds. A clear-sky bias is estimated to assess the effect of cloud-limited satellite observations. The results are valuable when validating satellite Tskin or estimating T2m from satellite Tskin.
Cited articles
Artemieva, I. M.: Lithosphere thermal thickness and geothermal heat flux in
Greenland from a new thermal isostasy method, Earth-Scie. Rev., 188,
469–481, https://doi.org/10.1016/j.earscirev.2018.10.015, 2019.
Aschwanden, A., Fahnestock, M., and Truffer, M.: Complex Greenland outlet
glacier flow captured, Nat. Com., 7, 10524, https://doi.org/10.1038/ncomms10524, 2016.
Bartels, A., Nilsson, M. K. M., Klausen, M. B., and Söderlund, U.:
Mesoproterozoic dykes in the Timmiarmiit area, Southeast Greenland: evidence
for a continuous Gardar dyke swarm across Greenland's North Atlantic Craton,
GFF, 138, 255–275, https://doi.org/10.1080/11035897.2015.1125386, 2016.
Blackwell, D. D. and Richards, M.: Geothermal Map of North America, AAPG
Map, scale 1 : 6 500 000, 2004.
Bons, P. D.: The formation of large quartz veins by rapid ascent of fluids
in mobile hydrofractures, Tectonophys., 336, 1–17,
https://doi.org/10.1016/S0040-1951(01)00090-7, 2001.
Bons, P. D., Dougherty-Page, J., and Elburg, M. A.: Stepwise accumulation
and ascent of magmas, J. Metamorphic Geol., 19, 627–633,
https://doi.org/10.1046/j.0263-4929.2001.00334.x, 2001.
Bons, P. D., Jansen, D., Mundel, F., Bauer, C. C., Binder, T., Eisen, O.,
Jessell, M. W., Llorens, M.-G., Steinbach, F., Steinhage, D., and Weikusat,
I.: Converging flow and anisotropy cause large-scale folding in Greenland
ice sheet, Nat. Com., 7, 11427, https://doi.org/10.1038/ncomms11427, 2016.
Buchardt, S. L. and Dahl-Jensen, D.: Estimating the basal melt rate at
NorthGRIP using a Monte Carlo technique, Ann. Glaciol., 45, 137–142, https://doi.org/10.3189/172756407782282435, 2017.
Burton-Johnson, A., Dziadek, R., Martin, C., Halpin, J. A., Whitehouse, P.
L., Ebbing, J., Martos, Y., Martin, A., Schroeder, D., Shen, W., Ritz, C.,
Goodge, J., Van Liefferinge, B., Pattyn, F., Reading, A., Ferraccioli, F.,
and The SERCE Geothermal Heat Flow Sub-Group: SARC-SERCE White Paper on
Antarctic Geothermal Heat Flow: Future research directions,
available at: https://scar.org/scar-library/search/science-4/research-programmes/serce/5454-scar-serce-white-paper-on-antarctic-geothermal-heat-flow/ (last access: 10 March 2021),
2020a.
Burton-Johnson, A., Dziadek, R., and Martin, C.: Review article: Geothermal heat flow in Antarctica: current and future directions, The Cryosphere, 14, 3843–3873, https://doi.org/10.5194/tc-14-3843-2020, 2020b.
Connolly, J. A. D. and Thompson, A. B.: Fluid and enthalpy production during
regional metamorphism, Contrib. Mineral. Petrol., 102, 347–366, 1989.
Davies, J. H.: Global map of solid Earth surface heat flow, Geochem.
Geophy. Geosy., 14, 4608–4622, https://doi.org/10.1002/ggge.20271, 2013.
Dziadek, R., Gohl, K., Diehl, A., and Kaul, N.: Geothermal heat flux in the
Amundsen Sea sector of West Antarctica: New insights from temperature
measurements, depth to the bottom of the magnetic source estimation, and
thermal modeling, Geochem. Geophy. Geosy., 18, 2657–2672,
https://doi.org/10.1002/2016GC006755, 2017.
Fahnestock, M., Abdalati, W., Joughin, I., Brozena, J., and Gogineni, P.:
High Geothermal Heat Flow, Basal Melt, and the Origin of Rapid Ice Flow in
Central Greenland, Science, 294, 2338–2342, https://doi.org/10.1126/science.1065370,
2001.
Hofmeister, A. M. and Criss, R. E.: Earth's heat flux revised and linked to
chemistry, Tectonophys., 395, 159–177, https://doi.org/10.1016/j.tecto.2004.09.006,
2005.
Houseman, G. A., Cull, J. P., Muir, P. M., and Paterson, H. L.: Geothermal
signatures and uranium ore deposits on the Stuart Shelf of South Australia,
Geophysics, 54, 158–170, https://doi.org/10.1190/1.1442640, 1989.
Jóhannesson, T., Pálmason, B., Hjartarson, Á., Jarosch, A. H.,
Magnússon, E., Belart, J. M. C., and Gudmundsson, M. T.: Non-surface
mass balance of glaciers in Iceland, J. Glaciol., 66, 1–13,
https://doi.org/10.1017/jog.2020.37, 2020.
Keisling, B., Christianson, K., Alley, R. B., Peters, L. E., Christian, J.
E. M., Anandakrishnan, S., Riverman, K. L., Muto, A., and Jacobel, R. W.:
Basal conditions and ice dynamics inferred from radar-derived internal
stratigraphy of the northeast Greenland ice stream, Ann. Glaciol., 55,
127–137, https://doi.org/10.3189/2014AoG67A090, 2014.
Lebedev, S., Schaeffer, A. J., Fullea, J., and Pease, V.: Seismic tomography
of the Arctic region: inferences for the thermal structure and evolution of
the lithosphere, Geol. Soc., London, Spec. Pubs., 460, 419–440,
https://doi.org/10.1144/SP460.10, 2017.
Macgregor, J., Fahnestock, M., Catania, G., Aschwanden, A., Clow, G.,
Colgan, W., Gogineni, S., Morlighem, M., Nowicki, S., Paden, J., Price, S.,
and Seroussi, H.: A synthesis of the basal thermal state of the Greenland
Ice Sheet, J. Geophys. Res.-Earth Surf., 121, 1328–1350,
https://doi.org/10.1002/2015JF003803, 2016.
Martos, Y. M., Jordan, T. A., Catalán, M., Jordan, T. M., Bamber, J. L.,
and Vaughan, D. G.: Geothermal heat flux reveals the Iceland hotspot track
underneath Greenland, Geophys. Res. Lett., 45, 8214–8222,
https://doi.org/10.1029/2018GL078289, 2018.
Morgan, P. J. and Holtzman, B. K.: Vug waves: A mechanism for coupled rock
deformation and fluid migration, Geochem. Geophy. Geosy., 6, Q08002,
https://doi.org/10.1029/2004GC000818, 2005.
Oliver, N. H. S., McLellan, J. G., Hobbs, B. E., Cleverley, J. S., Ord, A.,
and Feltrin, L.: Numerical models of extensional deformation, heat transfer,
and fluid flow across basement cover interfaces during basin-related
mineralization, Econ. Geol., 101, 1–31, https://doi.org/10.2113/gsecongeo.101.1.1,
2006.
Rezvanbehbahani, S., Stearns, L. A., Kadivar, A., Walker, J. D., and van der
Veen, C. J.: Predicting the geothermal heat flux in Greenland: A machine
learning approach, Geophys. Res. Lett., 44, 12271–12279,
https://doi.org/10.1002/2017GL075661, 2017.
Rignot, E. and Mouginot, J.: Ice flow in Greenland for the International
Polar Year 2008–2009, Geophys. Res. Lett., 39, 1–7,
https://doi.org/10.1029/2012GL051634, 2012.
Rogozhina, I., Petrunin, A. G., Vaughan, A. P. M., Steinberger, B., Johnson,
J. V., Kaban, M. K., Calov, R., Rickers, F., Thomas, M., and Koulakov, I.:
Melting at the base of the Greenland ice sheet explained by Iceland hotspot
history, Nat. Geosci., 9, 366–369, https://doi.org/10.1038/ngeo2689, 2016.
Sandiford, M., Hand, M., and McLaren, S.: High geothermal gradient
metamorphism during thermal subsidence, Earth Planet. Sci. Lett., 163,
149–165, https://doi.org/10.1016/S0012-821X(98)00183-6, 1998.
Schoonman, C. M., White, N. J., and Pritchard, D.: Radial viscous fingering
of hot asthenosphere within the Icelandic plume beneath the North Atlantic
Ocean, Earth Planet. Sci. Lett., 468, 51–61,
https://doi.org/10.1016/j.epsl.2017.03.036, 2017
Schroeder, D. M., Blankenship, D. D., Young, D. A., and Quartini, E.:
Evidence for elevated and spatially variable geothermal flux beneath the
West Antarctic Ice Sheet, P. Natl. Acad. Sci. USA, 111, 9070–9072,
https://doi.org/10.1073/pnas.1405184111, 2014.
Shen, W., Wiens, D., Lloyd, A., and Nyblade, A.: A geothermal heat flux map
of Antarctica empirically constrained by seismic structure, Geophys. Res.
Lett., 47, e2020GL086955, https://doi.org/10.1029/2020GL086955, 2020.
Smith-Johnsen, S., de Fleurian, B., Schlegel, N., Seroussi, H., and Nisancioglu, K.: Exceptionally high heat flux needed to sustain the Northeast Greenland Ice Stream, The Cryosphere, 14, 841–854, https://doi.org/10.5194/tc-14-841-2020, 2020.
Stevens, N. T., Parizek, B. R., and Alley, R. B.: Enhancement of volcanism
and geothermal heat flux by ice-age cycling: A stress modeling study of
Greenland, J. Geophys. Res.-Earth Surf., 121, 1456–1471,
https://doi.org/10.1002/2016JF003855, 2016.
Weisheit, A., Bons, P. D., Danisik, M., and Elburg, M. A.: Crustal-scale
folding: Palaeozoic deformation of the Mt. Painter Inlier, South Australia,
Geol. Soc., London, Spec. Pubs., 394, 53–77, https://doi.org/10.1144/SP394.9, 2013.
Short summary
The modelling of Smith-Johnson et al. (The Cryosphere, 14, 841–854, 2020) suggests that a very large heat flux of more than 10 times the usual geothermal heat flux is required to have initiated or to control the huge Northeast Greenland Ice Stream. Our comparison with known hotspots, such as Iceland and Yellowstone, shows that such an exceptional heat flux would be unique in the world and is incompatible with known geological processes that can raise the heat flux.
The modelling of Smith-Johnson et al. (The Cryosphere, 14, 841–854, 2020) suggests that a very...