Articles | Volume 15, issue 5
The Cryosphere, 15, 2251–2254, 2021
The Cryosphere, 15, 2251–2254, 2021
 | Highlight paper
17 May 2021
Comment/reply  | Highlight paper | 17 May 2021

Comment on “Exceptionally high heat flux needed to sustain the Northeast Greenland Ice Stream” by Smith-Johnsen et al. (2020)

Paul D. Bons et al.

Related authors

ISMIP-HOM benchmark experiments using Underworld
Till Sachau, Haibin Yang, Justin Lang, Paul D. Bons, and Louis Moresi
EGUsphere,,, 2022
Short summary
Can changes in deformation regimes be inferred from crystallographic preferred orientations in polar ice?
Maria-Gema Llorens, Albert Griera, Paul D. Bons, Ilka Weikusat, David J. Prior, Enrique Gomez-Rivas, Tamara de Riese, Ivone Jimenez-Munt, Daniel García-Castellanos, and Ricardo A. Lebensohn
The Cryosphere, 16, 2009–2024,,, 2022
Short summary
Crystallographic preferred orientations of ice deformed in direct-shear experiments at low temperatures
Chao Qi, David J. Prior, Lisa Craw, Sheng Fan, Maria-Gema Llorens, Albert Griera, Marianne Negrini, Paul D. Bons, and David L. Goldsby
The Cryosphere, 13, 351–371,,, 2019
Short summary
Strain localization and dynamic recrystallization in the ice–air aggregate: a numerical study
Florian Steinbach, Paul D. Bons, Albert Griera, Daniela Jansen, Maria-Gema Llorens, Jens Roessiger, and Ilka Weikusat
The Cryosphere, 10, 3071–3089,,, 2016
Short summary
Small-scale disturbances in the stratigraphy of the NEEM ice core: observations and numerical model simulations
D. Jansen, M.-G. Llorens, J. Westhoff, F. Steinbach, S. Kipfstuhl, P. D. Bons, A. Griera, and I. Weikusat
The Cryosphere, 10, 359–370,,, 2016
Short summary

Related subject area

Discipline: Ice sheets | Subject: Arctic (e.g. Greenland)
Brief communication: Preliminary ICESat-2 (Ice, Cloud and land Elevation Satellite-2) measurements of outlet glaciers reveal heterogeneous patterns of seasonal dynamic thickness change
Christian J. Taubenberger, Denis Felikson, and Thomas Neumann
The Cryosphere, 16, 1341–1348,,, 2022
Short summary
Uncertainties in projected surface mass balance over the polar ice sheets from dynamically downscaled EC-Earth models
Fredrik Boberg, Ruth Mottram, Nicolaj Hansen, Shuting Yang, and Peter L. Langen
The Cryosphere, 16, 17–33,,, 2022
Short summary
Thinning leads to calving-style changes at Bowdoin Glacier, Greenland
Eef C. H. van Dongen, Guillaume Jouvet, Shin Sugiyama, Evgeny A. Podolskiy, Martin Funk, Douglas I. Benn, Fabian Lindner, Andreas Bauder, Julien Seguinot, Silvan Leinss, and Fabian Walter
The Cryosphere, 15, 485–500,,, 2021
Short summary
Possible impacts of a 1000 km long hypothetical subglacial river valley towards Petermann Glacier in northern Greenland
Christopher Chambers, Ralf Greve, Bas Altena, and Pierre-Marie Lefeuvre
The Cryosphere, 14, 3747–3759,,, 2020
Short summary
Greenland Ice Sheet late-season melt: investigating multiscale drivers of K-transect events
Thomas J. Ballinger, Thomas L. Mote, Kyle Mattingly, Angela C. Bliss, Edward Hanna, Dirk van As, Melissa Prieto, Saeideh Gharehchahi, Xavier Fettweis, Brice Noël, Paul C. J. P. Smeets, Carleen H. Reijmer, Mads H. Ribergaard, and John Cappelen
The Cryosphere, 13, 2241–2257,,, 2019
Short summary

Cited articles

Artemieva, I. M.: Lithosphere thermal thickness and geothermal heat flux in Greenland from a new thermal isostasy method, Earth-Scie. Rev., 188, 469–481,, 2019. 
Aschwanden, A., Fahnestock, M., and Truffer, M.: Complex Greenland outlet glacier flow captured, Nat. Com., 7, 10524,, 2016. 
Bartels, A., Nilsson, M. K. M., Klausen, M. B., and Söderlund, U.: Mesoproterozoic dykes in the Timmiarmiit area, Southeast Greenland: evidence for a continuous Gardar dyke swarm across Greenland's North Atlantic Craton, GFF, 138, 255–275,, 2016. 
Blackwell, D. D. and Richards, M.: Geothermal Map of North America, AAPG Map, scale 1 : 6 500 000, 2004. 
Bons, P. D.: The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures, Tectonophys., 336, 1–17,, 2001. 
Short summary
The modelling of Smith-Johnson et al. (The Cryosphere, 14, 841–854, 2020) suggests that a very large heat flux of more than 10 times the usual geothermal heat flux is required to have initiated or to control the huge Northeast Greenland Ice Stream. Our comparison with known hotspots, such as Iceland and Yellowstone, shows that such an exceptional heat flux would be unique in the world and is incompatible with known geological processes that can raise the heat flux.