Articles | Volume 15, issue 4
https://doi.org/10.5194/tc-15-2041-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-2041-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Top-of-permafrost ground ice indicated by remotely sensed late-season subsidence
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA
Franz J. Meyer
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA
Related authors
Joanmarie Del Vecchio, Emma R. Lathrop, Julian B. Dann, Christian G. Andresen, Adam D. Collins, Michael M. Fratkin, Simon Zwieback, Rachel C. Glade, and Joel C. Rowland
Earth Surf. Dynam., 11, 227–245, https://doi.org/10.5194/esurf-11-227-2023, https://doi.org/10.5194/esurf-11-227-2023, 2023
Short summary
Short summary
In cold regions of the Earth, thawing permafrost can change the landscape, impact ecosystems, and lead to the release of greenhouse gases. In this study we used many observational tools to better understand how sediment moves on permafrost hillslopes. Some topographic change conforms to our understanding of slope stability and sediment transport as developed in temperate landscapes, but much of what we observed needs further explanation by permafrost-specific geomorphic models.
Philipp Bernhard, Simon Zwieback, and Irena Hajnsek
The Cryosphere, 16, 2819–2835, https://doi.org/10.5194/tc-16-2819-2022, https://doi.org/10.5194/tc-16-2819-2022, 2022
Short summary
Short summary
With climate change, Arctic hillslopes above ice-rich permafrost are vulnerable to enhanced carbon mobilization. In this work elevation change estimates generated from satellite observations reveal a substantial acceleration of carbon mobilization on the Taymyr Peninsula in Siberia between 2010 and 2021. The strong increase occurring in 2020 coincided with a severe Siberian heatwave and highlights that carbon mobilization can respond sharply and non-linearly to increasing temperatures.
Philipp Bernhard, Simon Zwieback, Nora Bergner, and Irena Hajnsek
The Cryosphere, 16, 1–15, https://doi.org/10.5194/tc-16-1-2022, https://doi.org/10.5194/tc-16-1-2022, 2022
Short summary
Short summary
We present an investigation of retrogressive thaw slumps in 10 study sites across the Arctic. These slumps have major impacts on hydrology and ecosystems and can also reinforce climate change by the mobilization of carbon. Using time series of digital elevation models, we found that thaw slump change rates follow a specific type of distribution that is known from landslides in more temperate landscapes and that the 2D area change is strongly related to the 3D volumetric change.
Kel N. Markert, Hyongki Lee, Gustavious P. Williams, E. James Nelson, Daniel P. Ames, Robert E. Griffin, and Franz J. Meyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-3491, https://doi.org/10.5194/egusphere-2024-3491, 2024
Short summary
Short summary
Flooding is a major problem and predicting it accurately over large areas is tough. This study tested a new approach to forecast floods across a large region in the United States. By dividing the area into smaller areas to develop the prediction models and then combining, the method successfully simulated surface water extent for both high and low flow periods. The results were more accurate than existing approaches with similar methods which can improve flood forecasting for larger areas.
Taha Sadeghi Chorsi, Franz J. Meyer, and Timothy H. Dixon
The Cryosphere, 18, 3723–3740, https://doi.org/10.5194/tc-18-3723-2024, https://doi.org/10.5194/tc-18-3723-2024, 2024
Short summary
Short summary
The active layer thaws and freezes seasonally. The annual freeze–thaw cycle of the active layer causes significant surface height changes due to the volume difference between ice and liquid water. We estimate the subsidence rate and active-layer thickness (ALT) for part of northern Alaska for summer 2017 to 2022 using interferometric synthetic aperture radar and lidar. ALT estimates range from ~20 cm to larger than 150 cm in area. Subsidence rate varies between close points (2–18 mm per month).
Jack Tarricone, Ryan W. Webb, Hans-Peter Marshall, Anne W. Nolin, and Franz J. Meyer
The Cryosphere, 17, 1997–2019, https://doi.org/10.5194/tc-17-1997-2023, https://doi.org/10.5194/tc-17-1997-2023, 2023
Short summary
Short summary
Mountain snowmelt provides water for billions of people across the globe. Despite its importance, we cannot currently measure the amount of water in mountain snowpacks from satellites. In this research, we test the ability of an experimental snow remote sensing technique from an airplane in preparation for the same sensor being launched on a future NASA satellite. We found that the method worked better than expected for estimating important snowpack properties.
Joanmarie Del Vecchio, Emma R. Lathrop, Julian B. Dann, Christian G. Andresen, Adam D. Collins, Michael M. Fratkin, Simon Zwieback, Rachel C. Glade, and Joel C. Rowland
Earth Surf. Dynam., 11, 227–245, https://doi.org/10.5194/esurf-11-227-2023, https://doi.org/10.5194/esurf-11-227-2023, 2023
Short summary
Short summary
In cold regions of the Earth, thawing permafrost can change the landscape, impact ecosystems, and lead to the release of greenhouse gases. In this study we used many observational tools to better understand how sediment moves on permafrost hillslopes. Some topographic change conforms to our understanding of slope stability and sediment transport as developed in temperate landscapes, but much of what we observed needs further explanation by permafrost-specific geomorphic models.
Philipp Bernhard, Simon Zwieback, and Irena Hajnsek
The Cryosphere, 16, 2819–2835, https://doi.org/10.5194/tc-16-2819-2022, https://doi.org/10.5194/tc-16-2819-2022, 2022
Short summary
Short summary
With climate change, Arctic hillslopes above ice-rich permafrost are vulnerable to enhanced carbon mobilization. In this work elevation change estimates generated from satellite observations reveal a substantial acceleration of carbon mobilization on the Taymyr Peninsula in Siberia between 2010 and 2021. The strong increase occurring in 2020 coincided with a severe Siberian heatwave and highlights that carbon mobilization can respond sharply and non-linearly to increasing temperatures.
Philipp Bernhard, Simon Zwieback, Nora Bergner, and Irena Hajnsek
The Cryosphere, 16, 1–15, https://doi.org/10.5194/tc-16-1-2022, https://doi.org/10.5194/tc-16-1-2022, 2022
Short summary
Short summary
We present an investigation of retrogressive thaw slumps in 10 study sites across the Arctic. These slumps have major impacts on hydrology and ecosystems and can also reinforce climate change by the mobilization of carbon. Using time series of digital elevation models, we found that thaw slump change rates follow a specific type of distribution that is known from landslides in more temperate landscapes and that the 2D area change is strongly related to the 3D volumetric change.
Cited articles
Antonova, S., Sudhaus, H., Strozzi, T., Zwieback, S., Kääb, A., Heim,
B., Langer, M., Bornemann, N., and Boike, J.: Thaw subsidence of a yedoma
landscape in northern Siberia, measured in situ and estimated from
TerraSAR-X interferometry, Remote Sensing, 10, 494, https://doi.org/10.3390/rs10040494, 2018. a
Bartsch, A., Leibman, M., Strozzi, T., Khomutov, A., Widhalm, B., Babkina, E.,
Mullanurov, D., Ermokhina, K., Kroisleitner, C., and Bergstedt, H.: Seasonal
Progression of Ground Displacement Identified with Satellite Radar
Interferometry and the Impact of Unusually Warm Conditions on Permafrost at
the Yamal Peninsula in 2016, Remote Sensing, 11, 1865,
https://doi.org/10.3390/rs11161865, 2019. a, b, c
Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E.: A new algorithm for
surface deformation monitoring based on small baseline differential SAR
interferograms, IEEE T. Geosci. Remote, 40,
2375–2383, https://doi.org/10.1109/TGRS.2002.803792, 2002. a, b, c
Borge, A. F., Westermann, S., Solheim, I., and Etzelmüller, B.: Strong degradation of palsas and peat plateaus in northern Norway during the last 60 years, The Cryosphere, 11, 1–16, https://doi.org/10.5194/tc-11-1-2017, 2017. a
Box, J. E., Colgan, W. T., Christensen, T. R., Schmidt, N. M., Lund, M.,
Parmentier, F.-J. W., Brown, R., Bhatt, U. S., Euskirchen, E. S., Romanovsky,
V. E., Walsh, J. E., Overland, J. E., Wang, M., Corell, R. W., Meier, W. N.,
Wouters, B., Mernild, S., Mård, J., Pawlak, J., and Olsen, M. S.: Key
indicators of Arctic climate change: 1971–2017, Environ.
Res. Lett., 14, 045010, https://doi.org/10.1088/1748-9326/aafc1b, 2019. a
Burn, C. R.: Cryostratigraphy, paleogeography, and climate change during the
early Holocene warm interval, western Arctic coast, Canada, Can.
J. Earth Sci., 34, 912–925, https://doi.org/10.1139/e17-076, 1997. a
Chen, C. W. and Zebker, H. A.: Two-dimensional phase unwrapping with use of
statistical models for cost functions in nonlinear optimization, J. Opt. Soc.
Am. A, 18, 338–351, https://doi.org/10.1364/JOSAA.18.000338, 2001. a
Chen, J., Günther, F., Grosse, G., Liu, L., and Lin, H.: Sentinel-1
InSAR Measurements of Elevation Changes over Yedoma Uplands on
Sobo-Sise Island, Lena Delta, Remote Sensing, 10, 1152, https://doi.org/10.3390/rs10071152, 2018. a
Chen, J., Wu, Y., O'Connor, M., Cardenas, M. B., Schaefer, K., Michaelides, R.,
and Kling, G.: Active layer freeze-thaw and water storage dynamics in
permafrost environments inferred from InSAR, Remote Sens. Environ.,
248, 112007, https://doi.org/10.1016/j.rse.2020.112007, 2020. a, b
Connon, R., Devoie, É., Hayashi, M., Veness, T., and Quinton, W.: The
influence of shallow taliks on permafrost thaw and active layer dynamics in
subarctic Canada, J. Geophys. Res.-Earth, 123,
281–297, 2018. a
De Zan, F., Zonno, M., and Lopez-Dekker, P.: Phase Inconsistencies and
Multiple Scattering in SAR Interferometry, IEEE T. Geosci.
Remote, 53, 6608–6616, 2015. a
Dredge, L. A., Kerr, D. E., and Wolfe, S. A.: Surficial materials and related
ground ice conditions, Slave Province, N.W.T., Canada, Can.
J. Earth Sci., 36, 1227–1238, https://doi.org/10.1139/e98-087, 1999. a, b
Farquharson, L., Mann, D., Grosse, G., Jones, B., and Romanovsky, V.: Spatial
distribution of thermokarst terrain in Arctic Alaska, Geomorphology, 273,
116–133, https://doi.org/10.1016/j.geomorph.2016.08.007, 2016. a, b
French, H. and Shur, Y.: The principles of cryostratigraphy, Earth-Sci.
Rev., 101, 190–206,
https://doi.org/10.1016/j.earscirev.2010.04.002, 2010. a, b, c
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a
Global Modeling and Assimilation Office: MERRA-2 statD_2d_slv_Nx: 2d,
Daily, Aggregated Statistics, Single-Level, Assimilation, Single-Level
Diagnostics, Goddard Earth Sciences Data and Information Services Center,
https://doi.org/10.5067/9SC1VNTWGWV3, 2020. a, b
Gruber, S.: Ground subsidence and heave over permafrost: hourly time series reveal interannual, seasonal and shorter-term movement caused by freezing, thawing and water movement, The Cryosphere, 14, 1437–1447, https://doi.org/10.5194/tc-14-1437-2020, 2020. a
Heginbottom, J. A.: Permafrost mapping: a review, Prog. Phys.
Geog., 26, 623–642,
https://doi.org/10.1191/0309133302pp355ra, 2002. a, b, c
Iwahana, G., Uchida, M., Liu, L., Gong, W., Meyer, F. J., Guritz, R.,
Yamanokuchi, T., and Hinzman, L.: InSAR detection and field evidence for
thermokarst after a tundra wildfire, using ALOS-PALSAR, Remote Sensing, 8, 218, https://doi.org/10.3390/rs8030218, 2016. a, b
Jorgenson, J. C., Hoef, J. M. V., and Jorgenson, M. T.: Long-term recovery
patterns of arctic tundra after winter seismic exploration, Ecol.
Appl., 20, 205–221, https://doi.org/10.1890/08-1856.1,
2010. a
Jorgenson, M., Yoshikawa, K., Kanevskiy, M., Shur, Y., Romanovsky, V.,
Marchenko, S.and Grosse, G., Brown, J., and Jones, B.: Permafrost
characteristics of Alaska, in: Proceedings of the Ninth International
Conference on Permafrost, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska, 121–122, 2008. a, b
Jorgenson, M. T., Shur, Y. L., and Pullman, E. R.: Abrupt increase in
permafrost degradation in Arctic Alaska, Geophys. Res. Lett.,
33, L02503, https://doi.org/10.1029/2005GL024960, 2006. a
Jorgenson, M. T., Romanovsky, V., Harden, J., Shur, Y., O’Donnell, J.,
Schuur, E. A. G., Kanevskiy, M., and Marchenko, S.: Resilience and
vulnerability of permafrost to climate change, Can. J. Forest
Res., 40, 1219–1236, https://doi.org/10.1139/X10-060, 2010. a, b, c
Jorgenson, M. T., Kanevskiy, M., Shur, Y., Moskalenko, N., Brown, D. R. N.,
Wickland, K., Striegl, R., and Koch, J.: Role of ground ice dynamics and
ecological feedbacks in recent ice wedge degradation and stabilization,
J. Geophys. Res.-Earth, 120, 2280–2297,
https://doi.org/10.1002/2015JF003602, 2015. a, b
Kanevskiy, M., Jorgenson, T., Shur, Y., O'Donnell, J. A., Harden, J. W.,
Zhuang, Q., and Fortier, D.: Cryostratigraphy and Permafrost Evolution in the
Lacustrine Lowlands of West-Central Alaska, Permafrost Periglac., 25, 14–34, https://doi.org/10.1002/ppp.1800, 2014. a
Kanevskiy, M., Shur, Y., Jorgenson, T., Brown, D. R., Moskalenko, N., Brown,
J., Walker, D. A., Raynolds, M. K., and Buchhorn, M.: Degradation and
stabilization of ice wedges: Implications for assessing risk of thermokarst
in northern Alaska, Geomorphology, 297, 20–42,
https://doi.org/10.1016/j.geomorph.2017.09.001, 2017. a, b, c
Kokelj, S. V. and Jorgenson, M. T.: Advances in Thermokarst Research,
Permafrost Periglac., 24, 108–119, https://doi.org/10.1002/ppp.1779,
2013. a, b
Kokelj, S. V., Lantz, T. C., Tunnicliffe, J., Segal, R., and Lacelle, D.:
Climate-driven thaw of permafrost preserved glacial landscapes, northwestern
Canada, Geology, 45, 371–374, https://doi.org/10.1130/G38626.1, 2017. a
Lewkowicz, A. G.: A solifluction meter for permafrost sites, Permafrost
Periglac., 3, 11–18, https://doi.org/10.1002/ppp.3430030103, 1992. a
Mackay, J. R.: The Growth of Pingos, Western Arctic Coast, Canada, Canadian
J. Earth Sci., 10, 979–1004, https://doi.org/10.1139/e73-086, 1973. a
Mackay, J. R.: Active layer slope movement in a continuous permafrost
environment, Garry Island, Northwest Territories, Canada, Canadian
J. Earth Sci., 18, 1666–1680, https://doi.org/10.1139/e81-154, 1981. a
Mackay, J. R.: Downward water movement into frozen ground, western arctic
coast, Canada, Can. J. Earth Sci., 20, 120–134,
https://doi.org/10.1139/e83-012, 1983. a
Mackay, J. R.: Some observations on the growth and deformation of epigenetic,
syngenetic and anti-syngenetic ice wedges, Permafrost Periglac., 1, 15–29, https://doi.org/10.1002/ppp.3430010104, 1990. a
Matsuoka, N.: Solifluction rates, processes and landforms: a global review,
Earth-Sci. Rev., 55, 107–134,
https://doi.org/10.1016/S0012-8252(01)00057-5, 2001. a
Melvin, A. M., Larsen, P., Boehlert, B., Neumann, J. E., Chinowsky, P.,
Espinet, X., Martinich, J., Baumann, M. S., Rennels, L., Bothner, A.,
Nicolsky, D. J., and Marchenko, S. S.: Climate change damages to Alaska
public infrastructure and the economics of proactive adaptation, P.
Natl. Acad. Sci. USA, 114, E122–E131,
https://doi.org/10.1073/pnas.1611056113, 2017. a
Morgenstern, N. R. and Nixon, J. F.: One-dimensional Consolidation of Thawing
Soils, Can. Geotech. J., 8, 558–565, https://doi.org/10.1139/t71-057,
1971. a, b, c
O'Neill, H. B., Wolfe, S. A., and Duchesne, C.: New ground ice maps for Canada using a paleogeographic modelling approach, The Cryosphere, 13, 753–773, https://doi.org/10.5194/tc-13-753-2019, 2019. a, b
Osterkamp, T. E., Viereck, L., Shur, Y., Jorgenson, M. T., Racine, C., Doyle,
A., and Boone, R. D.: Observations of Thermokarst and Its Impact on Boreal
Forests in Alaska, U.S.A., Arct. Antarct. Alp. Res., 32,
303–315, 2000. a
Paul, J. R., Kokelj, S. V., and Baltzer, J. L.: Spatial and stratigraphic
variation of near-surface ground ice in discontinuous permafrost of the
Taiga Shield, Permafrost Periglac., 32, 3–18,
https://doi.org/10.1002/ppp.2085, 2021. a, b, c, d
Pollard, W. H. and French, H. M.: A first approximation of the volume of ground
ice, Richards Island, Pleistocene Mackenzie delta, Northwest
Territories, Canada, Can. Geotech. J., 17, 509–516,
https://doi.org/10.1139/t80-059, 1980. a
Prowse, T. D., Furgal, C., Melling, H., and Smith, S. L.: Implications of
Climate Change for Northern Canada: The Physical Environment, AMBIO, 38, 266–271,
https://doi.org/10.1579/0044-7447-38.5.266, 2009. a
Reger, R. and Solie, D.: Reconnaissance interpretation of permafrost, Alaska
Highway corridor, Delta Junction to Dot Lake, Alaska: Preliminary
Interpretive Report, Tech. Rep. 2008-3C, State of Alaska, Department of
Natural Resources, Division of Geological & Geophysical Surveys,
https://doi.org/10.14509/17621, 2008. a, b, c, d, e
Rizzoli, P., Martone, M., Gonzalez, C., Wecklich, C., Borla Tridon, D.,
Bräutigam, B., Bachmann, M., Schulze, D., Fritz, T., Huber, M., Wessel, B.,
Krieger, G., Zink, M., and Moreira, A.: Generation and performance assessment
of the global TanDEM-X digital elevation model, ISPRS J.
Photogramm., 132, 119–139,
https://doi.org/10.1016/j.isprsjprs.2017.08.008, 2017. a
Robinson, S. D. and Pollard, W. H.: Massive ground ice within Eureka Sound
Bedrock, Ellesmere Island, Canada, in: Proceedings of the 7th
InternationalConference On Permafrost, Yellowknife, Canada, 1998. a
Romanovsky, V. E., Drozdov, D. S., Oberman, N. G., Malkova, G. V., Kholodov,
A. L., Marchenko, S. S., Moskalenko, N. G., Sergeev, D. O., Ukraintseva,
N. G., Abramov, A. A., Gilichinsky, D. A., and Vasiliev, A. A.: Thermal state
of permafrost in Russia, Permafrost Periglac., 21,
136–155, https://doi.org/10.1002/ppp.683, 2010. a
Roulet, N. T.: Surface Level and Water Table Fluctuations in a Subarctic Fen,
Arctic Alpine Res., 23, 303–310, https://doi.org/10.2307/1551608, 1991. a
Rouyet, L., Lauknes, T. R., Christiansen, H. H., Strand, S. M., and Larsen, Y.:
Seasonal dynamics of a permafrost landscape, Adventdalen, Svalbard,
investigated by InSAR, Remote Sens. Environ., 231, 111236, https://doi.org/10.1016/j.rse.2019.111236, 2019. a
Scheiber, R. and Moreira, A.: Coregistration of interferometric SAR images
using spectral diversity, IEEE T. Geosci. Remote,
38, 2179–2191, 2000. a
Segal, R. A., Lantz, T. C., and Kokelj, S. V.: Acceleration of thaw slump
activity in glaciated landscapes of the Western Canadian Arctic,
Environ. Res. Lett., 11, 034025, https://doi.org/10.1088/1748-9326/11/3/034025,
2016. a
Shiklomanov, N., Streletskiy, D., Nelson, F., Hollister, R., Romanovsky, V.,
Tweedie, C., Bockheim, J., and Brown, J.: Decadal variations of active-layer
thickness in moisture-controlled landscapes, Barrow, Alaska, J.
Geophys. Res.-Biogeo., 115, G00I04, https://doi.org/10.1029/2009JG001248, 2010.
a, b
Shiklomanov, N. I., Streletskiy, D. A., Little, J. D., and Nelson, F. E.:
Isotropic thaw subsidence in undisturbed permafrost landscapes, Geophys.
Res. Lett., 40, 6356–6361, https://doi.org/10.1002/2013GL058295, 2013. a
Shur, Y., Hinkel, K. M., and Nelson, F. E.: The transient layer: implications
for geocryology and climate-change science, Permafrost Periglac., 16, 5–17, https://doi.org/10.1002/ppp.518, 2005. a, b, c
Stephens, J. C., Allen Jr, L., and Chen, E.: Organic soil subsidence, Reviews
in Engineering Geology, 6, 107–122, 1984. a
Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E.,
Potin, P., Rommen, B., Floury, N., Brown, M., Traver, I. N., Deghaye, P.,
Duesmann, B., Rosich, B., Miranda, N., Bruno, C., L'Abbate, M., Croci, R.,
Pietropaolo, A., Huchler, M., and Rostan, F.: GMES Sentinel-1 mission,
Remote Sens. Environ., 120, 9–24,
https://doi.org/10.1016/j.rse.2011.05.028, 2012. a, b, c
Tough, R., Blacknell, D., and Quegan, S.: A statistical description of
polarimetric and interferometric synthetic aperture radar, Proc. R. Soc.
Lond. A, 449, 567–589, 1995. a
Wang, L., Marzahn, P., Bernier, M., and Ludwig, R.: Sentinel-1 InSAR
measurements of deformation over discontinuous permafrost terrain, Northern
Quebec, Canada, Remote Sens. Environ., 248, 111965,
https://doi.org/10.1016/j.rse.2020.111965, 2020. a, b
Zhang, J., Liu, L., and Hu, Y.: Global Positioning System interferometric reflectometry (GPS-IR) measurements of ground surface elevation changes in permafrost areas in northern Canada, The Cryosphere, 14, 1875–1888, https://doi.org/10.5194/tc-14-1875-2020, 2020. a
Zhang, W., Witharana, C., Liljedahl, A. K., and Kanevskiy, M.: Deep
Convolutional Neural Networks for Automated Characterization of Arctic
Ice-Wedge Polygons in Very High Spatial Resolution Aerial Imagery, Remote
Sensing, 10, 1487, https://doi.org/10.3390/rs10091487, 2018. a
Zwieback, S.: Kivalina ground ice map (Version 1.0), Zenodo,
https://doi.org/10.5281/zenodo.4072407, 2020a. a, b
Zwieback, S.: Kivalina subsidence observations (Version 1.0), Zenodo,
https://doi.org/10.5281/zenodo.4072257, 2020b. a
Zwieback, S. and Hajnsek, I.: Influence of vegetation growth on the
polarimetric DInSAR phase diversity – implications for deformation
studies, IEEE T. Geosci. Remote, 54, 3070–3082, 2016. a
Zwieback, S., Hensley, S., and Hajnsek, I.: Soil Moisture Estimation Using
Differential Radar Interferometry: Toward Separating Soil Moisture and
Displacements, IEEE T. Geosci. Remote, 55,
5069–5083, https://doi.org/10.1109/TGRS.2017.2702099, 2017. a
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(10360 KB) - Full-text XML
- Corrigendum
-
Supplement
(1639 KB) - BibTeX
- EndNote
Short summary
Thawing of ice-rich permafrost leads to subsidence and slumping, which can compromise Arctic infrastructure. However, we lack fine-scale maps of permafrost ground ice, chiefly because it is usually invisible at the surface. We show that subsidence at the end of summer serves as a
fingerprintwith which near-surface permafrost ground ice can be identified. As this can be done with satellite data, this method may help improve ground ice maps and thus sustainably steward the Arctic.
Thawing of ice-rich permafrost leads to subsidence and slumping, which can compromise Arctic...