Burn, C. R.: Cryostratigraphy, paleogeography, and climate change during the
early Holocene warm interval, western Arctic coast, Canada, Can.
J. Earth Sci., 34, 912–925,
https://doi.org/10.1139/e17-076, 1997.
a
Chen, C. W. and Zebker, H. A.: Two-dimensional phase unwrapping with use of
statistical models for cost functions in nonlinear optimization, J. Opt. Soc.
Am. A, 18, 338–351,
https://doi.org/10.1364/JOSAA.18.000338, 2001.
a
Chen, J., Günther, F., Grosse, G., Liu, L., and Lin, H.: Sentinel-1
InSAR Measurements of Elevation Changes over Yedoma Uplands on
Sobo-Sise Island, Lena Delta, Remote Sensing, 10, 1152,
https://doi.org/10.3390/rs10071152, 2018.
a
Chen, J., Wu, Y., O'Connor, M., Cardenas, M. B., Schaefer, K., Michaelides, R.,
and Kling, G.: Active layer freeze-thaw and water storage dynamics in
permafrost environments inferred from InSAR, Remote Sens. Environ.,
248, 112007,
https://doi.org/10.1016/j.rse.2020.112007, 2020.
a,
b
Connon, R., Devoie, É., Hayashi, M., Veness, T., and Quinton, W.: The
influence of shallow taliks on permafrost thaw and active layer dynamics in
subarctic Canada, J. Geophys. Res.-Earth, 123,
281–297, 2018. a
Copernicus Sentinel: Copernicus Open Access Hub,
available at:
https://scihub.copernicus.eu, last access: 3 October
2020.
a,
b,
c,
d,
e
Douglas, T. A., Turetsky, M. R., and Koven, C. D.: Increased rainfall
stimulates permafrost thaw across a variety of Interior Alaskan boreal
ecosystems, NPJ Climate and Atmospheric Science, 3, 1–7, 2020.
a,
b
DOWL Engineers: City of Kivalina Relocation Study, Tech. rep., Kivalina City Council,
Kivalina, Alaska, unpublished data,
1994.
a,
b,
c,
d,
e
Dredge, L. A., Kerr, D. E., and Wolfe, S. A.: Surficial materials and related
ground ice conditions, Slave Province, N.W.T., Canada, Can.
J. Earth Sci., 36, 1227–1238,
https://doi.org/10.1139/e98-087, 1999.
a,
b
Farquharson, L., Mann, D., Grosse, G., Jones, B., and Romanovsky, V.: Spatial
distribution of thermokarst terrain in Arctic Alaska, Geomorphology, 273,
116–133,
https://doi.org/10.1016/j.geomorph.2016.08.007, 2016.
a,
b
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454,
https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
a
Global Modeling and Assimilation Office: MERRA-2 statD_2d_slv_Nx: 2d,
Daily, Aggregated Statistics, Single-Level, Assimilation, Single-Level
Diagnostics, Goddard Earth Sciences Data and Information Services Center,
https://doi.org/10.5067/9SC1VNTWGWV3, 2020.
a,
b
Gruber, S.: Ground subsidence and heave over permafrost: hourly time series reveal interannual, seasonal and shorter-term movement caused by freezing, thawing and water movement, The Cryosphere, 14, 1437–1447,
https://doi.org/10.5194/tc-14-1437-2020, 2020.
a
Harris, C., Kern-Luetschg, M., Christiansen, H. H., and Smith, F.: The Role of
Interannual Climate Variability in Controlling Solifluction Processes,
Endalen, Svalbard, Permafrost Periglac., 22, 239–253,
2011.
a,
b,
c,
d
Iwahana, G., Uchida, M., Liu, L., Gong, W., Meyer, F. J., Guritz, R.,
Yamanokuchi, T., and Hinzman, L.: InSAR detection and field evidence for
thermokarst after a tundra wildfire, using ALOS-PALSAR, Remote Sensing, 8, 218,
https://doi.org/10.3390/rs8030218, 2016.
a,
b
Jorgenson, J. C., Hoef, J. M. V., and Jorgenson, M. T.: Long-term recovery
patterns of arctic tundra after winter seismic exploration, Ecol.
Appl., 20, 205–221,
https://doi.org/10.1890/08-1856.1,
2010.
a
Jorgenson, M., Yoshikawa, K., Kanevskiy, M., Shur, Y., Romanovsky, V.,
Marchenko, S.and Grosse, G., Brown, J., and Jones, B.: Permafrost
characteristics of Alaska, in: Proceedings of the Ninth International
Conference on Permafrost, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska, 121–122, 2008.
a,
b
Jorgenson, M. T., Shur, Y. L., and Pullman, E. R.: Abrupt increase in
permafrost degradation in Arctic Alaska, Geophys. Res. Lett.,
33, L02503,
https://doi.org/10.1029/2005GL024960, 2006.
a
Jorgenson, M. T., Romanovsky, V., Harden, J., Shur, Y., O’Donnell, J.,
Schuur, E. A. G., Kanevskiy, M., and Marchenko, S.: Resilience and
vulnerability of permafrost to climate change, Can. J. Forest
Res., 40, 1219–1236,
https://doi.org/10.1139/X10-060, 2010.
a,
b,
c
Jorgenson, M. T., Kanevskiy, M., Shur, Y., Moskalenko, N., Brown, D. R. N.,
Wickland, K., Striegl, R., and Koch, J.: Role of ground ice dynamics and
ecological feedbacks in recent ice wedge degradation and stabilization,
J. Geophys. Res.-Earth, 120, 2280–2297,
https://doi.org/10.1002/2015JF003602, 2015.
a,
b
Jorgenson, T., Shur, Y., and Walker, H.: Evolution of a permafrost-dominated
landscape on the Colville River Delta, northern Alaska, in:
Proceedings of the 7th InternationalConference On Permafrost, Yellowknife,
Canada, 1998.
a,
b,
c
Kanevskiy, M., Shur, Y., Connor, B., Dillon, M., Stephani, E., and O'Donnell,
J.: Study of Ice-Rich Syngenetic Permafrost for Road Design (Interior
Alaska), Proceedings of the Tenth International Conference on Permafrost, The Northern Publisher, 25–29,
2012.
a,
b
Kanevskiy, M., Jorgenson, T., Shur, Y., O'Donnell, J. A., Harden, J. W.,
Zhuang, Q., and Fortier, D.: Cryostratigraphy and Permafrost Evolution in the
Lacustrine Lowlands of West-Central Alaska, Permafrost Periglac., 25, 14–34,
https://doi.org/10.1002/ppp.1800, 2014.
a
Kanevskiy, M., Shur, Y., Jorgenson, T., Brown, D. R., Moskalenko, N., Brown,
J., Walker, D. A., Raynolds, M. K., and Buchhorn, M.: Degradation and
stabilization of ice wedges: Implications for assessing risk of thermokarst
in northern Alaska, Geomorphology, 297, 20–42,
https://doi.org/10.1016/j.geomorph.2017.09.001, 2017.
a,
b,
c
Kokelj, S. V., Lantz, T. C., Tunnicliffe, J., Segal, R., and Lacelle, D.:
Climate-driven thaw of permafrost preserved glacial landscapes, northwestern
Canada, Geology, 45, 371–374,
https://doi.org/10.1130/G38626.1, 2017.
a
Liu, L., Schaefer, K., Chen, A., Gusmeroli, A., Zebker, H., and Zhang, T.:
Remote sensing measurements of thermokarst subsidence using InSAR, J.
Geophys. Res.-Earth, 120, 1935–1948, 2015.
a,
b,
c,
d
Mackay, J. R.: Active layer slope movement in a continuous permafrost
environment, Garry Island, Northwest Territories, Canada, Canadian
J. Earth Sci., 18, 1666–1680,
https://doi.org/10.1139/e81-154, 1981.
a
Mackay, J. R.: Downward water movement into frozen ground, western arctic
coast, Canada, Can. J. Earth Sci., 20, 120–134,
https://doi.org/10.1139/e83-012, 1983.
a
Mackay, J. R.: Some observations on the growth and deformation of epigenetic,
syngenetic and anti-syngenetic ice wedges, Permafrost Periglac., 1, 15–29,
https://doi.org/10.1002/ppp.3430010104, 1990.
a
Melvin, A. M., Larsen, P., Boehlert, B., Neumann, J. E., Chinowsky, P.,
Espinet, X., Martinich, J., Baumann, M. S., Rennels, L., Bothner, A.,
Nicolsky, D. J., and Marchenko, S. S.: Climate change damages to Alaska
public infrastructure and the economics of proactive adaptation, P.
Natl. Acad. Sci. USA, 114, E122–E131,
https://doi.org/10.1073/pnas.1611056113, 2017.
a
Morse, P. D., Burn, C. R., and Kokelj, S. V.: Near-surface ground-ice
distribution, Kendall Island Bird Sanctuary, western Arctic coast,
Canada, Permafrost Periglac., 20, 155–171,
https://doi.org/10.1002/ppp.650, 2009.
a,
b,
c,
d,
e
O'Neill, H. B., Wolfe, S. A., and Duchesne, C.: New ground ice maps for Canada using a paleogeographic modelling approach, The Cryosphere, 13, 753–773,
https://doi.org/10.5194/tc-13-753-2019, 2019.
a,
b
Osterkamp, T. E., Viereck, L., Shur, Y., Jorgenson, M. T., Racine, C., Doyle,
A., and Boone, R. D.: Observations of Thermokarst and Its Impact on Boreal
Forests in Alaska, U.S.A., Arct. Antarct. Alp. Res., 32,
303–315, 2000. a
Paul, J. R., Kokelj, S. V., and Baltzer, J. L.: Spatial and stratigraphic
variation of near-surface ground ice in discontinuous permafrost of the
Taiga Shield, Permafrost Periglac., 32, 3–18,
https://doi.org/10.1002/ppp.2085, 2021.
a,
b,
c,
d
Pewe, T., Hopkins, D., and Lachenbruch, A.: Engineerin
g geology bearing on
harbor site-selection along the Northwest coast of Alaska from Nome to
Point Barrow, Tech. rep., United States Department of the Interior,
Geological Survey, 1958.
a,
b
Planet Team: Planet Application Program Interface: In Space for Life on
Earth, San Francisco, CA, available at:
https://api.planet.com, last access: 20 September 2020.
a,
b
Pollard, W. H. and French, H. M.: A first approximation of the volume of ground
ice, Richards Island, Pleistocene Mackenzie delta, Northwest
Territories, Canada, Can. Geotech. J., 17, 509–516,
https://doi.org/10.1139/t80-059, 1980.
a
Prowse, T. D., Furgal, C., Melling, H., and Smith, S. L.: Implications of
Climate Change for Northern Canada: The Physical Environment, AMBIO, 38, 266–271,
https://doi.org/10.1579/0044-7447-38.5.266, 2009.
a
Reger, R. and Solie, D.: Reconnaissance interpretation of permafrost, Alaska
Highway corridor, Delta Junction to Dot Lake, Alaska: Preliminary
Interpretive Report, Tech. Rep. 2008-3C, State of Alaska, Department of
Natural Resources, Division of Geological & Geophysical Surveys,
https://doi.org/10.14509/17621, 2008.
a,
b,
c,
d,
e
Rizzoli, P., Martone, M., Gonzalez, C., Wecklich, C., Borla Tridon, D.,
Bräutigam, B., Bachmann, M., Schulze, D., Fritz, T., Huber, M., Wessel, B.,
Krieger, G., Zink, M., and Moreira, A.: Generation and performance assessment
of the global TanDEM-X digital elevation model, ISPRS J.
Photogramm., 132, 119–139,
https://doi.org/10.1016/j.isprsjprs.2017.08.008, 2017.
a
Robinson, S. D. and Pollard, W. H.: Massive ground ice within Eureka Sound
Bedrock, Ellesmere Island, Canada, in: Proceedings of the 7th
InternationalConference On Permafrost, Yellowknife, Canada, 1998. a
Romanovsky, V. E., Drozdov, D. S., Oberman, N. G., Malkova, G. V., Kholodov,
A. L., Marchenko, S. S., Moskalenko, N. G., Sergeev, D. O., Ukraintseva,
N. G., Abramov, A. A., Gilichinsky, D. A., and Vasiliev, A. A.: Thermal state
of permafrost in Russia, Permafrost Periglac., 21,
136–155,
https://doi.org/10.1002/ppp.683, 2010.
a
Rouyet, L., Lauknes, T. R., Christiansen, H. H., Strand, S. M., and Larsen, Y.:
Seasonal dynamics of a permafrost landscape, Adventdalen, Svalbard,
investigated by InSAR, Remote Sens. Environ., 231, 111236,
https://doi.org/10.1016/j.rse.2019.111236, 2019.
a
Scheiber, R. and Moreira, A.: Coregistration of interferometric SAR images
using spectral diversity, IEEE T. Geosci. Remote,
38, 2179–2191, 2000. a
Segal, R. A., Lantz, T. C., and Kokelj, S. V.: Acceleration of thaw slump
activity in glaciated landscapes of the Western Canadian Arctic,
Environ. Res. Lett., 11, 034025,
https://doi.org/10.1088/1748-9326/11/3/034025,
2016.
a
Shannon & Wilson, Inc.: Geotechnical Investigation: Potential Relocation
Sites, Kivalina, Alaska, Tech. rep., 2006.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l
Shiklomanov, N., Streletskiy, D., Nelson, F., Hollister, R., Romanovsky, V.,
Tweedie, C., Bockheim, J., and Brown, J.: Decadal variations of active-layer
thickness in moisture-controlled landscapes, Barrow, Alaska, J.
Geophys. Res.-Biogeo., 115, G00I04,
https://doi.org/10.1029/2009JG001248, 2010.
a,
b
Shiklomanov, N. I., Streletskiy, D. A., Little, J. D., and Nelson, F. E.:
Isotropic thaw subsidence in undisturbed permafrost landscapes, Geophys.
Res. Lett., 40, 6356–6361,
https://doi.org/10.1002/2013GL058295, 2013.
a
Shur, Y., Hinkel, K. M., and Nelson, F. E.: The transient layer: implications
for geocryology and climate-change science, Permafrost Periglac., 16, 5–17,
https://doi.org/10.1002/ppp.518, 2005.
a,
b,
c
TanDEM-X DLR: TanDEM-X Science Service System, available at:
https://tandemx-science.dlr.de, last access: February 2020.
a,
b,
c
Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E.,
Potin, P., Rommen, B., Floury, N., Brown, M., Traver, I. N., Deghaye, P.,
Duesmann, B., Rosich, B., Miranda, N., Bruno, C., L'Abbate, M., Croci, R.,
Pietropaolo, A., Huchler, M., and Rostan, F.: GMES Sentinel-1 mission,
Remote Sens. Environ., 120, 9–24,
https://doi.org/10.1016/j.rse.2011.05.028, 2012.
a,
b,
c
Tryck Nyman Hayes: Relocation Planning Project Master Plan: Kivalina,
Alaska, Tech. rep., U.S. Army Corps of Engineers Alaska District, 2006.
a,
b,
c,
d
Wang, L., Marzahn, P., Bernier, M., and Ludwig, R.: Sentinel-1 InSAR
measurements of deformation over discontinuous permafrost terrain, Northern
Quebec, Canada, Remote Sens. Environ., 248, 111965,
https://doi.org/10.1016/j.rse.2020.111965, 2020.
a,
b
Zhang, J., Liu, L., and Hu, Y.: Global Positioning System interferometric reflectometry (GPS-IR) measurements of ground surface elevation changes in permafrost areas in northern Canada, The Cryosphere, 14, 1875–1888,
https://doi.org/10.5194/tc-14-1875-2020, 2020.
a
Zhang, W., Witharana, C., Liljedahl, A. K., and Kanevskiy, M.: Deep
Convolutional Neural Networks for Automated Characterization of Arctic
Ice-Wedge Polygons in Very High Spatial Resolution Aerial Imagery, Remote
Sensing, 10, 1487,
https://doi.org/10.3390/rs10091487, 2018.
a
Zwieback, S. and Hajnsek, I.: Influence of vegetation growth on the
polarimetric DInSAR phase diversity – implications for deformation
studies, IEEE T. Geosci. Remote, 54, 3070–3082, 2016. a
Zwieback, S., Hensley, S., and Hajnsek, I.: Soil Moisture Estimation Using
Differential Radar Interferometry: Toward Separating Soil Moisture and
Displacements, IEEE T. Geosci. Remote, 55,
5069–5083,
https://doi.org/10.1109/TGRS.2017.2702099, 2017.
a