Articles | Volume 15, issue 4
https://doi.org/10.5194/tc-15-2001-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-2001-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Interfacial supercooling and the precipitation of hydrohalite in frozen NaCl solutions as seen by X-ray absorption spectroscopy
Thorsten Bartels-Rausch
CORRESPONDING AUTHOR
Laboratory of Environmental Chemistry, Paul Scherrer Institut,
Villigen PSI, Switzerland
Xiangrui Kong
Laboratory of Environmental Chemistry, Paul Scherrer Institut,
Villigen PSI, Switzerland
now at: Department of Chemistry and Molecular Biology, Atmospheric
Science, University of Gothenburg, Gothenburg, Sweden
Fabrizio Orlando
Laboratory of Environmental Chemistry, Paul Scherrer Institut,
Villigen PSI, Switzerland
now at: Omya International AG, Oftringen, Switzerland
Luca Artiglia
Laboratory of Environmental Chemistry, Paul Scherrer Institut,
Villigen PSI, Switzerland
Astrid Waldner
Laboratory of Environmental Chemistry, Paul Scherrer Institut,
Villigen PSI, Switzerland
Thomas Huthwelker
Swiss Light Source (SLS), Paul Scherrer Institut, Villigen PSI,
Switzerland
Markus Ammann
Laboratory of Environmental Chemistry, Paul Scherrer Institut,
Villigen PSI, Switzerland
Related authors
Jacinta Edebeli, Jürg C. Trachsel, Sven E. Avak, Markus Ammann, Martin Schneebeli, Anja Eichler, and Thorsten Bartels-Rausch
Atmos. Chem. Phys., 20, 13443–13454, https://doi.org/10.5194/acp-20-13443-2020, https://doi.org/10.5194/acp-20-13443-2020, 2020
Short summary
Short summary
Earth’s snow cover is very dynamic and can change its physical properties within hours, as is well known by skiers. Snow is also a well-known host of chemical reactions – the products of which impact air composition and quality. Here, we present laboratory experiments that show how the dynamics of snow make snow essentially inert with respect to gas-phase ozone with time despite its content of reactive chemicals. Impacts on polar atmospheric chemistry are discussed.
Kevin Kilchhofer, Markus Ammann, Laura Torrent, Rico K. Y. Cheung, and Peter A. Alpert
Atmos. Chem. Phys., 25, 8061–8086, https://doi.org/10.5194/acp-25-8061-2025, https://doi.org/10.5194/acp-25-8061-2025, 2025
Short summary
Short summary
Aerosol particles composed of metal complexes generate radicals as a result of photochemical reactions. The reactive species generated are hazardous to human health. We report microscopy data with particles composed of an organic proxy exposed to UV light. We found that copper influenced the reoxidation and initial iron reduction via photolysis of the complex. New model results suggest that we need to account for decreased photochemical activity and use a copper-induced reoxidation reaction.
Kevin Kilchhofer, Alexandre Barth, Battist Utinger, Markus Kalberer, and Markus Ammann
Aerosol Research, 3, 337–349, https://doi.org/10.5194/ar-3-337-2025, https://doi.org/10.5194/ar-3-337-2025, 2025
Short summary
Short summary
We report a substantial buildup of reactive molecules (due to sunlight) in organic particulate matter, causing adverse health effects. Metals, which occur naturally or are emitted by traffic, can complex with organic materials and initiate photochemical processes. At low humidity, organic particles may become highly viscous, which allows for the accumulation of reactive species. We found that copper acts as an reducing species to remove some of these harmful species from particles.
Ruiqi Man, Yishu Zhu, Zhijun Wu, Peter Aaron Alpert, Bingbing Wang, Jing Dou, Jie Chen, Yan Zheng, Yanli Ge, Qi Chen, Shiyi Chen, Xiangrui Kong, Markus Ammann, and Min Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2301, https://doi.org/10.5194/egusphere-2025-2301, 2025
Preprint archived
Short summary
Short summary
The particle chemical morphology is important to atmospheric multiphase and heterogeneous chemistry. This work directly observed the core-shell structure and water uptake behavior of individual submicron aerosol particles at an urban site and elucidated the potential impact on particle reactive uptake and heterogeneous reactions.
Susanne Preunkert, Pascal Bohleber, Michel Legrand, Adrien Gilbert, Tobias Erhardt, Roland Purtschert, Lars Zipf, Astrid Waldner, Joseph R. McConnell, and Hubertus Fischer
The Cryosphere, 18, 2177–2194, https://doi.org/10.5194/tc-18-2177-2024, https://doi.org/10.5194/tc-18-2177-2024, 2024
Short summary
Short summary
Ice cores from high-elevation Alpine glaciers are an important tool to reconstruct the past atmosphere. However, since crevasses are common at these glacier sites, rigorous investigations of glaciological conditions upstream of drill sites are needed before interpreting such ice cores. On the basis of three ice cores extracted at Col du Dôme (4250 m a.s.l; French Alps), an overall picture of a dynamic crevasse formation is drawn, which disturbs the depth–age relation of two of the three cores.
Daniel A. Knopf, Markus Ammann, Thomas Berkemeier, Ulrich Pöschl, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 3445–3528, https://doi.org/10.5194/acp-24-3445-2024, https://doi.org/10.5194/acp-24-3445-2024, 2024
Short summary
Short summary
The initial step of interfacial and multiphase chemical processes involves adsorption and desorption of gas species. This study demonstrates the role of desorption energy governing the residence time of the gas species at the environmental interface. A parameterization is formulated that enables the prediction of desorption energy based on the molecular weight, polarizability, and oxygen-to-carbon ratio of the desorbing chemical species. Its application to gas–particle interactions is discussed.
Fabian Mahrt, Long Peng, Julia Zaks, Yuanzhou Huang, Paul E. Ohno, Natalie R. Smith, Florence K. A. Gregson, Yiming Qin, Celia L. Faiola, Scot T. Martin, Sergey A. Nizkorodov, Markus Ammann, and Allan K. Bertram
Atmos. Chem. Phys., 22, 13783–13796, https://doi.org/10.5194/acp-22-13783-2022, https://doi.org/10.5194/acp-22-13783-2022, 2022
Short summary
Short summary
The number of condensed phases in mixtures of different secondary organic aerosol (SOA) types determines their impact on air quality and climate. Here we observe the number of phases in individual particles that contain mixtures of two different types of SOA. We find that SOA mixtures can form one- or two-phase particles, depending on the difference in the average oxygen-to-carbon (O / C) ratios of the two SOA types that are internally mixed within individual particles.
Daniel A. Knopf and Markus Ammann
Atmos. Chem. Phys., 21, 15725–15753, https://doi.org/10.5194/acp-21-15725-2021, https://doi.org/10.5194/acp-21-15725-2021, 2021
Short summary
Short summary
Adsorption on and desorption of gas molecules from solid or liquid surfaces or interfaces represent the initial interaction of gas-to-condensed-phase processes that can define the physicochemical evolution of the condensed phase. We apply a thermodynamic and microscopic treatment of these multiphase processes to evaluate how adsorption and desorption rates and surface accommodation depend on the choice of adsorption model and standard states with implications for desorption energy and lifetimes.
R. Anthony Cox, Markus Ammann, John N. Crowley, Paul T. Griffiths, Hartmut Herrmann, Erik H. Hoffmann, Michael E. Jenkin, V. Faye McNeill, Abdelwahid Mellouki, Christopher J. Penkett, Andreas Tilgner, and Timothy J. Wallington
Atmos. Chem. Phys., 21, 13011–13018, https://doi.org/10.5194/acp-21-13011-2021, https://doi.org/10.5194/acp-21-13011-2021, 2021
Short summary
Short summary
The term open-air factor was coined in the 1960s, establishing that rural air had powerful germicidal properties possibly resulting from immediate products of the reaction of ozone with alkenes, unsaturated compounds ubiquitously present in natural and polluted environments. We have re-evaluated those early experiments, applying the recently substantially improved knowledge, and put them into the context of the lifetime of aerosol-borne pathogens that are so important in the Covid-19 pandemic.
Abdelwahid Mellouki, Markus Ammann, R. Anthony Cox, John N. Crowley, Hartmut Herrmann, Michael E. Jenkin, V. Faye McNeill, Jürgen Troe, and Timothy J. Wallington
Atmos. Chem. Phys., 21, 4797–4808, https://doi.org/10.5194/acp-21-4797-2021, https://doi.org/10.5194/acp-21-4797-2021, 2021
Short summary
Short summary
Volatile organic compounds play an important role in atmospheric chemistry. This article, the eighth in the series, presents kinetic and photochemical data sheets evaluated by the IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation. It covers the gas-phase reactions of organic species with four, or more, carbon atoms (≥ C4) including thermal reactions of closed-shell organic species with HO and NO3 radicals and their photolysis. These data are important for atmospheric models.
Jing Dou, Peter A. Alpert, Pablo Corral Arroyo, Beiping Luo, Frederic Schneider, Jacinta Xto, Thomas Huthwelker, Camelia N. Borca, Katja D. Henzler, Jörg Raabe, Benjamin Watts, Hartmut Herrmann, Thomas Peter, Markus Ammann, and Ulrich K. Krieger
Atmos. Chem. Phys., 21, 315–338, https://doi.org/10.5194/acp-21-315-2021, https://doi.org/10.5194/acp-21-315-2021, 2021
Short summary
Short summary
Photochemistry of iron(III) complexes plays an important role in aerosol aging, especially in the lower troposphere. Ensuing radical chemistry leads to decarboxylation, and the production of peroxides, and oxygenated volatile compounds, resulting in particle mass loss due to release of the volatile products to the gas phase. We investigated kinetic transport limitations due to high particle viscosity under low relative humidity conditions. For quantification a numerical model was developed.
Jacinta Edebeli, Jürg C. Trachsel, Sven E. Avak, Markus Ammann, Martin Schneebeli, Anja Eichler, and Thorsten Bartels-Rausch
Atmos. Chem. Phys., 20, 13443–13454, https://doi.org/10.5194/acp-20-13443-2020, https://doi.org/10.5194/acp-20-13443-2020, 2020
Short summary
Short summary
Earth’s snow cover is very dynamic and can change its physical properties within hours, as is well known by skiers. Snow is also a well-known host of chemical reactions – the products of which impact air composition and quality. Here, we present laboratory experiments that show how the dynamics of snow make snow essentially inert with respect to gas-phase ozone with time despite its content of reactive chemicals. Impacts on polar atmospheric chemistry are discussed.
R. Anthony Cox, Markus Ammann, John N. Crowley, Hartmut Herrmann, Michael E. Jenkin, V. Faye McNeill, Abdelwahid Mellouki, Jürgen Troe, and Timothy J. Wallington
Atmos. Chem. Phys., 20, 13497–13519, https://doi.org/10.5194/acp-20-13497-2020, https://doi.org/10.5194/acp-20-13497-2020, 2020
Short summary
Short summary
Criegee intermediates, formed from alkene–ozone reactions, play a potentially important role as tropospheric oxidants. Evaluated kinetic data are provided for reactions governing their formation and removal for use in atmospheric models. These include their formation from reactions of simple and complex alkenes and removal by decomposition and reaction with a number of atmospheric species (e.g. H2O, SO2). An overview of the tropospheric chemistry of Criegee intermediates is also provided.
Cited articles
Abbatt, J. P. D., Thomas, J. L., Abrahamsson, K., Boxe, C., Granfors, A., Jones, A. E., King, M. D., Saiz-Lopez, A., Shepson, P. B., Sodeau, J., Toohey, D. W., Toubin, C., von Glasow, R., Wren, S. N., and Yang, X.: Halogen activation via interactions with environmental ice and snow in the polar lower troposphere and other regions, Atmos. Chem. Phys., 12, 6237–6271, https://doi.org/10.5194/acp-12-6237-2012, 2012.
Alpert, P. A. and Knopf, D. A.: Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model, Atmos. Chem. Phys., 16, 2083–2107, https://doi.org/10.5194/acp-16-2083-2016, 2016.
Ammann, M., Artiglia, L., and Bartels-Rausch, T.: X-ray excited electron
spectroscopy to study gas–liquid interfaces of atmospheric relevance, in:
Physical chemistry of gas-liquid interfaces, Elsevier, 135–166, 2018.
Antalek, M., Pace, E., Hedman, B., Hodgson, K. O., Chillemi, G., Benfatto,
M., Sarangi, R., and Frank, P.: Solvation structure of the halides from
x-ray absorption spectroscopy, J. Chem. Phys., 145, 044318, https://doi.org/10.1063/1.4959589, 2016.
Aristov, Y. I., Di Marco, G., Tokarev, M. M., and Parmon, V. N.: Selective
water sorbents for multiple applications, 3. CaCl2 solution confined in
micro- and mesoporous silica gels: Pore size effect on the
“solidification-melting” diagram, React. Kinet. Catal. Lett., 61, 147–154, https://doi.org/10.1007/BF02477527, 1997.
Artiglia, L., Edebeli, J., Orlando, F., Chen, S., Lee, M.-T., Corral Arroyo,
P., Gilgen, A., Bartels-Rausch, T., Kleibert, A., Vazdar, M., Carignano, M.
A., Francisco, J. S., Shepson, P. B., Gladich, I., and Ammann, M.: A
surface-stabilized ozonide triggers bromide oxidation at the aqueous
solution-vapour interface, Nat. Commun., 8, 700, https://doi.org/10.1038/s41467-017-00823-x,
2017.
Bartels-Rausch, T.: Data set on interfacial supercooling and
the precipitation of hydrohalite in frozen NaCl solutions by X-ray
absorption spectroscopy, EnviDat, https://doi.org/10.16904/envidat.164, 2020.
Bartels-Rausch, T., Jacobi, H.-W., Kahan, T. F., Thomas, J. L., Thomson, E. S., Abbatt, J. P. D., Ammann, M., Blackford, J. R., Bluhm, H., Boxe, C., Domine, F., Frey, M. M., Gladich, I., Guzmán, M. I., Heger, D., Huthwelker, Th., Klán, P., Kuhs, W. F., Kuo, M. H., Maus, S., Moussa, S. G., McNeill, V. F., Newberg, J. T., Pettersson, J. B. C., Roeselová, M., and Sodeau, J. R.: A review of air–ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow, Atmos. Chem. Phys., 14, 1587–1633, https://doi.org/10.5194/acp-14-1587-2014, 2014.
Bartels-Rausch, T., Orlando, F., Kong, X., Artiglia, L., and Ammann, M.:
Experimental evidence for the formation of solvation shells by soluble
species at a nonuniform air-ice interface, ACS Earth Space Chem., 1,
572–579, https://doi.org/10.1021/acsearthspacechem.7b00077, 2017.
Blackford, J. R.: Sintering and microstructure of ice: A review, J. Phys. D, 40, R355–R385, https://doi.org/10.1088/0022-3727/40/21/R02, 2007.
Blackford, J. R., Jeffree, C. E., Noake, D. F. J., and Marmo, B. A.:
Microstructural evolution in sintered ice particles containing NaCl observed
by low-temperature scanning electron microscope, Proc. Inst. Mech. Eng, 221,
151–156, https://doi.org/10.1243/14644207JMDA134, 2007.
Bluhm, H., Ogletree, D. F., Fadley, C. S., Hussain, Z., and Salmeron, N.:
The premelting of ice studied with photoelectron spectroscopy, J. Phys.:
Condens. Matter, 14, L227-L233, https://doi.org/10.1088/0953-8984/14/8/108, 2002.
Bluhm, H.: Photoelectron spectroscopy of surfaces under humid conditions,
J. Electron Spectrosc., 177, 71–84, https://doi.org/10.1016/j.elspec.2009.08.006, 2010.
Chakraborty, S. and Kahan, T. F.: Physical characterization of frozen
aqueous solutions containing sodium chloride and humic acid at
environmentally relevant temperatures, ACS Earth Space Chem., 4, 305–310, https://doi.org/10.1021/acsearthspacechem.9b00319, 2020.
Cho, H., Shepson, P. B., Barrie, L. A., Cowin, J. P., and Zaveri, R.: NMR
investigation of the quasi-brine layer in ice/brine mixtures, J. Phys. Chem.
B, 106, 11226–11232, https://doi.org/10.1021/jp020449+, 2002.
Christenson, H. K.: Confinement effects on freezing and melting, J. Phys., 13, R95–R133, https://doi.org/10.1088/0953-8984/13/11/201, 2001.
Cleff, B. and Mehlhorn, W.: Das KLL- Auger-Spektrum von Chlor, Z. Phys. A, 219, 311–324, https://doi.org/10.1007/BF01395528, 1969.
Craig, J. R., Light, J. F., Parker, B. C., and Mudrey, M. G.: Identification
of hydrohalite, Antarct. J. US, 10, 178–179, 1975.
Custard, K. D., Raso, A. R. W., Shepson, P. B., Staebler, R. M., and Pratt,
K. A.: Production and release of molecular bromine and chlorine from the
arctic coastal snowpack, ACS Earth Space Chem., 1, 142–151, https://doi.org/10.1021/acsearthspacechem.7b00014, 2017.
Dominé, F. and Shepson, P. B.: Air-snow interactions and atmospheric
chemistry, Science, 297, 1506–1510, https://doi.org/10.1126/science.1074610, 2002.
Dominé, F., Sparapani, R., Ianniello, A., and Beine, H. J.: The origin of sea salt in snow on Arctic sea ice and in coastal regions, Atmos. Chem. Phys., 4, 2259–2271, https://doi.org/10.5194/acp-4-2259-2004, 2004.
Edebeli, J., Ammann, M., and Bartels-Rausch, T.: Microphysics of the aqueous
bulk counters the water activity driven rate acceleration of bromide
oxidation by ozone from 289–245 K, Environ. Sci. Process. Impacts, 21, 63–73, https://doi.org/10.1039/c8em00417j, 2019.
Evans, K. A., Mavrogenes, J. A., O'Neill, H. S., Keller, N. S., and Jang, L.
Y.: A preliminary investigation of chlorine XANES in silicate glasses,
Geochem. Geophys. Geosy., 9, Q10003, https://doi.org/10.1029/2008gc002157, 2008.
Ewing, G. E.: H2O on NaCl: From single molecule, to clusters, to monolayer,
to thin film, to deliquescence, chap. 12, Springer-Verlag,
Berlin/Heidelberg, 1–25, 2005.
Finlayson-Pitts, B. J.: The tropospheric chemistry of sea salt: A
molecular-level view of the chemistry of NaCl and NaBr, Chem. Rev., 103,
4801–4822, https://doi.org/10.1021/cr020653t, 2003.
Finlayson-Pitts, B. J.: Halogens in the troposphere, Anal. Chem., 82,
770–776, https://doi.org/10.1021/ac901478p, 2010.
Fujimori, T., Takaoka, M., and Morisawa, S.: Chlorinated aromatic compounds
in a thermal process promoted by oxychlorination of ferric chloride,
Environ. Sci. Technol., 44, 1974–1979, https://doi.org/10.1021/es903337d, 2010.
Gladich, I., Chen, S., Vazdar, M., Boucly, A., Yang, H., Ammann, M., and
Artiglia, L.: Surface propensity of aqueous atmospheric bromine at the
liquid-gas interface, J. Phys. Chem. Lett., 11, 3422–3429, https://doi.org/10.1021/acs.jpclett.0c00633, 2020.
Grannas, A. M., Bausch, A. R., and Mahanna, K. M.: Enhanced aqueous
photochemical reaction rates after freezing, J. Phys. Chem. A, 111,
11043–11049, https://doi.org/10.1021/jp073802q, 2007.
Halfacre, J. W., Shepson, P. B., and Pratt, K. A.: pH-dependent production of molecular chlorine, bromine, and iodine from frozen saline surfaces, Atmos. Chem. Phys., 19, 4917–4931, https://doi.org/10.5194/acp-19-4917-2019, 2019.
Harada, M., Tasaki, Y., Tasaki, Y., Qu, H., and Okada, T.: Hydration of ions
and salt crystallization in liquid phase coexistent with ice at temperature
below eutectic point, RSC Advances, 2, 461–466, https://doi.org/10.1039/c1ra00801c, 2011.
Huggins, F. E. and Huffman, G. P.: Chlorine in coal – an XAFS spectroscopic
investigation, Fuel, 74, 556–569, https://doi.org/10.1016/0016-2361(95)98359-m, 1995.
Hullar, T. and Anastasio, C.: Direct visualization of solute locations in laboratory ice samples, The Cryosphere, 10, 2057–2068, https://doi.org/10.5194/tc-10-2057-2016, 2016.
Kahan, T. F., Wren, S. N., and Donaldson, D. J.: A pinch of salt is all it
takes: Chemistry at the frozen water surface, Acc. Chem. Res., 47,
1587–1594, https://doi.org/10.1021/ar5000715, 2014.
Kirpes, R. M., Bonanno, D., May, N. W., Fraund, M., Barget, A. J., Moffet,
R. C., Ault, A. P., and Pratt, K. A.: Wintertime arctic sea spray aerosol
composition controlled by sea ice lead microbiology, ACS Cent. Sci., 5,
1760–1767, https://doi.org/10.1021/acscentsci.9b00541, 2019.
Klewe, B., Pedersen, B., and Iucr: The crystal structure of sodium chloride
dihydrate, Acta Crystallogr., 30, 2363–2371, https://doi.org/10.1107/S0567740874007138, 1974.
Knipping, E. M., Lakin, M. J., Foster, K. L., Jungwirth, P., Tobias, D. J.,
Gerber, R. B., Dabdub, D., and Finlayson-Pitts, B. J.: Experiments and
simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols,
Science, 288, 301–306, https://doi.org/10.1126/science.288.5464.301, 2000.
Kong, X., Waldner, A., Orlando, F., Artiglia, L., Huthwelker, T., Ammann,
M., and Bartels-Rausch, T.: Coexistence of physisorbed and solvated HCl at
warm ice surfaces, J. Phys. Chem. Lett., 8, 4757–4762, https://doi.org/10.1021/acs.jpclett.7b01573, 2017.
Kong, X., Castarède, D., Boucly, A., Artiglia, L., Ammann, M.,
Bartels-Rausch, T., Thomson, E. S., and Pettersson, J. B. C.: Reversibly
physisorbed and chemisorbed water on carboxylic salt surfaces under
atmospheric conditions, J. Phys. Chem. C, 124, 5263–5269, https://doi.org/10.1021/acs.jpcc.0c00319, 2020.
Koop, T., Kapilashrami, A., Molina, L. T., and Molina, M. J.: Phase
transitions of sea-salt/water mixtures at low temperatures: Implications for
ozone chemistry in the polar marine boundary layer, J. Geophys. Res., 105,
26393–26402, https://doi.org/10.1029/2000JD900413, 2000a.
Koop, T., Luo, B. P., Tsias, A., and Peter, T.: Water activity as the
determinant for homogeneous ice nucleation in aqueous solutions, Nature,
406, 611–614, https://doi.org/10.1038/35020537, 2000b.
Krausko, J., Runštuk, J., Neděla, V., Klan, P., and Heger, D.:
Observation of a brine layer on an ice surface with an environmental
scanning electron microscope at higher pressures and temperatures, Langmuir,
30, 5441–5447, https://doi.org/10.1021/la500334e, 2014.
Krepelova, A., Huthwelker, T., Bluhm, H., and Ammann, M.: Surface chemical
properties of eutectic and frozen NaCl solutions probed by XPS and NEXAFS,
Chem. Phys. Chem., 11, 3859–3866, https://doi.org/10.1002/cphc.201000461, 2010a.
Krepelova, A., Newberg, J. T., Huthwelker, T., Bluhm, H., and Ammann, M.:
The nature of nitrate at the ice surface studied by XPS and NEXAFS, Phys.
Chem. Chem. Phys., 12, 8870–8880, https://doi.org/10.1039/c0cp00359j, 2010b.
Krepelova, A., Bartels-Rausch, T., Brown, M. A., Bluhm, H., and Ammann, M.:
Adsorption of acetic acid on ice studied by ambient-pressure XPS and
partial-electron-yield NEXAFS spectroscopy at 230–240 K, J. Phys. Chem. A,
117, 401–409, https://doi.org/10.1021/jp3102332, 2013.
Laskin, A., Wang, H., Robertson, W. H., Cowin, J. P., Ezell, M. J., and
Finlayson-Pitts, B. J.: A new approach to determining gas-particle reaction
probabilities and application to the heterogeneous reaction of deliquesced
sodium chloride particles with gas-phase hydroxyl radicals, J. Phys. Chem.
A, 110, 10619–10627, https://doi.org/10.1021/jp063263+, 2006.
Lieb-Lappen, R. M., Golden, E. J., and Obbard, R. W.: Metrics for
interpreting the microstructure of sea ice using X-ray micro-computed
tomography, Cold Reg. Sci. Technol., 138, 24–35, https://doi.org/10.1016/j.coldregions.2017.03.001, 2017.
Light, B., Brandt, R. E., and Warren, S. G.: Hydrohalite in cold sea ice:
Laboratory observations of single crystals, surface accumulations, and
migration rates under a temperature gradient, with application to “snowball
earth”, J. Geophys. Res., 114, C07018, https://doi.org/10.1029/2008JC005211, 2009.
Lopez-Hilfiker, F. D., Constantin, K., Kercher, J. P., and Thornton, J. A.: Temperature dependent halogen activation by N2O5 reactions on halide-doped ice surfaces, Atmos. Chem. Phys., 12, 5237–5247, https://doi.org/10.5194/acp-12-5237-2012, 2012.
Luna, M., Rieutord, F., Melman, N. A., Dai, Q., and Salmeron, M.: Adsorption
of water on alkali halide surfaces studied by scanning polarization force
microscopy, J. Phys. Chem. A, 102, 6793–6800, https://doi.org/10.1021/jp9820875, 1998.
Malley, P. P. A., Chakraborty, S., and Kahan, T. F.: Physical
characterization of frozen saltwater solutions using Raman microscopy, ACS
Earth Space Chem., 2, 702–710, https://doi.org/10.1021/acsearthspacechem.8b00045, 2018.
Marti, J. and Mauersberger, K.: A survey and new measurements of ice vapor
pressure at temperatures between 170 and 250 K, Geophys. Res. Lett., 20,
363–366, https://doi.org/10.1029/93GL00105, 1993.
Maus, S., Huthwelker, T., Enzmann, F., Miedaner, M. M., Stampanoni, M.,
Marone, F., Hutterli, M. A., Hintermüller, C., Hintermüller, C., and
Kersten, M.: Synchrotron-based X-ray micro-tomography: Insights into sea ice
microstructure, Sixth Workshop on Baltic Sea Ice Climate, Lammi Biological
Station, Finland, 2008.
Maus, S., Huthwelker, T., Schwikowski, M., and Enzmann, F.: Ion
fractionation in young sea ice from Kongsfjorden, svalbard, Ann.
Glaciol., 52, 301–310, https://doi.org/10.3189/172756411795931804, 2011.
Murphy, D. M., Froyd, K. D., Bian, H., Brock, C. A., Dibb, J. E., DiGangi, J. P., Diskin, G., Dollner, M., Kupc, A., Scheuer, E. M., Schill, G. P., Weinzierl, B., Williamson, C. J., and Yu, P.: The distribution of sea-salt aerosol in the global troposphere, Atmos. Chem. Phys., 19, 4093–4104, https://doi.org/10.5194/acp-19-4093-2019, 2019.
Newberg, J. T. and Bluhm, H.: Adsorption of 2-propanol on ice probed by
ambient pressure X-ray photoelectron spectroscopy, Phys. Chem. Chem. Phys.,
17, 23554–23558, https://doi.org/10.1039/C5CP03821A, 2015.
Nilsson, A., Nordlund, D., Waluyo, I., Huang, N., Ogasawara, H., Kaya, S.,
Bergmann, U., Näslund, L. A., Öström, H., Wernet, P., Andersson,
K. J., Schiros, T., and Pettersson, L. G. M.: X-ray absorption spectroscopy
and X-ray Raman scattering of water and ice; an experimental view, J. Electron Spectrosc., 177, 99–129, https://doi.org/10.1016/j.elspec.2010.02.005, 2010.
Nye, J. F.: Thermal behaviour of glacier and laboratory ice, J. Glaciol.,
37, 401–413, https://doi.org/10.3189/S0022143000005839, 1991.
O'Dowd, C. D., Facchini, M. C., Cavalli, F., Ceburnis, D., Mircea, M.,
Decesari, S., Fuzzi, S., Yoon, Y. J., and Putaud, J.-P.: Biogenically driven
organic contribution to marine aerosol, Nature, 431, 676–680, https://doi.org/10.1038/nature02959, 2004.
Obbard, R. W., Troderman, G., and Baker, I.: Imaging brine and air
inclusions in sea ice using micro-X-ray computed tomography, J. Glaciol.,
55, 1113–1115, https://doi.org/10.3189/002214309790794814, 2009.
Oldridge, N. W. and Abbatt, J. P. D.: Formation of gas-phase bromine from
interaction of ozone with frozen and liquid NaCl/NaBr solutions:
Quantitative separation of surficial chemistry from bulk-phase reaction, J.
Phys. Chem. A, 115, 2590–2598, https://doi.org/10.1021/jp200074u, 2011.
Orlando, F., Waldner, A., Bartels-Rausch, T., Birrer, M., Kato, S., Lee,
M.-T., Proff, C., Huthwelker, T., Kleibert, A., van Bokhoven, J. A., and
Ammann, M.: The environmental photochemistry of oxide surfaces and the
nature of frozen salt solutions: A new in situ XPS approach, Top. Catal.,
59, 591–604, https://doi.org/10.1007/s11244-015-0515-5, 2016.
Osthoff, H. D., Roberts, J. M., Ravishankara, A. R., Williams, E. J.,
Lerner, B. M., Sommariva, R., Bates, T. S., Coffman, D., Quinn, P. K., Dibb,
J. E., Stark, H., Burkholder, J. B., Talukdar, R. K., Meagher, J.,
Fehsenfeld, F. C., and Brown, S. S.: High levels of nitryl chloride in the
polluted subtropical marine boundary layer, Nat. Geosi., 1, 324–328, https://doi.org/10.1038/ngeo177, 2008.
Peckhaus, A., Kiselev, A., Wagner, R., Duft, D., and Leisner, T.:
Temperature-dependent formation of NaCl dihydrate in levitated NaCl and sea
salt aerosol particles, J. Chem. Phys., 145, 244503, https://doi.org/10.1063/1.4972589,
2016.
Petrich, C. and Eicken, H.: Growth, structure and properties of sea ice,
Sea Ice, 23–77, https://doi.org/10.1002/9781444317145.ch2, 2009.
Rumble, J.: CRC handbook of chemistry and physics, 100th Edn., CRC
Press/Taylor & Francis, Boca Raton, FL., 2019.
Saiz-Lopez, A. and von Glasow, R.: Reactive halogen chemistry in the
troposphere, Chem. Soc. Rev., 41, 6448–6472, https://doi.org/10.1039/C2CS35208G, 2012.
Simpson, W. R., von Glasow, R., Riedel, K., Anderson, P., Ariya, P., Bottenheim, J., Burrows, J., Carpenter, L. J., Frieß, U., Goodsite, M. E., Heard, D., Hutterli, M., Jacobi, H.-W., Kaleschke, L., Neff, B., Plane, J., Platt, U., Richter, A., Roscoe, H., Sander, R., Shepson, P., Sodeau, J., Steffen, A., Wagner, T., and Wolff, E.: Halogens and their role in polar boundary-layer ozone depletion, Atmos. Chem. Phys., 7, 4375–4418, https://doi.org/10.5194/acp-7-4375-2007, 2007.
Simpson, W. R., Brown, S. S., Saiz-Lopez, A., Thornton, J. A., and von
Glasow, R.: Tropospheric halogen chemistry: Sources, cycling, and impacts,
Chem. Rev., 115, 4035–4062, https://doi.org/10.1021/cr5006638, 2015.
Sjostedt, S. J. and Abbatt, J. P. D.: Release of gas-phase halogens from
sodium halide substrates: Heterogeneous oxidation of frozen solutions and
desiccated salts by hydroxyl radicals, Environ. Res. Lett., 3, 045007, https://doi.org/10.1088/1748-9326/3/4/045007, 2008.
Tanuma, S., Powell, C. J., and Penn, D. R.: Calculations of electron
inelastic mean free paths: 3. Data for 15 inorganic-compounds over the
50–2000 eV range, Surf. Interface Anal., 17, 927–939, https://doi.org/10.1002/sia.740171305,
1991.
Tasaki, Y., Harada, M., and Okada, T.: Eutectic transition of local
structure for bromide ion in bulk and on surface of doped ice, J. Phys.
Chem. C, 114, 12573–12579, https://doi.org/10.1021/jp102246f, 2010.
Thomas, J. L., Stutz, J., Frey, M. M., Bartels-Rausch, T., Altieri, K.,
Baladima, F., Browse, J., Dall'Osto, M., Marelle, L., Mouginot, J.,
Jennifer, G. M., Nomura, D., Pratt, K. A., Willis, M. D., Zieger, P.,
Abbatt, J., Douglas, T. A., Facchini, M. C., France, J., Jones, A. E., Kim,
K., Matrai, P. A., McNeill, V. F., Saiz-Lopez, A., Shepson, P., Steiner, N.,
Law, K. S., Arnold, S. R., Delille, B., Schmale, J., Sonke, J. E.,
Dommergue, A., Voisin, D., Melamed, M. L., and Gier, J.: Fostering
multidisciplinary research on interactions between chemistry, biology, and
physics within the coupled cryosphere-atmosphere system, Elementa, 7, 58,
doi10.1525/elementa.396, 2019.
doi10.1525/elementa.396, 2019.
Thornton, J. A., Kercher, J. P., Riedel, T. P., Wagner, N. L., Cozic, J.,
Holloway, J. S., Dube, W. P., Wolfe, G. M., Quinn, P. K., Middlebrook, A.
M., Alexander, B., and Brown, S. S.: A large atomic chlorine source inferred
from mid-continental reactive nitrogen chemistry, Nature, 464, 271–274, https://doi.org/10.1038/nature08905, 2010.
Tokumasu, K., Harada, M., and Okada, T.: X-ray fluorescence imaging of
frozen aqueous NaCl solutions, Langmuir, 32, 527–533, https://doi.org/10.1021/acs.langmuir.5b04411, 2016.
Wagner, R., Möhler, O., Saathoff, H., Schnaiter, M., and Leisner, T.: New cloud chamber experiments on the heterogeneous ice nucleation ability of oxalic acid in the immersion mode, Atmos. Chem. Phys., 11, 2083–2110, https://doi.org/10.5194/acp-11-2083-2011, 2011.
Wagner, R., Mohler, O., and Schnaiter, M.: Infrared optical constants of
crystalline sodium chloride dihydrate: Application to study the
crystallization of aqueous sodium chloride solution droplets at low
temperatures, J. Phys. Chem. A, 116, 8557–8571, https://doi.org/10.1021/jp306240s, 2012.
Wagner, R., Höhler, K., Möhler, O., Saathoff, H., and Schnaiter, M.:
Crystallization and immersion freezing ability of oxalic and succinic acid
in multicomponent aqueous organic aerosol particles, Geophys. Res. Lett.,
42, 2464–2472, https://doi.org/10.1002/2015GL063075, 2015.
Waldner, A., Artiglia, L., Kong, X., Orlando, F., Huthwelker, T., Ammann,
M., and Bartels-Rausch, T.: Pre-melting and the adsorption of formic acid at
the air–ice interface at 253 K as seen by NEXAFS and XPS, Phys. Chem. Chem.
Phys., 20, 24408–24417, https://doi.org/10.1039/C8CP03621G, 2018.
Wang, S., Schmidt, J. A., Baidar, S., Coburn, S., Dix, B., Koenig, T. K.,
Apel, E. C., Bowdalo, D., Campos, T. L., Eloranta, E., Evans, M. J.,
DiGangi, J. P., Zondlo, M. A., Gao, R.-S., Haggerty, J. A., Hall, S. R.,
Hornbrook, R. S., Jacob, D., Morley, B., Pierce, B., Reeves, M., Romashkin,
P., ter Schure, A., and Volkamer, R.: Active and widespread halogen
chemistry in the tropical and subtropical free troposphere, P. Natl. Acad.
Sci. USA, 112, 201505142–201509286, https://doi.org/10.1073/pnas.1505142112, 2015.
Wise, M. E., Martin, S. T., Russell, L. M., and Buseck, P. R.: Water uptake
by NaCl particles prior to deliquescence and the phase rule, Aerosol Sci.
Technol., 42, 281–294, https://doi.org/10.1080/02786820802047115, 2008.
Wise, M. E., Baustian, K. J., Koop, T., Freedman, M. A., Jensen, E. J., and Tolbert, M. A.: Depositional ice nucleation onto crystalline hydrated NaCl particles: a new mechanism for ice formation in the troposphere, Atmos. Chem. Phys., 12, 1121–1134, https://doi.org/10.5194/acp-12-1121-2012, 2012.
Wren, S. N., Donaldson, D. J., and Abbatt, J. P. D.: Photochemical chlorine and bromine activation from artificial saline snow, Atmos. Chem. Phys., 13, 9789–9800, https://doi.org/10.5194/acp-13-9789-2013, 2013.
Yang, X., Neděla, V., Runštuk, J., Ondrušková, G., Krausko, J., Vetráková, Ľ., and Heger, D.: Evaporating brine from frost flowers with electron microscopy and implications for atmospheric chemistry and sea-salt aerosol formation, Atmos. Chem. Phys., 17, 6291–6303, https://doi.org/10.5194/acp-17-6291-2017, 2017.
Short summary
Chemical reactions in sea salt embedded in coastal polar snow impact the composition and air quality of the atmosphere. Here, we investigate the phase changes of sodium chloride. This is of importance as chemical reactions proceed faster in liquid solutions compared to in solid salt and the precise precipitation temperature of sodium chloride is still under debate. We focus on the upper nanometres of sodium chloride–ice samples because of their role as a reactive interface in the environment.
Chemical reactions in sea salt embedded in coastal polar snow impact the composition and air...