Articles | Volume 15, issue 1
https://doi.org/10.5194/tc-15-183-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-183-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New insights into radiative transfer within sea ice derived from autonomous optical propagation measurements
Alfred-Wegener-Institut, Hemholtz-Zentrum für Polar- und
Meeresforschung, Sea Ice Physics, Bremerhaven, Germany
Takuvik Joint International Laboratory, Université Laval and CNRS
(France), Québec, QC, Canada
Lovro Valcic
Bruncin Observation Systems, Zagreb, Croatia
Simon Lambert-Girard
Takuvik Joint International Laboratory, Université Laval and CNRS
(France), Québec, QC, Canada
Mario Hoppmann
Alfred-Wegener-Institut, Hemholtz-Zentrum für Polar- und
Meeresforschung, Sea Ice Physics, Bremerhaven, Germany
Related authors
Evgenii Salganik, Benjamin A. Lange, Christian Katlein, Ilkka Matero, Philipp Anhaus, Morven Muilwijk, Knut V. Høyland, and Mats A. Granskog
The Cryosphere, 17, 4873–4887, https://doi.org/10.5194/tc-17-4873-2023, https://doi.org/10.5194/tc-17-4873-2023, 2023
Short summary
Short summary
The Arctic Ocean is covered by a layer of sea ice that can break up, forming ice ridges. Here we measure ice thickness using an underwater sonar and compare ice thickness reduction for different ice types. We also study how the shape of ridged ice influences how it melts, showing that deeper, steeper, and narrower ridged ice melts the fastest. We show that deformed ice melts 3.8 times faster than undeformed ice at the bottom ice--ocean boundary, while at the surface they melt at a similar rate.
Marc de Vos, Panagiotis Kountouris, Lasse Rabenstein, John Shears, Mira Suhrhoff, and Christian Katlein
Hist. Geo Space. Sci., 14, 1–13, https://doi.org/10.5194/hgss-14-1-2023, https://doi.org/10.5194/hgss-14-1-2023, 2023
Short summary
Short summary
Poor visibility on the 3 d prior to the sinking of Sir Ernest Shackleton’s vessel, Endurance, during November 1915, hampered navigator Frank Worsley’s attempts to record its position. Thus, whilst the wreck was located in the Weddell Sea in March 2022, the drift path of Endurance during its final 3 d at the surface remained unknown. We used data from a modern meteorological model to reconstruct possible trajectories for this unknown portion of Endurance’s journey.
Christophe Perron, Christian Katlein, Simon Lambert-Girard, Edouard Leymarie, Louis-Philippe Guinard, Pierre Marquet, and Marcel Babin
The Cryosphere, 15, 4483–4500, https://doi.org/10.5194/tc-15-4483-2021, https://doi.org/10.5194/tc-15-4483-2021, 2021
Short summary
Short summary
Characterizing the evolution of inherent optical properties (IOPs) of sea ice in situ is necessary to improve climate and arctic ecosystem models. Here we present the development of an optical probe, based on the spatially resolved diffuse reflectance method, to measure IOPs of a small volume of sea ice (dm3) in situ and non-destructively. For the first time, in situ vertically resolved profiles of the dominant IOP, the reduced scattering coefficient, were obtained for interior sea ice.
Thomas Krumpen, Luisa von Albedyll, Helge F. Goessling, Stefan Hendricks, Bennet Juhls, Gunnar Spreen, Sascha Willmes, H. Jakob Belter, Klaus Dethloff, Christian Haas, Lars Kaleschke, Christian Katlein, Xiangshan Tian-Kunze, Robert Ricker, Philip Rostosky, Janna Rückert, Suman Singha, and Julia Sokolova
The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021, https://doi.org/10.5194/tc-15-3897-2021, 2021
Short summary
Short summary
We use satellite data records collected along the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) drift to categorize ice conditions that shaped and characterized the floe and surroundings during the expedition. A comparison with previous years is made whenever possible. The aim of this analysis is to provide a basis and reference for subsequent research in the six main research areas of atmosphere, ocean, sea ice, biogeochemistry, remote sensing and ecology.
Jutta E. Wollenburg, Morten Iversen, Christian Katlein, Thomas Krumpen, Marcel Nicolaus, Giulia Castellani, Ilka Peeken, and Hauke Flores
The Cryosphere, 14, 1795–1808, https://doi.org/10.5194/tc-14-1795-2020, https://doi.org/10.5194/tc-14-1795-2020, 2020
Short summary
Short summary
Based on an observed omnipresence of gypsum crystals, we concluded that their release from melting sea ice is a general feature in the Arctic Ocean. Individual gypsum crystals sank at more than 7000 m d−1, suggesting that they are an important ballast mineral. Previous observations found gypsum inside phytoplankton aggregates at 2000 m depth, supporting gypsum as an important driver for pelagic-benthic coupling in the ice-covered Arctic Ocean.
Christian Katlein, Stefan Hendricks, and Jeffrey Key
The Cryosphere, 11, 2111–2116, https://doi.org/10.5194/tc-11-2111-2017, https://doi.org/10.5194/tc-11-2111-2017, 2017
Short summary
Short summary
In the public debate, increasing sea ice extent in the Antarctic is often highlighted as counter-indicative of global warming. Here we show that the slight increases in Antarctic sea ice extent are not able to counter Arctic losses. Using bipolar satellite observations, we demonstrate that even in the Antarctic polar ocean solar shortwave energy absorption is increasing in accordance with strongly increasing shortwave energy absorption in the Arctic Ocean rather than compensating Arctic losses.
M. Fernández-Méndez, C. Katlein, B. Rabe, M. Nicolaus, I. Peeken, K. Bakker, H. Flores, and A. Boetius
Biogeosciences, 12, 3525–3549, https://doi.org/10.5194/bg-12-3525-2015, https://doi.org/10.5194/bg-12-3525-2015, 2015
Short summary
Short summary
Photosynthetic production in the central Arctic Ocean is controlled by light availability below the ice, nitrate and silicate concentrations in the upper ocean, and the role of sub-ice algae that contributed up to 60% to primary production in summer 2012 during the record sea-ice minimum. As sea ice decreases, an overall change in Arctic PP would be foremost related to a change in the role of the ice algal production and nutrient availability.
M. Nicolaus and C. Katlein
The Cryosphere, 7, 763–777, https://doi.org/10.5194/tc-7-763-2013, https://doi.org/10.5194/tc-7-763-2013, 2013
Salar Karam, Céline Heuzé, Mario Hoppmann, and Laura de Steur
Ocean Sci., 20, 917–930, https://doi.org/10.5194/os-20-917-2024, https://doi.org/10.5194/os-20-917-2024, 2024
Short summary
Short summary
A long-term mooring array in the Fram Strait allows for an evaluation of decadal trends in temperature in this major oceanic gateway into the Arctic. Since the 1980s, the deep waters of the Greenland Sea and the Eurasian Basin of the Arctic have warmed rapidly at a rate of 0.11°C and 0.05°C per decade, respectively, at a depth of 2500 m. We show that the temperatures of the two basins converged around 2017 and that the deep waters of the Greenland Sea are now a heat source for the Arctic Ocean.
Ivan Kuznetsov, Benjamin Rabe, Alexey Androsov, Ying-Chih Fang, Mario Hoppmann, Alejandra Quintanilla-Zurita, Sven Harig, Sandra Tippenhauer, Kirstin Schulz, Volker Mohrholz, Ilker Fer, Vera Fofonova, and Markus Janout
Ocean Sci., 20, 759–777, https://doi.org/10.5194/os-20-759-2024, https://doi.org/10.5194/os-20-759-2024, 2024
Short summary
Short summary
Our research introduces a tool for dynamically mapping the Arctic Ocean using data from the MOSAiC experiment. Incorporating extensive data into a model clarifies the ocean's structure and movement. Our findings on temperature, salinity, and currents reveal how water layers mix and identify areas of intense water movement. This enhances understanding of Arctic Ocean dynamics and supports climate impact studies. Our work is vital for comprehending this key region in global climate science.
Evgenii Salganik, Benjamin A. Lange, Christian Katlein, Ilkka Matero, Philipp Anhaus, Morven Muilwijk, Knut V. Høyland, and Mats A. Granskog
The Cryosphere, 17, 4873–4887, https://doi.org/10.5194/tc-17-4873-2023, https://doi.org/10.5194/tc-17-4873-2023, 2023
Short summary
Short summary
The Arctic Ocean is covered by a layer of sea ice that can break up, forming ice ridges. Here we measure ice thickness using an underwater sonar and compare ice thickness reduction for different ice types. We also study how the shape of ridged ice influences how it melts, showing that deeper, steeper, and narrower ridged ice melts the fastest. We show that deformed ice melts 3.8 times faster than undeformed ice at the bottom ice--ocean boundary, while at the surface they melt at a similar rate.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Ruibo Lei, Mario Hoppmann, Bin Cheng, Marcel Nicolaus, Fanyi Zhang, Benjamin Rabe, Long Lin, Julia Regnery, and Donald K. Perovich
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-25, https://doi.org/10.5194/tc-2023-25, 2023
Manuscript not accepted for further review
Short summary
Short summary
To characterize the freezing and melting of different types of sea ice, we deployed four IMBs during the MOSAiC second drift. The drifting pattern, together with a large snow accumulation, relatively warm air temperatures, and a rapid increase in oceanic heat close to Fram Strait, determined the seasonal evolution of the ice mass balance. The refreezing of ponded ice and voids within the unconsolidated ridges amplifies the anisotropy of the heat exchange between the ice and the atmosphere/ocean.
Marc de Vos, Panagiotis Kountouris, Lasse Rabenstein, John Shears, Mira Suhrhoff, and Christian Katlein
Hist. Geo Space. Sci., 14, 1–13, https://doi.org/10.5194/hgss-14-1-2023, https://doi.org/10.5194/hgss-14-1-2023, 2023
Short summary
Short summary
Poor visibility on the 3 d prior to the sinking of Sir Ernest Shackleton’s vessel, Endurance, during November 1915, hampered navigator Frank Worsley’s attempts to record its position. Thus, whilst the wreck was located in the Weddell Sea in March 2022, the drift path of Endurance during its final 3 d at the surface remained unknown. We used data from a modern meteorological model to reconstruct possible trajectories for this unknown portion of Endurance’s journey.
Long Lin, Ruibo Lei, Mario Hoppmann, Donald K. Perovich, and Hailun He
The Cryosphere, 16, 4779–4796, https://doi.org/10.5194/tc-16-4779-2022, https://doi.org/10.5194/tc-16-4779-2022, 2022
Short summary
Short summary
Ice mass balance observations indicated that average basal melt onset was comparable in the central Arctic Ocean and approximately 17 d earlier than surface melt in the Beaufort Gyre. The average onset of basal growth lagged behind the surface of the pan-Arctic Ocean for almost 3 months. In the Beaufort Gyre, both drifting-buoy observations and fixed-point observations exhibit a trend towards earlier basal melt onset, which can be ascribed to the earlier warming of the surface ocean.
Mario Hoppmann, Ivan Kuznetsov, Ying-Chih Fang, and Benjamin Rabe
Earth Syst. Sci. Data, 14, 4901–4921, https://doi.org/10.5194/essd-14-4901-2022, https://doi.org/10.5194/essd-14-4901-2022, 2022
Short summary
Short summary
The role of eddies and fronts in the oceans is a hot topic in climate research, but there are still many related knowledge gaps, particularly in the ice-covered Arctic Ocean. Here we present a unique dataset of ocean observations collected by a set of drifting buoys installed on ice floes as part of the 2019/2020 MOSAiC campaign. The buoys recorded temperature and salinity data for 10 months, providing extraordinary insights into the properties and processes of the ocean along their drift.
Christophe Perron, Christian Katlein, Simon Lambert-Girard, Edouard Leymarie, Louis-Philippe Guinard, Pierre Marquet, and Marcel Babin
The Cryosphere, 15, 4483–4500, https://doi.org/10.5194/tc-15-4483-2021, https://doi.org/10.5194/tc-15-4483-2021, 2021
Short summary
Short summary
Characterizing the evolution of inherent optical properties (IOPs) of sea ice in situ is necessary to improve climate and arctic ecosystem models. Here we present the development of an optical probe, based on the spatially resolved diffuse reflectance method, to measure IOPs of a small volume of sea ice (dm3) in situ and non-destructively. For the first time, in situ vertically resolved profiles of the dominant IOP, the reduced scattering coefficient, were obtained for interior sea ice.
Thomas Krumpen, Luisa von Albedyll, Helge F. Goessling, Stefan Hendricks, Bennet Juhls, Gunnar Spreen, Sascha Willmes, H. Jakob Belter, Klaus Dethloff, Christian Haas, Lars Kaleschke, Christian Katlein, Xiangshan Tian-Kunze, Robert Ricker, Philip Rostosky, Janna Rückert, Suman Singha, and Julia Sokolova
The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021, https://doi.org/10.5194/tc-15-3897-2021, 2021
Short summary
Short summary
We use satellite data records collected along the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) drift to categorize ice conditions that shaped and characterized the floe and surroundings during the expedition. A comparison with previous years is made whenever possible. The aim of this analysis is to provide a basis and reference for subsequent research in the six main research areas of atmosphere, ocean, sea ice, biogeochemistry, remote sensing and ecology.
Ruibo Lei, Mario Hoppmann, Bin Cheng, Guangyu Zuo, Dawei Gui, Qiongqiong Cai, H. Jakob Belter, and Wangxiao Yang
The Cryosphere, 15, 1321–1341, https://doi.org/10.5194/tc-15-1321-2021, https://doi.org/10.5194/tc-15-1321-2021, 2021
Short summary
Short summary
Quantification of ice deformation is useful for understanding of the role of ice dynamics in climate change. Using data of 32 buoys, we characterized spatiotemporal variations in ice kinematics and deformation in the Pacific sector of Arctic Ocean for autumn–winter 2018/19. Sea ice in the south and west has stronger mobility than in the east and north, which weakens from autumn to winter. An enhanced Arctic dipole and weakened Beaufort Gyre in winter lead to an obvious turning of ice drifting.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Rasmus Tonboe, Stefan Hendricks, Robert Ricker, James Mead, Robbie Mallett, Marcus Huntemann, Polona Itkin, Martin Schneebeli, Daniela Krampe, Gunnar Spreen, Jeremy Wilkinson, Ilkka Matero, Mario Hoppmann, and Michel Tsamados
The Cryosphere, 14, 4405–4426, https://doi.org/10.5194/tc-14-4405-2020, https://doi.org/10.5194/tc-14-4405-2020, 2020
Short summary
Short summary
This study provides a first look at the data collected by a new dual-frequency Ka- and Ku-band in situ radar over winter sea ice in the Arctic Ocean. The instrument shows potential for using both bands to retrieve snow depth over sea ice, as well as sensitivity of the measurements to changing snow and atmospheric conditions.
Stefanie Arndt, Mario Hoppmann, Holger Schmithüsen, Alexander D. Fraser, and Marcel Nicolaus
The Cryosphere, 14, 2775–2793, https://doi.org/10.5194/tc-14-2775-2020, https://doi.org/10.5194/tc-14-2775-2020, 2020
Thomas Krumpen, Florent Birrien, Frank Kauker, Thomas Rackow, Luisa von Albedyll, Michael Angelopoulos, H. Jakob Belter, Vladimir Bessonov, Ellen Damm, Klaus Dethloff, Jari Haapala, Christian Haas, Carolynn Harris, Stefan Hendricks, Jens Hoelemann, Mario Hoppmann, Lars Kaleschke, Michael Karcher, Nikolai Kolabutin, Ruibo Lei, Josefine Lenz, Anne Morgenstern, Marcel Nicolaus, Uwe Nixdorf, Tomash Petrovsky, Benjamin Rabe, Lasse Rabenstein, Markus Rex, Robert Ricker, Jan Rohde, Egor Shimanchuk, Suman Singha, Vasily Smolyanitsky, Vladimir Sokolov, Tim Stanton, Anna Timofeeva, Michel Tsamados, and Daniel Watkins
The Cryosphere, 14, 2173–2187, https://doi.org/10.5194/tc-14-2173-2020, https://doi.org/10.5194/tc-14-2173-2020, 2020
Short summary
Short summary
In October 2019 the research vessel Polarstern was moored to an ice floe in order to travel with it on the 1-year-long MOSAiC journey through the Arctic. Here we provide historical context of the floe's evolution and initial state for upcoming studies. We show that the ice encountered on site was exceptionally thin and was formed on the shallow Siberian shelf. The analyses presented provide the initial state for the analysis and interpretation of upcoming biogeochemical and ecological studies.
Jutta E. Wollenburg, Morten Iversen, Christian Katlein, Thomas Krumpen, Marcel Nicolaus, Giulia Castellani, Ilka Peeken, and Hauke Flores
The Cryosphere, 14, 1795–1808, https://doi.org/10.5194/tc-14-1795-2020, https://doi.org/10.5194/tc-14-1795-2020, 2020
Short summary
Short summary
Based on an observed omnipresence of gypsum crystals, we concluded that their release from melting sea ice is a general feature in the Arctic Ocean. Individual gypsum crystals sank at more than 7000 m d−1, suggesting that they are an important ballast mineral. Previous observations found gypsum inside phytoplankton aggregates at 2000 m depth, supporting gypsum as an important driver for pelagic-benthic coupling in the ice-covered Arctic Ocean.
Philippe Massicotte, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Mathieu Ardyna, Laurent Arnaud, Lise Artigue, Cyril Aubry, Pierre Ayotte, Guislain Bécu, Simon Bélanger, Ronald Benner, Henry C. Bittig, Annick Bricaud, Éric Brossier, Flavienne Bruyant, Laurent Chauvaud, Debra Christiansen-Stowe, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Christine Cox, Aurelie Delaforge, Thibaud Dezutter, Céline Dimier, Florent Domine, Francis Dufour, Christiane Dufresne, Dany Dumont, Jens Ehn, Brent Else, Joannie Ferland, Marie-Hélène Forget, Louis Fortier, Martí Galí, Virginie Galindo, Morgane Gallinari, Nicole Garcia, Catherine Gérikas Ribeiro, Margaux Gourdal, Priscilla Gourvil, Clemence Goyens, Pierre-Luc Grondin, Pascal Guillot, Caroline Guilmette, Marie-Noëlle Houssais, Fabien Joux, Léo Lacour, Thomas Lacour, Augustin Lafond, José Lagunas, Catherine Lalande, Julien Laliberté, Simon Lambert-Girard, Jade Larivière, Johann Lavaud, Anita LeBaron, Karine Leblanc, Florence Le Gall, Justine Legras, Mélanie Lemire, Maurice Levasseur, Edouard Leymarie, Aude Leynaert, Adriana Lopes dos Santos, Antonio Lourenço, David Mah, Claudie Marec, Dominique Marie, Nicolas Martin, Constance Marty, Sabine Marty, Guillaume Massé, Atsushi Matsuoka, Lisa Matthes, Brivaela Moriceau, Pierre-Emmanuel Muller, Christopher-John Mundy, Griet Neukermans, Laurent Oziel, Christos Panagiotopoulos, Jean-Jacques Pangrazi, Ghislain Picard, Marc Picheral, France Pinczon du Sel, Nicole Pogorzelec, Ian Probert, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Erin Reimer, Jean-François Rontani, Søren Rysgaard, Blanche Saint-Béat, Makoto Sampei, Julie Sansoulet, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Caroline Sévigny, Yuan Shen, Margot Tragin, Jean-Éric Tremblay, Daniel Vaulot, Gauthier Verin, Frédéric Vivier, Anda Vladoiu, Jeremy Whitehead, and Marcel Babin
Earth Syst. Sci. Data, 12, 151–176, https://doi.org/10.5194/essd-12-151-2020, https://doi.org/10.5194/essd-12-151-2020, 2020
Short summary
Short summary
The Green Edge initiative was developed to understand the processes controlling the primary productivity and the fate of organic matter produced during the Arctic spring bloom (PSB). In this article, we present an overview of an extensive and comprehensive dataset acquired during two expeditions conducted in 2015 and 2016 on landfast ice southeast of Qikiqtarjuaq Island in Baffin Bay.
Christian Katlein, Stefan Hendricks, and Jeffrey Key
The Cryosphere, 11, 2111–2116, https://doi.org/10.5194/tc-11-2111-2017, https://doi.org/10.5194/tc-11-2111-2017, 2017
Short summary
Short summary
In the public debate, increasing sea ice extent in the Antarctic is often highlighted as counter-indicative of global warming. Here we show that the slight increases in Antarctic sea ice extent are not able to counter Arctic losses. Using bipolar satellite observations, we demonstrate that even in the Antarctic polar ocean solar shortwave energy absorption is increasing in accordance with strongly increasing shortwave energy absorption in the Arctic Ocean rather than compensating Arctic losses.
M. Fernández-Méndez, C. Katlein, B. Rabe, M. Nicolaus, I. Peeken, K. Bakker, H. Flores, and A. Boetius
Biogeosciences, 12, 3525–3549, https://doi.org/10.5194/bg-12-3525-2015, https://doi.org/10.5194/bg-12-3525-2015, 2015
Short summary
Short summary
Photosynthetic production in the central Arctic Ocean is controlled by light availability below the ice, nitrate and silicate concentrations in the upper ocean, and the role of sub-ice algae that contributed up to 60% to primary production in summer 2012 during the record sea-ice minimum. As sea ice decreases, an overall change in Arctic PP would be foremost related to a change in the role of the ice algal production and nutrient availability.
M. Nicolaus and C. Katlein
The Cryosphere, 7, 763–777, https://doi.org/10.5194/tc-7-763-2013, https://doi.org/10.5194/tc-7-763-2013, 2013
Related subject area
Discipline: Sea ice | Subject: Energy Balance Obs/Modelling
A sensor-agnostic albedo retrieval method for realistic sea ice surfaces: model and validation
Understanding model spread in sea ice volume by attribution of model differences in seasonal ice growth and melt
On the statistical properties of sea-ice lead fraction and heat fluxes in the Arctic
Sunlight, clouds, sea ice, albedo, and the radiative budget: the umbrella versus the blanket
Yingzhen Zhou, Wei Li, Nan Chen, Yongzhen Fan, and Knut Stamnes
The Cryosphere, 17, 1053–1087, https://doi.org/10.5194/tc-17-1053-2023, https://doi.org/10.5194/tc-17-1053-2023, 2023
Short summary
Short summary
We present a method to compute albedo (percentage of the light reflected) of the cryosphere surface using observations from optical satellite sensors. This method can be applied to sea ice, snow-covered ice, melt pond, open ocean, and mixtures thereof. Evaluation of the albedo values calculated using this approach demonstrated excellent agreement with observations. In addition, we have included a statistical comparison of the proposed method's results with those derived from other approaches.
Alex West, Edward Blockley, and Matthew Collins
The Cryosphere, 16, 4013–4032, https://doi.org/10.5194/tc-16-4013-2022, https://doi.org/10.5194/tc-16-4013-2022, 2022
Short summary
Short summary
In this study we explore a method of examining model differences in ice volume by looking at the seasonal ice growth and melt. We use simple physical relationships to judge how model differences in key variables affect ice growth and melt and apply these to three case study models with ice volume ranging from very thin to very thick. Results suggest that differences in snow and melt pond cover in early summer are most important in causing the sea ice differences for these models.
Einar Ólason, Pierre Rampal, and Véronique Dansereau
The Cryosphere, 15, 1053–1064, https://doi.org/10.5194/tc-15-1053-2021, https://doi.org/10.5194/tc-15-1053-2021, 2021
Short summary
Short summary
We analyse the fractal properties observed in the pattern of the long, narrow openings that form in Arctic sea ice known as leads. We use statistical tools to explore the fractal properties of the lead fraction observed in satellite data and show that our sea-ice model neXtSIM displays the same behaviour. Building on this result we then show that the pattern of heat loss from ocean to atmosphere in the model displays similar fractal properties, stemming from the fractal properties of the leads.
Donald K. Perovich
The Cryosphere, 12, 2159–2165, https://doi.org/10.5194/tc-12-2159-2018, https://doi.org/10.5194/tc-12-2159-2018, 2018
Short summary
Short summary
The balance of longwave and shortwave radiation plays a central role in the summer melt of Arctic sea ice. It is governed by clouds and surface albedo. The basic question is what causes more melting, sunny skies or cloudy skies. It depends on the albedo of the ice surface. For snow-covered or bare ice, sunny skies always result in less radiative heat input. In contrast, the open ocean always has, and melt ponds usually have, more radiative input under sunny skies than cloudy skies.
Cited articles
Arrigo, K. R., Sullivan, C. W., and Kremer, J. N.: A biooptical model of
Antarctic sea ice, J. Geophys. Res.-Oceans, 96, 10581–10592,
https://doi.org/10.1029/91jc00455, 1991.
Assmy, P., Fernández-Méndez, M., Duarte, P., Meyer, A., Randelhoff,
A., Mundy, C. J., Olsen, L. M., Kauko, H. M., Bailey, A., and Chierici, M.:
Leads in Arctic pack ice enable early phytoplankton blooms below
snow-covered sea ice, Sci. Rep.-UK, 7, 40850, https://doi.org/10.1038/srep40850, 2017.
Curry, J. A., Schramm, J. L., and Ebert, E. E.: Sea Ice-Albedo Climate
Feedback Mechanism, J. Climate, 8, 240–247,
https://doi.org/10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2, 1995.
Edström, P.: A Fast and Stable Solution Method for the Radiative
Transfer Problem, SIAM Rev., 47, 447–468, https://doi.org/10.1137/s0036144503438718, 2005.
Ehn, J. K., Mundy, C. J., and Barber, D. G.: Bio-optical and structural
properties inferred from irradiance measurements within the bottommost
layers in an Arctic landfast sea ice cover, J. Geophys. Res.-Oceans, 113, C03S03, https://doi.org/10.1029/2007JC004194, 2008a.
Ehn, J. K., Papakyriakou, T. N., and Barber, D. G.: Inference of optical
properties from radiation profiles within melting landfast sea ice, J.
Geophys. Res.-Oceans, 113, https://doi.org/10.1029/2007jc004656, 2008b.
Ehn, J. K. and Mundy, C. J.: Assessment of light absorption within highly
scattering bottom sea ice from under-ice light measurements: Implications
for Arctic ice algae primary production, Limnol. Oceanogr., 58, 893–902,
https://doi.org/10.4319/lo.2013.58.3.0893, 2013.
Eicken, H. and Salganek, M.: Field Techniques for Sea-Ice Research,
University of Alaska Press, Fairbanks, AK, USA, 2010.
Gascard, J. C.: Steps Toward an Integrated Arctic Ocean Observational
System, Oceanography, 24, 174–175, https://doi.org/10.5670/oceanog.2011.69, 2011.
Grenfell, T. C. and Hedrick, D.: Scattering of visible and near infrared
radiation by NaCl ice and glacier ice, Cold Reg. Sci. Tech., 8, 119–127,
https://doi.org/10.1016/0165-232x(83)90003-4, 1983.
Grenfell, T. C. and Maykut, G. A.: The optical properties of ice and snow
in the arctic basin, J. Glaciol., 18, 445–463, 1977.
Grenfell, T. C. and Perovich, D. K.: Radiation absorption coefficients of
polycrystalline ice from 400–1400nm, J. Geophys.
Res.-Oceans, 86, 7447–7450, https://doi.org/10.1029/JC086iC08p07447,
1981.
Grenfell, T. C., Light, B., and Perovich, D. K.: Spectral transmission and
implications for the partitioning of shortwave radiation in arctic sea ice,
Ann. Glaciol., 44, 1–6,
2006.
Grosfeld, K., Treffeisen, R., Asseng, J., Bartsch, A., Bräuer, B., Fritzsch, B., Gerdes, R., Hendricks, S., Hiller, W., Heygster, G., Krumpen, T., Lemke, P., Melsheimer, C., Nicolaus, M., Ricker, R., and Weigelt, M.: Online sea-ice knowledge and data platform <www.meereisportal.de>, Polarforschung, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research, 85, 143–155, https://doi.org/10.2312/polfor.2016.011, 2016 (data available at: https://data.meereisportal.de/gallery/index_new.php?active-tab1=method&buoytype=RB®ion=all&buoystate=all&expedition=Oden_AO18&buoynode=all&submit3=Anzeigen&lang=de_DE&active-tab2=buoy, last access: 11 January 2021).
Haas, C., Pfaffling, A., Hendricks, S., Rabenstein, L., Etienne, J.-L., and
Rigor, I.: Reduced ice thickness in Arctic Transpolar Drift favors rapid ice
retreat, Geophys. Res. Lett., 35, L17501, https://doi.org/10.1029/2008gl034457, 2008.
Hamre, B., Winther, J. G., Gerland, S., Stamnes, J. J., and Stamnes, K.:
Modeled and measured optical transmittance of snow-covered first-year sea
ice in Kongsfjorden, Svalbard, J. Geophys. Res.-Oceans, 109,
https://doi.org/10.1029/2003jc001926, 2004.
Hoppmann, M., Nicolaus, M., Hunkeler, P. A., Heil, P., Behrens, L.-K.,
König-Langlo, G., and Gerdes, R.: Seasonal evolution of an ice-shelf
influenced fast-ice regime, derived from an autonomous thermistor chain,
J. Geophys. Res.-Oceans, 120, 1703–1724,
https://doi.org/10.1002/2014jc010327, 2015.
Jackson, K., Wilkinson, J., Maksym, T., Meldrum, D., Beckers, J., Haas, C.,
and Mackenzie, D.: A Novel and Low-Cost Sea Ice Mass Balance Buoy, J.
Atmos. Ocean. Tech., 30, 2676–2688,
https://doi.org/10.1175/jtech-d-13-00058.1, 2013.
Katlein, C., Fernández-Méndez, M., Wenzhöfer, F., and Nicolaus,
M.: Distribution of algal aggregates under summer sea ice in the Central
Arctic, Polar Biol., 38, 1–13, https://doi.org/10.1007/s00300-014-1634-3, 2014a.
Katlein, C., Nicolaus, M., and Petrich, C.: The anisotropic scattering
coefficient of sea ice, J. Geophys. Res.-Oceans, 119, 842–855,
https://doi.org/10.1002/2013JC009502, 2014b.
Katlein, C., Arndt, S., Nicolaus, M., Perovich, D. K., Jakuba, M. V., Suman,
S., Elliott, S., Whitcomb, L. L., McFarland, C. J., Gerdes, R., Boetius, A.,
and German, C. R.: Influence of ice thickness and surface properties on
light transmission through Arctic sea ice, J. Geophys. Res.-Oceans, 120, 5932–5944, https://doi.org/10.1002/2015JC010914, 2015.
Katlein, C., Perovich, D. K., and Nicolaus, M.: Geometric Effects of an
Inhomogeneous Sea Ice Cover on the under Ice Light Field, Front. Earth
Sci., 4, 6, https://doi.org/10.3389/feart.2016.00006, 2016.
Katlein, C., Schiller, M., Belter, H. J., Coppolaro, V., Wenslandt, D., and
Nicolaus, M.: A New Remotely Operated Sensor Platform for Interdisciplinary
Observations under Sea Ice, Front. Marine Sci., 4, 281,
https://doi.org/10.3389/fmars.2017.00281, 2017.
Katlein, C., Arndt, S., Belter, H. J., Castellani, G., and Nicolaus, M.:
Seasonal Evolution of Light Transmission Distributions Through Arctic Sea
Ice, J. Geophys. Res.-Oceans, 124, 5418–5435,
https://doi.org/10.1029/2018JC014833, 2019.
Kim, A. and Wilson, B. C.: Measurement of Ex Vivo and In Vivo Tissue
Optical Properties: Methods and Theories, in: Optical-Thermal Response of
Laser-Irradiated Tissue, edited by: Welch, A. J. and van Gemert, M. J. C.,
Springer, Dordrecht, Netherlands, 267–319, 2011.
Kirk, J. T. O.: Dependence of relationship between inherent and apparent
optical properties of water on solar altitude, Limnol. Oceanogr., 29,
350–356, https://doi.org/10.4319/lo.1984.29.2.0350, 1984.
Krumpen, T., Belter, H. J., Boetius, A., Damm, E., Haas, C., Hendricks, S.,
Nicolaus, M., Nöthig, E.-M., Paul, S., Peeken, I., Ricker, R., and
Stein, R.: Arctic warming interrupts the Transpolar Drift and affects
long-range transport of sea ice and ice-rafted matter, Sci. Rep.-UK,
9, 5459, https://doi.org/10.1038/s41598-019-41456-y, 2019.
Lange, B. A., Katlein, C., Nicolaus, M., Peeken, I., and Flores, H.: Sea ice
algae chlorophyll a concentrations derived from under-ice spectral radiation
profiling platforms, J. Geophys. Res.-Oceans, 121,
8511–8534, https://doi.org/10.1002/2016JC011991, 2016.
Laszlo, I., Stamnes, K., Wiscombe, W., and Tsay, S.-C.: The Discrete Ordinate Algorithm, DISORT for Radiative Transfer, in: Light Scattering Reviews, edited by: Kokhanovsky, A., Volume 11, Springer Praxis Books, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-662-49538-4_1, 2016.
Leu, E., Wiktor, J., Soreide, J. E., Berge, J., and Falk-Petersen, S.:
Increased irradiance reduces food quality of sea ice algae, Mar. Ecol. Prog.
Ser., 411, 49–60, https://doi.org/10.3354/meps08647, 2010.
Light, B., Maykut, G. A., and Grenfell, T. C.: A two-dimensional Monte Carlo
model of radiative transfer in sea ice, J. Geophys. Res.-Oceans, 108,
https://doi.org/10.1029/2002jc001513, 2003.
Light, B., Grenfell, T. C., and Perovich, D. K.: Transmission and absorption
of solar radiation by Arctic sea ice during the melt season, J. Geophys.
Res.-Oceans, 113, https://doi.org/10.1029/2006jc003977, 2008.
Light, B., Perovich, D. K., Webster, M. A., Polashenski, C., and Dadic, R.:
Optical properties of melting first-year Arctic sea ice, J.
Geophys. Res.-Oceans, 120, 7657–7675, https://doi.org/10.1002/2015JC011163, 2015.
Maffione, R. A., Voss, J. M., and Mobley, C. D.: Theory and measurements of
the complete beam spread function of sea ice, Limnol. Oceanogr., 43, 34–43,
https://doi.org/10.4319/lo.1998.43.1.0034, 1998.
Matthes, L. C., Ehn, J. K., Girard, S. L., Pogorzelec, N. M., Babin, M., and Mundy, C. J.: Average cosine coefficient and spectral distribution of the light field under sea ice: Implications for primary production, Elementa: Science of the Anthropocene, 7, 25, https://doi.org/10.1525/elementa.363, 2019.
Mobley, C. D.: Light and water: radiative transfer in natural waters,
Academic Press, San Diego, CA, USA, 1994.
Morel, A. and Smith, R. C.: Relation Between Total Quanta and Total Energy
for Aquatic Photosynthesis, Limnol. Oceanogr., 19, 591–600, 1974.
Mundy, C. J., Ehn, J. K., Barber, D. G., and Michel, C.: Influence of snow
cover and algae on the spectral dependence of transmitted irradiance through
Arctic landfast first-year sea ice, J. Geophys. Res.-Oceans, 112,
https://doi.org/10.1029/2006jc003683, 2007.
Nicolaus, M. and Katlein, C.: Mapping radiation transfer through sea ice using a remotely operated vehicle (ROV), The Cryosphere, 7, 763–777, https://doi.org/10.5194/tc-7-763-2013, 2013.
Nicolaus, M., Gerland, S., Hudson, S. R., Hanson, S., Haapala, J., and
Perovich, D. K.: Seasonality of spectral albedo and transmittance as
observed in the Arctic Transpolar Drift in 2007, J. Geophys. Res.-Oceans,
115, https://doi.org/10.1029/2009jc006074, 2010a.
Nicolaus, M., Hudson, S. R., Gerland, S., and Munderloh, K.: A modern
concept for autonomous and continuous measurements of spectral albedo and
transmittance of sea ice, Cold Reg. Sci. Tech., 62, 14–28,
https://doi.org/10.1016/j.coldregions.2010.03.001, 2010b.
Pegau, W. S. and Zaneveld, J. R. V.: Field measurements of in-ice radiance,
Cold Reg. Sci. Tech., 31, 33–46, https://doi.org/10.1016/s0165-232x(00)00004-5, 2000.
Perovich, D. K.: Theoretical estimates of light reflection and transmission
by spatially complex and temporally varying sea ice covers, J. Geophys.
Res.-Oceans, 95, 9557–9567, https://doi.org/10.1029/JC095iC06p09557, 1990.
Perovich, D. K.: The optical properties of sea ice, CRREL, Hanover, NH, USA, 1996.
Perovich, D. K. and Richter-Menge, J. A.: From points to Poles:
extrapolating point measurements of sea-ice mass balance, Ann. Glaciol., 44,
188–192, https://doi.org/10.3189/172756406781811204, 2006.
Perovich, D. K., Longacre, J., Barber, D. G., Maffione, R. A., Cota, G. F.,
Mobley, C. D., Gow, A. J., Onstott, R. G., Grenfell, T. C., Pegau, W. S.,
Landry, M., and Roesler, C. S.: Field observations of the electromagnetic
properties of first-year sea ice, IEEE Geosci. Remote S., 36, 1705–1715, https://doi.org/10.1109/36.718639, 1998.
Perovich, D. K., Light, B., Eicken, H., Jones, K. F., Runciman, K., and
Nghiem, S. V.: Increasing solar heating of the Arctic Ocean and adjacent
seas, 1979–2005: Attribution and role in the ice-albedo feedback, Geophys.
Res. Lett., 34, https://doi.org/10.1029/2007gl031480, 2007.
Petrich, C., Nicolaus, M., and Gradinger, R.: Sensitivity of the light field
under sea ice to spatially inhomogeneous optical properties and incident
light assessed with three-dimensional Monte Carlo radiative transfer
simulations, Cold Reg. Sci. Tech., 73, 1–11,
https://doi.org/10.1016/j.coldregions.2011.12.004, 2012.
Planck, C. J., Whitlock, J., Polashenski, C., and Perovich, D.: The
evolution of the seasonal ice mass balance buoy, Cold Reg. Sci. Tech., 165,
102792, https://doi.org/10.1016/j.coldregions.2019.102792,
2019.
Renner, A. H. H., Gerland, S., Haas, C., Spreen, G., Beckers, J. F., Hansen,
E., Nicolaus, M., and Goodwin, H.: Evidence of Arctic sea ice thinning from
direct observations, Geophys. Res. Lett., 41, 5029–5036,
https://doi.org/10.1002/2014gl060369, 2014.
Richter-Menge, J. A., Perovich, D. K., Elder, B. C., Claffey, K., Rigor, I.,
and Ortmeyer, M.: Ice mass-balance buoys: a tool for measuring and
attributing changes in the thickness of the Arctic sea-ice cover, Ann.
Glaciol., 44, 205–210, https://doi.org/10.3189/172756406781811727, 2006.
Serreze, M. C., Holland, M. M., and Stroeve, J.: Perspectives on the
Arctic's Shrinking Sea-Ice Cover, Science, 315, 1533–1536,
https://doi.org/10.1126/science.1139426, 2007.
Stamnes, K., Tsay, S. C., Wiscombe, W., and Jayaweera, K.: Numerically
stable algorithm for discrete-ordinate-method radiative transfer in multiple
scattering and emitting layered media, Appl. Optics, 27, 2502–2509,
https://doi.org/10.1364/AO.27.002502, 1988.
Steele, M., Zhang, J., and Ermold, W.: Mechanisms of summertime upper Arctic
Ocean warming and the effect on sea ice melt, J. Geophys.
Res.-Oceans, 115, https://doi.org/10.1029/2009jc005849, 2010.
Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., and
Barrett, A. P.: The Arctic's rapidly shrinking sea ice cover: a research
synthesis, Climatic Change, 110, 1005–1027, https://doi.org/10.1007/s10584-011-0101-1,
2012.
Voss, J. M., Honey, R. C., Gilbert, G. D., and Buntzen, R. R.: Measuring the
point-spread function of sea ice in situ, San Diego, CA, USA, 517–526, available at: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/1750/0000/Measuring-the-point-spread-function-of-sea-ice-in-situ/10.1117/12.140682.short?SSO=1 (last access: 11 January 2021), 1992.
Wang, C., Granskog, M. A., Gerland, S., Hudson, S. R., Perovich, D. K.,
Nicolaus, M., Ivan Karlsen, T., Fossan, K., and Bratrein, M.: Autonomous
observations of solar energy partitioning in first-year sea ice in the
Arctic Basin, J. Geophys. Res.-Oceans, 119, 2066–2080,
https://doi.org/10.1002/2013JC009459, 2014.
Xu, Z., Yang, Y., Sun, Z., Li, Z., Cao, W., and Ye, H.: In situ measurement
of the solar radiance distribution within sea ice in Liaodong Bay, China,
Cold Reg. Sci. Tech., 71, 23–33, https://doi.org/10.1016/j.coldregions.2011.10.005, 2012.
Zhao, J. P., Li, T., Barber, D., Ren, J. P., Pucko, M., Li, S. J., and Li,
X.: Attenuation of lateral propagating light in sea ice measured with an
artificial lamp in winter Arctic, Cold Reg. Sci. Tech., 61, 6–12,
https://doi.org/10.1016/j.coldregions.2009.12.006, 2010.
Short summary
To improve autonomous investigations of sea ice optical properties, we designed a chain of multispectral light sensors, providing autonomous in-ice light measurements. Here we describe the system and the data acquired from a first prototype deployment. We show that sideward-looking planar irradiance sensors basically measure scalar irradiance and demonstrate the use of this sensor chain to derive light transmittance and inherent optical properties of sea ice.
To improve autonomous investigations of sea ice optical properties, we designed a chain of...