Articles | Volume 15, issue 1
https://doi.org/10.5194/tc-15-183-2021
https://doi.org/10.5194/tc-15-183-2021
Research article
 | 
11 Jan 2021
Research article |  | 11 Jan 2021

New insights into radiative transfer within sea ice derived from autonomous optical propagation measurements

Christian Katlein, Lovro Valcic, Simon Lambert-Girard, and Mario Hoppmann

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (11 Nov 2020) by John Yackel
AR by Christian Katlein on behalf of the Authors (11 Nov 2020)  Author's response   Manuscript 
ED: Publish as is (19 Nov 2020) by John Yackel
AR by Christian Katlein on behalf of the Authors (20 Nov 2020)  Manuscript 
Download
Short summary
To improve autonomous investigations of sea ice optical properties, we designed a chain of multispectral light sensors, providing autonomous in-ice light measurements. Here we describe the system and the data acquired from a first prototype deployment. We show that sideward-looking planar irradiance sensors basically measure scalar irradiance and demonstrate the use of this sensor chain to derive light transmittance and inherent optical properties of sea ice.