Articles | Volume 14, issue 11
https://doi.org/10.5194/tc-14-4083-2020
https://doi.org/10.5194/tc-14-4083-2020
Research article
 | 
18 Nov 2020
Research article |  | 18 Nov 2020

Reconciling the surface temperature–surface mass balance relationship in models and ice cores in Antarctica over the last 2 centuries

Marie G. P. Cavitte, Quentin Dalaiden, Hugues Goosse, Jan T. M. Lenaerts, and Elizabeth R. Thomas

Related authors

Investigating the spatial representativeness of East Antarctic ice cores: a comparison of ice core and radar-derived surface mass balance over coastal ice rises and Dome Fuji
Marie G. P. Cavitte, Hugues Goosse, Kenichi Matsuoka, Sarah Wauthy, Vikram Goel, Rahul Dey, Bhanu Pratap, Brice Van Liefferinge, Thamban Meloth, and Jean-Louis Tison
The Cryosphere, 17, 4779–4795, https://doi.org/10.5194/tc-17-4779-2023,https://doi.org/10.5194/tc-17-4779-2023, 2023
Short summary
Stagnant ice and age modelling in the Dome C region, Antarctica
Ailsa Chung, Frédéric Parrenin, Daniel Steinhage, Robert Mulvaney, Carlos Martín, Marie G. P. Cavitte, David A. Lilien, Veit Helm, Drew Taylor, Prasad Gogineni, Catherine Ritz, Massimo Frezzotti, Charles O'Neill, Heinrich Miller, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 17, 3461–3483, https://doi.org/10.5194/tc-17-3461-2023,https://doi.org/10.5194/tc-17-3461-2023, 2023
Short summary
A detailed radiostratigraphic data set for the central East Antarctic Plateau spanning from the Holocene to the mid-Pleistocene
Marie G. P. Cavitte, Duncan A. Young, Robert Mulvaney, Catherine Ritz, Jamin S. Greenbaum, Gregory Ng, Scott D. Kempf, Enrica Quartini, Gail R. Muldoon, John Paden, Massimo Frezzotti, Jason L. Roberts, Carly R. Tozer, Dustin M. Schroeder, and Donald D. Blankenship
Earth Syst. Sci. Data, 13, 4759–4777, https://doi.org/10.5194/essd-13-4759-2021,https://doi.org/10.5194/essd-13-4759-2021, 2021
Short summary
Aerogeophysical characterization of Titan Dome, East Antarctica, and potential as an ice core target
Lucas H. Beem, Duncan A. Young, Jamin S. Greenbaum, Donald D. Blankenship, Marie G. P. Cavitte, Jingxue Guo, and Sun Bo
The Cryosphere, 15, 1719–1730, https://doi.org/10.5194/tc-15-1719-2021,https://doi.org/10.5194/tc-15-1719-2021, 2021
Short summary
Can we reconstruct the formation of large open-ocean polynyas in the Southern Ocean using ice core records?
Hugues Goosse, Quentin Dalaiden, Marie G. P. Cavitte, and Liping Zhang
Clim. Past, 17, 111–131, https://doi.org/10.5194/cp-17-111-2021,https://doi.org/10.5194/cp-17-111-2021, 2021
Short summary

Related subject area

Discipline: Ice sheets | Subject: Atmospheric Interactions
Control of the temperature signal in Antarctic proxies by snowfall dynamics
Aymeric P. M. Servettaz, Cécile Agosta, Christoph Kittel, and Anaïs J. Orsi
The Cryosphere, 17, 5373–5389, https://doi.org/10.5194/tc-17-5373-2023,https://doi.org/10.5194/tc-17-5373-2023, 2023
Short summary
Understanding the drivers of near-surface winds in Adelie land, East Antarctica
Cécile Davrinche, Anaïs Orsi, Cécile Agosta, Charles Amory, and Christoph Kittel
EGUsphere, https://doi.org/10.5194/egusphere-2023-2045,https://doi.org/10.5194/egusphere-2023-2045, 2023
Short summary
Atmospheric drivers of melt-related ice speed-up events on the Russell Glacier in southwest Greenland
Timo Schmid, Valentina Radić, Andrew Tedstone, James M. Lea, Stephen Brough, and Mauro Hermann
The Cryosphere, 17, 3933–3954, https://doi.org/10.5194/tc-17-3933-2023,https://doi.org/10.5194/tc-17-3933-2023, 2023
Short summary
Climatology and surface impacts of atmospheric rivers on West Antarctica
Michelle L. Maclennan, Jan T. M. Lenaerts, Christine A. Shields, Andrew O. Hoffman, Nander Wever, Megan Thompson-Munson, Andrew C. Winters, Erin C. Pettit, Theodore A. Scambos, and Jonathan D. Wille
The Cryosphere, 17, 865–881, https://doi.org/10.5194/tc-17-865-2023,https://doi.org/10.5194/tc-17-865-2023, 2023
Short summary
Continuous monitoring of surface water vapour isotopic compositions at Neumayer Station III, East Antarctica
Saeid Bagheri Dastgerdi, Melanie Behrens, Jean-Louis Bonne, Maria Hörhold, Gerrit Lohmann, Elisabeth Schlosser, and Martin Werner
The Cryosphere, 15, 4745–4767, https://doi.org/10.5194/tc-15-4745-2021,https://doi.org/10.5194/tc-15-4745-2021, 2021
Short summary

Cited articles

Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H., van den Broeke, M. R., Lenaerts, J. T. M., van Wessem, J. M., van de Berg, W. J., and Fettweis, X.: Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes, The Cryosphere, 13, 281–296, https://doi.org/10.5194/tc-13-281-2019, 2019. a, b, c, d, e, f, g
Arcone, S. A., Jacobel, R., and Hamilton, G.: Unconformable stratigraphy in East Antarctica: Part I. Large firn cosets, recrystallized growth, and model evidence for intensified accumulation, J. Glaciol., 58, 240–252, https://doi.org/10.3189/2012JoJ11J044, 2012a. a
Arcone, S. A., Jacobel, R., and Hamilton, G.: Unconformable stratigraphy in East Antarctica: Part II. Englacial cosets and recrystallized layers, J. Glaciol., 58, 253–264, https://doi.org/10.3189/2012JoG11J045, 2012b. a
Ball, F. K.: The Katabatic Winds of Adélie Land and King George V Land, Tellus, 9, 201–208, https://doi.org/10.1111/j.2153-3490.1957.tb01874.x, 1957. a
Benjamini, Y. and Hochberg, Y.: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, J. Roy. Stat. Soc. B Met., 57, 289–300, 1995. a
Download
Short summary
Surface mass balance (SMB) and surface air temperature (SAT) are correlated at the regional scale for most of Antarctica, SMB and δ18O. Areas with low/no correlation are where wind processes (foehn, katabatic wind warming, and erosion) are sufficiently active to overwhelm the synoptic-scale snow accumulation. Measured in ice cores, the link between SMB, SAT, and δ18O is much weaker. Random noise can be removed by core record averaging but local processes perturb the correlation systematically.