Articles | Volume 14, issue 11
https://doi.org/10.5194/tc-14-3979-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-3979-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Numerical modeling of the dynamics of the Mer de Glace glacier, French Alps: comparison with past observations and forecasting of near-future evolution
Vincent Peyaud
CORRESPONDING AUTHOR
Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Coline Bouchayer
Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
The Njord Center, Department of Geosciences, University of Oslo, 0316 Oslo, Norway
Olivier Gagliardini
Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Christian Vincent
Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Fabien Gillet-Chaulet
Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Delphine Six
Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Olivier Laarman
Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Related authors
Christian Vincent, Diego Cusicanqui, Bruno Jourdain, Olivier Laarman, Delphine Six, Adrien Gilbert, Andrea Walpersdorf, Antoine Rabatel, Luc Piard, Florent Gimbert, Olivier Gagliardini, Vincent Peyaud, Laurent Arnaud, Emmanuel Thibert, Fanny Brun, and Ugo Nanni
The Cryosphere, 15, 1259–1276, https://doi.org/10.5194/tc-15-1259-2021, https://doi.org/10.5194/tc-15-1259-2021, 2021
Short summary
Short summary
In situ glacier point mass balance data are crucial to assess climate change in different regions of the world. Unfortunately, these data are rare because huge efforts are required to conduct in situ measurements on glaciers. Here, we propose a new approach from remote sensing observations. The method has been tested on the Argentière and Mer de Glace glaciers (France). It should be possible to apply this method to high-spatial-resolution satellite images and on numerous glaciers in the world.
Cyrille Mosbeux, Peter Råback, Adrien Gilbert, Julien Brondex, Fabien Gillet-Chaulet, Nicolas C. Jourdain, Mondher Chekki, Olivier Gagliardini, and Gaël Durand
EGUsphere, https://doi.org/10.5194/egusphere-2025-3039, https://doi.org/10.5194/egusphere-2025-3039, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Transport processes like rocks carried by ice flow and damage evolution – a proxy for crevasses – are key in ice sheet modeling and should occur without diffusion. Yet, standard numerical methods often blur these features. We explore a particle-based Semi-Lagrangian approach, comparing it to a Discontinuous Galerkin method, and show it can accurately simulate such transport when run at high enough resolution.
Audrey Goutard, Marion Réveillet, Fanny Brun, Delphine Six, Kevin Fourteau, Charles Amory, Xavier Fettweis, Mathieu Fructus, Arbindra Khadka, and Matthieu Lafaysse
EGUsphere, https://doi.org/10.5194/egusphere-2025-2947, https://doi.org/10.5194/egusphere-2025-2947, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
A new scheme has been developed in the SURFEX/ISBA-Crocus model, to consider the impact of liquid water dynamics on bare ice, including albedo feedback and refreezing. When applied to the Mera Glacier in Nepal, the model reveals strong seasonal effects on the energy and mass balance, with increased melting in dry seasons and significant refreezing during the monsoon. This development improves mass balance modeling under increasing rainfall and bare ice exposure due to climate warming.
Davor Dundovic, Joseph G. Wallwork, Stephan C. Kramer, Fabien Gillet-Chaulet, Regine Hock, and Matthew D. Piggott
Geosci. Model Dev., 18, 4023–4044, https://doi.org/10.5194/gmd-18-4023-2025, https://doi.org/10.5194/gmd-18-4023-2025, 2025
Short summary
Short summary
Accurate numerical studies of glaciers often require high-resolution simulations, which often prove too demanding even for modern computers. In this paper we develop a method that identifies whether different parts of a glacier require high or low resolution based on its physical features, such as its thickness and velocity. We show that by doing so we can achieve a more optimal simulation accuracy for the available computing resources compared to uniform-resolution simulations.
Julien Brondex, Olivier Gagliardini, Adrien Gilbert, and Emmanuel Thibert
EGUsphere, https://doi.org/10.5194/egusphere-2025-2137, https://doi.org/10.5194/egusphere-2025-2137, 2025
Short summary
Short summary
We investigate crevasse initiation by analyzing the artificial drainage of a water-filled cavity at Tête Rousse Glacier (Mont Blanc, France). Using a numerical model, we compute stress fields in response to water level variations in the cavity and compare them to observed crevasse patterns. Results show that a non-linear viscous rheology and a maximum principal stress criterion (with a stress threshold of 100–130 kPa) best predict crevasse occurrence.
Léon Roussel, Marie Dumont, Marion Réveillet, Delphine Six, Marin Kneib, Pierre Nabat, Kevin Fourteau, Diego Monteiro, Simon Gascoin, Emmanuel Thibert, Antoine Rabatel, Jean-Emmanuel Sicart, Mylène Bonnefoy, Luc Piard, Olivier Laarman, Bruno Jourdain, Mathieu Fructus, Matthieu Vernay, and Matthieu Lafaysse
EGUsphere, https://doi.org/10.5194/egusphere-2025-1741, https://doi.org/10.5194/egusphere-2025-1741, 2025
Short summary
Short summary
Saharan dust deposits frequently color alpine glaciers orange. Mineral dust reduces snow albedo and increases snow and glaciers melt rate. Using physical modeling, we quantified the impact of dust on the Argentière Glacier over the period 2019–2022. We found that that the contribution of mineral dust to the melt represents between 6 and 12 % of Argentière Glacier summer melt. At specific locations, the impact of dust over one year can rise to an equivalent of 1 meter of melted ice.
Justine Caillet, Nicolas C. Jourdain, Pierre Mathiot, Fabien Gillet-Chaulet, Benoit Urruty, Clara Burgard, Charles Amory, Mondher Chekki, and Christoph Kittel
Earth Syst. Dynam., 16, 293–315, https://doi.org/10.5194/esd-16-293-2025, https://doi.org/10.5194/esd-16-293-2025, 2025
Short summary
Short summary
Internal climate variability, resulting from processes intrinsic to the climate system, modulates the Antarctic response to climate change by delaying or offsetting its effects. Using climate and ice-sheet models, we highlight that irreducible internal climate variability significantly enlarges the likely range of Antarctic contribution to sea-level rise until 2100. Thus, we recommend considering internal climate variability as a source of uncertainty for future ice-sheet projections.
Juan-Pedro Roldán-Blasco, Adrien Gilbert, Luc Piard, Florent Gimbert, Christian Vincent, Olivier Gagliardini, Anuar Togaibekov, Andrea Walpersdorf, and Nathan Maier
The Cryosphere, 19, 267–282, https://doi.org/10.5194/tc-19-267-2025, https://doi.org/10.5194/tc-19-267-2025, 2025
Short summary
Short summary
The flow of glaciers and ice sheets results from ice deformation and basal sliding driven by gravitational forces. Quantifying the rate at which ice deforms under its own weight is critical for assessing glacier evolution. This study uses borehole instrumentation in an Alpine glacier to quantify ice deformation and constrain ice viscosity in a natural setting. Our results show that the viscosity of ice at 0 °C is largely influenced by interstitial liquid water, which enhances ice deformation.
Marin Kneib, Amaury Dehecq, Adrien Gilbert, Auguste Basset, Evan S. Miles, Guillaume Jouvet, Bruno Jourdain, Etienne Ducasse, Luc Beraud, Antoine Rabatel, Jérémie Mouginot, Guillem Carcanade, Olivier Laarman, Fanny Brun, and Delphine Six
The Cryosphere, 18, 5965–5983, https://doi.org/10.5194/tc-18-5965-2024, https://doi.org/10.5194/tc-18-5965-2024, 2024
Short summary
Short summary
Avalanches contribute to increasing the accumulation on mountain glaciers by redistributing snow from surrounding mountains slopes. Here we quantified the contribution of avalanches to the mass balance of Argentière Glacier in the French Alps, by combining satellite and field observations to model the glacier dynamics. We show that the contribution of avalanches locally increases the accumulation by 60–70 % and that accounting for this effect results in less ice loss by the end of the century.
Mohd Farooq Azam, Christian Vincent, Smriti Srivastava, Etienne Berthier, Patrick Wagnon, Himanshu Kaushik, Md. Arif Hussain, Manoj Kumar Munda, Arindan Mandal, and Alagappan Ramanathan
The Cryosphere, 18, 5653–5672, https://doi.org/10.5194/tc-18-5653-2024, https://doi.org/10.5194/tc-18-5653-2024, 2024
Short summary
Short summary
Mass balance series on Chhota Shigri Glacier has been reanalysed by combining the traditional mass balance reanalysis framework and a nonlinear model. The nonlinear model is preferred over traditional glaciological methods to compute the mass balances, as the former can capture the spatiotemporal variability in point mass balances from a heterogeneous in situ point mass balance network. The nonlinear model outperforms the traditional method and agrees better with the geodetic estimates.
Eliot Jager, Fabien Gillet-Chaulet, Nicolas Champollion, Romain Millan, Heiko Goelzer, and Jérémie Mouginot
The Cryosphere, 18, 5519–5550, https://doi.org/10.5194/tc-18-5519-2024, https://doi.org/10.5194/tc-18-5519-2024, 2024
Short summary
Short summary
Inspired by a previous intercomparison framework, our study better constrains uncertainties in glacier evolution using an innovative method to validate Bayesian calibration. Upernavik Isstrøm, one of Greenland's largest glaciers, has lost significant mass since 1985. By integrating observational data, climate models, human emissions, and internal model parameters, we project its evolution until 2100. We show that future human emissions are the main source of uncertainty in 2100, making up half.
Emily A. Hill, Benoît Urruty, Ronja Reese, Julius Garbe, Olivier Gagliardini, Gaël Durand, Fabien Gillet-Chaulet, G. Hilmar Gudmundsson, Ricarda Winkelmann, Mondher Chekki, David Chandler, and Petra M. Langebroek
The Cryosphere, 17, 3739–3759, https://doi.org/10.5194/tc-17-3739-2023, https://doi.org/10.5194/tc-17-3739-2023, 2023
Short summary
Short summary
The grounding lines of the Antarctic Ice Sheet could enter phases of irreversible retreat or advance. We use three ice sheet models to show that the present-day locations of Antarctic grounding lines are reversible with respect to a small perturbation away from their current position. This indicates that present-day retreat of the grounding lines is not yet irreversible or self-enhancing.
Ronja Reese, Julius Garbe, Emily A. Hill, Benoît Urruty, Kaitlin A. Naughten, Olivier Gagliardini, Gaël Durand, Fabien Gillet-Chaulet, G. Hilmar Gudmundsson, David Chandler, Petra M. Langebroek, and Ricarda Winkelmann
The Cryosphere, 17, 3761–3783, https://doi.org/10.5194/tc-17-3761-2023, https://doi.org/10.5194/tc-17-3761-2023, 2023
Short summary
Short summary
We use an ice sheet model to test where current climate conditions in Antarctica might lead. We find that present-day ocean and atmosphere conditions might commit an irreversible collapse of parts of West Antarctica which evolves over centuries to millennia. Importantly, this collapse is not irreversible yet.
Marie Dumont, Simon Gascoin, Marion Réveillet, Didier Voisin, François Tuzet, Laurent Arnaud, Mylène Bonnefoy, Montse Bacardit Peñarroya, Carlo Carmagnola, Alexandre Deguine, Aurélie Diacre, Lukas Dürr, Olivier Evrard, Firmin Fontaine, Amaury Frankl, Mathieu Fructus, Laure Gandois, Isabelle Gouttevin, Abdelfateh Gherab, Pascal Hagenmuller, Sophia Hansson, Hervé Herbin, Béatrice Josse, Bruno Jourdain, Irene Lefevre, Gaël Le Roux, Quentin Libois, Lucie Liger, Samuel Morin, Denis Petitprez, Alvaro Robledano, Martin Schneebeli, Pascal Salze, Delphine Six, Emmanuel Thibert, Jürg Trachsel, Matthieu Vernay, Léo Viallon-Galinier, and Céline Voiron
Earth Syst. Sci. Data, 15, 3075–3094, https://doi.org/10.5194/essd-15-3075-2023, https://doi.org/10.5194/essd-15-3075-2023, 2023
Short summary
Short summary
Saharan dust outbreaks have profound effects on ecosystems, climate, health, and the cryosphere, but the spatial deposition pattern of Saharan dust is poorly known. Following the extreme dust deposition event of February 2021 across Europe, a citizen science campaign was launched to sample dust on snow over the Pyrenees and the European Alps. This campaign triggered wide interest and over 100 samples. The samples revealed the high variability of the dust properties within a single event.
Christian Vincent and Emmanuel Thibert
The Cryosphere, 17, 1989–1995, https://doi.org/10.5194/tc-17-1989-2023, https://doi.org/10.5194/tc-17-1989-2023, 2023
Short summary
Short summary
Temperature-index models have been widely used for glacier mass projections in the future. The ability of these models to capture non-linear responses of glacier mass balance (MB) to high deviations in air temperature and solid precipitation has recently been questioned by mass balance simulations employing advanced machine-learning techniques. Here, we confirmed that temperature-index models are capable of detecting non-linear responses of glacier MB to temperature and precipitation changes.
Rubén Basantes-Serrano, Antoine Rabatel, Bernard Francou, Christian Vincent, Alvaro Soruco, Thomas Condom, and Jean Carlo Ruíz
The Cryosphere, 16, 4659–4677, https://doi.org/10.5194/tc-16-4659-2022, https://doi.org/10.5194/tc-16-4659-2022, 2022
Short summary
Short summary
We assessed the volume variation of 17 glaciers on the Antisana ice cap, near the Equator. We used aerial and satellite images for the period 1956–2016. We highlight very negative changes in 1956–1964 and 1979–1997 and slightly negative or even positive conditions in 1965–1978 and 1997–2016, the latter despite the recent increase in temperatures. Glaciers react according to regional climate variability, while local humidity and topography influence the specific behaviour of each glacier.
Anna Derkacheva, Fabien Gillet-Chaulet, Jeremie Mouginot, Eliot Jager, Nathan Maier, and Samuel Cook
The Cryosphere, 15, 5675–5704, https://doi.org/10.5194/tc-15-5675-2021, https://doi.org/10.5194/tc-15-5675-2021, 2021
Short summary
Short summary
Along the edges of the Greenland Ice Sheet surface melt lubricates the bed and causes large seasonal fluctuations in ice speeds during summer. Accurately understanding how these ice speed changes occur is difficult due to the inaccessibility of the glacier bed. We show that by using surface velocity maps with high temporal resolution and numerical modelling we can infer the basal conditions that control seasonal fluctuations in ice speed and gain insight into seasonal dynamics over large areas.
Christophe Genthon, Dana Veron, Etienne Vignon, Delphine Six, Jean-Louis Dufresne, Jean-Baptiste Madeleine, Emmanuelle Sultan, and François Forget
Earth Syst. Sci. Data, 13, 5731–5746, https://doi.org/10.5194/essd-13-5731-2021, https://doi.org/10.5194/essd-13-5731-2021, 2021
Short summary
Short summary
A 10-year dataset of observation in the atmospheric boundary layer at Dome C on the high Antarctic plateau is presented. This is obtained with sensors at six levels along a tower higher than 40 m. The temperature inversion can reach more than 25 °C along the tower in winter, while full mixing by convection can occur in summer. Different amplitudes of variability for wind and temperature at the different levels reflect different signatures of solar vs. synoptic forcing of the boundary layer.
Nathan Maier, Florent Gimbert, Fabien Gillet-Chaulet, and Adrien Gilbert
The Cryosphere, 15, 1435–1451, https://doi.org/10.5194/tc-15-1435-2021, https://doi.org/10.5194/tc-15-1435-2021, 2021
Short summary
Short summary
In Greenland, ice motion and the surface geometry depend on the friction at the bed. We use satellite measurements and modeling to determine how ice speeds and friction are related across the ice sheet. The relationships indicate that ice flowing over bed bumps sets the friction across most of the ice sheet's on-land regions. This result helps simplify and improve our understanding of how ice motion will change in the future.
Christian Vincent, Diego Cusicanqui, Bruno Jourdain, Olivier Laarman, Delphine Six, Adrien Gilbert, Andrea Walpersdorf, Antoine Rabatel, Luc Piard, Florent Gimbert, Olivier Gagliardini, Vincent Peyaud, Laurent Arnaud, Emmanuel Thibert, Fanny Brun, and Ugo Nanni
The Cryosphere, 15, 1259–1276, https://doi.org/10.5194/tc-15-1259-2021, https://doi.org/10.5194/tc-15-1259-2021, 2021
Short summary
Short summary
In situ glacier point mass balance data are crucial to assess climate change in different regions of the world. Unfortunately, these data are rare because huge efforts are required to conduct in situ measurements on glaciers. Here, we propose a new approach from remote sensing observations. The method has been tested on the Argentière and Mer de Glace glaciers (France). It should be possible to apply this method to high-spatial-resolution satellite images and on numerous glaciers in the world.
Cited articles
Berthier, E., Arnaud, Y., Baratoux, D., Vincent, C., and Rémy, F.: Recent
rapid thinning of the ”Mer de Glace” glacier derived from satellite optical
images, Geophys. Res. Lett., 31, L17401, https://doi.org/10.1029/2004GL020706, 2004. a, b
Berthier, E., Vadon, H., Baratoux, D., Arnaud, Y., Vincent, C., Feigl, K. L.,
Rémy, F., and Legresy, B.: Surface motion of mountain glaciers derived from
satellite optical imagery, Remote Sens. Environ., 95, 14–28,
https://doi.org/10.1016/j.rse.2004.11.005, 2005. a
Berthier, E., Vincent, C., Magnússon, E., Gunnlaugsson, Á. Þ., Pitte, P., Le Meur, E., Masiokas, M., Ruiz, L., Pálsson, F., Belart, J. M. C., and Wagnon, P.: Glacier topography and elevation changes derived from Pléiades sub-meter stereo images, The Cryosphere, 8, 2275–2291, https://doi.org/10.5194/tc-8-2275-2014, 2014. a
Braithwaite, R. J.: Positive degree-day factors for ablation on the Greenland
ice sheet studied by energy-balance modelling, J. Glaciol., 41, 153–160,
https://doi.org/10.3189/S0022143000017846, 1995. a
Brunner, M. I., Gurung, A. B., Zappa, M., Zekollari, H., Farinotti, D., and
Stähli, M.: Present and future water scarcity in Switzerland: Potential
for alleviation through reservoirs and lakes, Sci. Total
Environ., 666, 1033–1047, https://doi.org/10.1016/j.scitotenv.2019.02.169, 2019. a
Clarke, G. K. C., Jarosch, A. H., Anslow, F. S., Radić, V., and Menounos,
B.: Projected deglaciation of western Canada in the twenty-first century,
Nat. Geosci., 8, 372–377, https://doi.org/10.1038/ngeo2407, 2015. a
Durand, Y., Laternser, M., Giraud, G., Etchevers, P., Lesaffre, B., and
Mérindol, L.: Reanalysis of 44 yr of climate in the French Alps (1958–2002): Methodology, model validation, climatology, and trends for air temperature
and precipitation, J. Appl. Meteorol. Clim., 48, 429–449,
https://doi.org/10.1175/2008JAMC1808.1, 2009. a, b, c
Farinotti, D., Brinkerhoff, D. J., Clarke, G. K. C., Fürst, J. J., Frey, H., Gantayat, P., Gillet-Chaulet, F., Girard, C., Huss, M., Leclercq, P. W., Linsbauer, A., Machguth, H., Martin, C., Maussion, F., Morlighem, M., Mosbeux, C., Pandit, A., Portmann, A., Rabatel, A., Ramsankaran, R., Reerink, T. J., Sanchez, O., Stentoft, P. A., Singh Kumari, S., van Pelt, W. J. J., Anderson, B., Benham, T., Binder, D., Dowdeswell, J. A., Fischer, A., Helfricht, K., Kutuzov, S., Lavrentiev, I., McNabb, R., Gudmundsson, G. H., Li, H., and Andreassen, L. M.: How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment, The Cryosphere, 11, 949–970, https://doi.org/10.5194/tc-11-949-2017, 2017. a
Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H.,
Maussion, F., and Pandit, A.: A consensus estimate for the ice thickness
distribution of all glaciers on Earth, Nat. Geosci., 12, 168–173,
https://doi.org/10.1038/s41561-019-0300-3, 2019. a
Fürst, J. J., Navarro, F., Gillet-Chaulet, F., Huss, M., Moholdt, G.,
Fettweis, X., Lang, C., Seehaus, T., Ai, S., Benham, T. J.,
Benn D. I., Björnsson H., Dowdeswell
J. A., Mariusz Grabiec, G., Kohler, J., Lavrentiev, I., Lindbäck, K., Melvold, K., Pettersson, R., Rippin,
D., Saintenoy, A., Pablo Sánchez-Gámez, P., Schuler, T. V., Sevestre, H., Vasilenko, E., and Braun, M. H.: The
Ice-Free Topography of Svalbard, Geophys. Res. Lett., 45, 11–760,
https://doi.org/10.1029/2018GL079734, 2018. a
Gagliardini, O., Gillet-Chaulet, F., Durand, G., Vincent, C., and Duval, P.:
Estimating the risk of glacier cavity collapse during artificial drainage:
The case of Tête Rousse Glacier, Geophys. Res. Lett., 38, L10505,
https://doi.org/10.1029/2011GL047536, 2011. a
Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., de Fleurian, B., Greve, R., Malinen, M., Martín, C., Råback, P., Ruokolainen, J., Sacchettini, M., Schäfer, M., Seddik, H., and Thies, J.: Capabilities and performance of Elmer/Ice, a new-generation ice sheet model, Geosci. Model Dev., 6, 1299–1318, https://doi.org/10.5194/gmd-6-1299-2013, 2013. a, b, c
Gerbaux, M., Genthon, C., Etchevers, P., Vincent, C., and Dedieu, J.: Surface
mass balance of glaciers in the French Alps: distributed modeling and
sensitivity to climate change, J. Glaciol., 51, 561–572,
https://doi.org/10.3189/172756505781829133, 2005. a
Gilbert, A., Sinisalo, A., Gurung, T. R., Fujita, K., Maharjan, S. B., Sherpa, T. C., and Fukuda, T.: The influence of water percolation through crevasses on the thermal regime of a Himalayan mountain glacier, The Cryosphere, 14, 1273–1288, https://doi.org/10.5194/tc-14-1273-2020, 2020. a, b, c
Gillet-Chaulet, F., Gagliardini, O., Seddik, H., Nodet, M., Durand, G., Ritz, C., Zwinger, T., Greve, R., and Vaughan, D. G.: Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model, The Cryosphere, 6, 1561–1576, https://doi.org/10.5194/tc-6-1561-2012, 2012. a
Glen, J. W.: The creep of polycrystalline ice, P. R. Soc. A, 228, 519–538,
1955. a
Gluck, S.: Détermination du lit rocheux sous la Mer de Glace par
séismique-réflexion, CR Acad. Sci., 264, 2272–2275,
1967. a
Greuell, W.: Hintereisferner, Austria: mass-balance reconstruction and
numerical modelling of the historical length variations, J. Glaciol., 38,
233–244, https://doi.org/10.3189/S0022143000003646, 1992. a
Haeberli, W. and Hölzle, M.: Application of inventory data for estimating
characteristics of and regional climate-change effects on mountain glaciers:
a pilot study with the European Alps, Ann. Glaciol., 21, 206–212,
https://doi.org/10.1017/S0260305500015834, 1995. a
Hock, R.: Temperature index melt modelling in mountain areas, J. Hydrol., 282,
104–115, https://doi.org/10.1016/S0022-1694(03)00257-9, 2003. a
Hock, R., Bliss, A., Marzeion, B., Giesen, R. H., Hirabayashi, Y., Huss, M.,
Radić, V., and Slangen, A. B. A.: GlacierMIP – A model intercomparison of
global-scale glacier mass-balance models and projections, J. Glaciol., 65,
453–467, https://doi.org/10.1017/jog.2019.22, 2019. a
Huss, M.: Extrapolating glacier mass balance to the mountain-range scale: the European Alps 1900–2100, The Cryosphere, 6, 713–727, https://doi.org/10.5194/tc-6-713-2012, 2012. a
Huss, M. and Hock, R.: Global-scale hydrological response to future glacier
mass loss, Nat. Clim. Change, 8, 135–140,
https://doi.org/10.1038/s41558-017-0049-x, 2018. a, b
Huss, M., Farinotti, D., Bauder, A., and Funk, M.: Modelling runoff from highly
glacierized alpine drainage basins in a changing climate, Hydrol. Process.,
22, 3888–3902, https://doi.org/10.1002/hyp.7055, 2008. a
Hutter, K.: The effect of longitudinal strain on the shearstress of an ice
sheet: in defence of using stretched coordinates, J. Glaciol., 27, 39–56,
https://doi.org/10.3189/S0022143000011217, 1981. a
Huybrechts, P., de Nooze, P., and Decleir, H.: Numerical modelling of glacier
d'Argentière and its historic front variations, in: Glacier
Fluctuations and Climatic Change, edited by: Oerlemans, J., 373–389,
https://doi.org/10.1007/978-94-015-7823-3_24, 1989. a
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer,
L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou,
E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones,
C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A.,
Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S.,
Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P.,
Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber,
B., and Yiou, P.: EURO-CORDEX: new high-resolution climate change projections
for European impact research, Reg. Environ. Change, 14, 563–578,
https://doi.org/10.1007/s10113-013-0499-2, 2014. a
Jouvet, G. and Huss, M.: Future retreat of Great Aletsch Glacier, J.
Glaciol., 65, 869–872, https://doi.org/10.1017/jog.2019.52, 2019. a, b
Jouvet, G., Huss, M., Funk, M., and Blatter, H.: Modelling the retreat of
Grosser Aletschgletscher, Switzerland, in a changing climate, J. Glaciol.,
57, 1033–1045, https://doi.org/10.3189/002214311798843359, 2011. a, b
Kääb, A., Leinss, S., Gilbert, A., Bühler, Y., Gascoin, S., Evans,
S. G., Bartelt, P., Berthier, E., Brun, F., Chao, W.-A.,
Farinotti, D., Gimbert, F. Guo, W., Huggel, C.,
Kargel, J. S., Leonard, G. J., Tian, L., Treichler, D., and Yao, T.: Massive
collapse of two glaciers in western Tibet in 2016 after surge-like
instability, Nat. Geosci., 11, 114–120, https://doi.org/10.1038/s41561-017-0039-7,
2018. a
Le Meur, E. and Vincent, C.: A two-dimensional shallow ice-flow model of
Glacier de Saint-Sorlin, France, J. Glaciol., 49, 527–538,
https://doi.org/10.3189/172756503781830421, 2003. a
Letréguilly, A. and Reynaud, L.: Past and Forecast Fluctuations of Glacier
Blanc (French Alps), Ann. Glaciol., 13, 159–163,
https://doi.org/10.3189/S0260305500007813, 1989. a
Lliboutry, L., Vallon, M., and Vivet, R.: Étude de trois glaciers des Alpes
Françaises, in: Union Géodésique et Géophysique
Internationale, Association Internationale d'Hydrologie Scientifique,
Commission des Neiges et des Glaces, Colloque d'Obergurgl, 10–18 September
1962, 145–59, 1962. a
Marzeion, B., Jarosch, A. H., and Hofer, M.: Past and future sea-level change from the surface mass balance of glaciers, The Cryosphere, 6, 1295–1322, https://doi.org/10.5194/tc-6-1295-2012, 2012. a
Marzeion, B., Hock, R., Anderson, B., Bliss, A., Champollion, N., Fujita, K.,
Huss, M., Immerzeel, W., Kraaijenbrink, P., Malles, J.-H., Maussion, F.,
Radìc, V., Rounce, D. R., Sakai, A., Shannon, S., van de Wal, R., and
Zekollari, H.: Partitioning the Uncertainty of Ensemble Projections of Global
Glacier Mass Change, Earths Future, 8, e2019EF001470,
https://doi.org/10.1029/2019EF001470, 2020. a, b
Maussion, F., Butenko, A., Champollion, N., Dusch, M., Eis, J., Fourteau, K., Gregor, P., Jarosch, A. H., Landmann, J., Oesterle, F., Recinos, B., Rothenpieler, T., Vlug, A., Wild, C. T., and Marzeion, B.: The Open Global Glacier Model (OGGM) v1.1, Geosci. Model Dev., 12, 909–931, https://doi.org/10.5194/gmd-12-909-2019, 2019. a
Millan, R., Mouginot, J., Rabatel, A., Jeong, S., Cusicanqui, D., Derkacheva,
A., and Chekki, M.: Mapping Surface Flow Velocity of Glaciers at Regional
Scale Using a Multiple Sensors Approach, Remote Sens.-Basel, 65, 2498,
https://doi.org/10.3390/rs11212498, 2019. a
Oerlemans, J.: Glaciers and climate change: a meteorologist's view., A. A.
Balkema Publishers, 2001. a
Paterson, W. S. B.: The Physics of Glaciers, 3rd edn., Elsevier Science Ltd, 1994. a
Rabatel, A., Dedieu, J.-P., and Vincent, C.: Using remote-sensing data to
determine equilibrium-line altitude and mass-balance time series: validation
on three French glaciers, 1994–2002, J. Glaciol., 51, 539–546,
https://doi.org/10.3189/172756505781829106, 2005. a
Radić, V., Bliss, A., Beedlow, A. C., Hock, R., Miles, E., and Cogley, J. G.: Regional and global projections of twenty-first century glacier mass
changes in response to climate scenarios from global climate models, Clim.
Dynam., 42, 37–58, https://doi.org/10.1007/s00382-013-1719-7, 2014. a
Réveillet, M., Rabatel, A., F., G.-C., and Soruco, A.: Simulations of changes
to Glaciar Zongo, Bolivia (16∘ S), over the 21st century using a 3-D
full-Stokes model and CMIP5 climate projections, Ann. Glaciol., 56, 89–97,
https://doi.org/10.3189/2015AoG70A113, 2015. a, b
Réveillet, M., Vincent, C., and Six, D. Rabatel, A.: Which empirical model is
best suited to simulate glacier mass balances?, J. Glaciol., 63, 39–54,
https://doi.org/10.1017/jog.2016.110, 2017. a, b, c, d
Six, D. and Vincent, C.: Sensitivity of mass balance and equilibrium-line
altitude to climate change in the French Alps, J. Glaciol., 60, 867–878,
https://doi.org/10.3189/2014JoG14J014, 2014. a
Solomon, S., Qin, D., Manning, M., Averyt, K., and Marquis, M.: Climate change
2007 – the physical science basis: Working group I contribution to the fourth
assessment report of the IPCC, vol. 4, Cambridge University Press, 2007. a
Stewart, E. J., Wilson, J., Espiner, S., Purdie, H., Lemieux, C., and Dawson, J.: Implications of climate change for glacier tourism, Tourism Geogr.,
18, 377–398, https://doi.org/10.1080/14616688.2016.1198416, 2016. a
Stroeven, A., van de Wal, R., and Oerlemans, J.: Historic front variations of
the Rhone Glacier: simulation with an ice flow model, in: Glacier
Fluctuations and Climate Change, edited by: Oerlemans, J., Springer, Dordrecht, 391–405,
1989. a
Süustrunk, A. E.: Sondage du glacier par la méthode sismique, Houille
Blanche, No. spécial A, 309–318, https://doi.org/10.1051/lhb/1951010, 1951. a
Thibert, E., Blanc, R., Vincent, C., and Eckert, N.: Glaciological and
volumetric mass-balance measurements: error analysis over 51 years for
Glacier de Sarennes, French Alps, J. Glaciol., 54, 522–532,
https://doi.org/10.3189/002214308785837093, 2008. a
Vallon, M.: Épaisseur du glacier du Tacul (massif du Mont- Blanc), CR Acad. Sci., 252, 1815—1817, 1961. a
Vallon, M.: Contribution à l'étude de la Mer de Glace., Ph.D. thesis,
Université de Grenoble, 1967. a
Vallot, J.: Tome I à VI, in: Annales de l'Obsevatoire météoprologique,
physique et glaciaire du Mont Blanc (altitude 4,358 métres), G Steinheil,
Paris, 1905. a
Verfaillie, D., Déqué, M., Morin, S., and Lafaysse, M.: The method ADAMONT v1.0 for statistical adjustment of climate projections applicable to energy balance land surface models, Geosci. Model Dev., 10, 4257–4283, https://doi.org/10.5194/gmd-10-4257-2017, 2017. a
Verfaillie, D., Lafaysse, M., Déqué, M., Eckert, N., Lejeune, Y., and Morin, S.: Multi-component ensembles of future meteorological and natural snow conditions for 1500 m altitude in the Chartreuse mountain range, Northern French Alps, The Cryosphere, 12, 1249–1271, https://doi.org/10.5194/tc-12-1249-2018, 2018. a
Vincent, C.: Influence of climate change over the 20th Century on four French
glacier mass balances, J. Geophys. Res., 107, 4375,
https://doi.org/10.1029/2001JD000832, 2002. a
Vincent, C., Soruco, A., Six, D., and Le Meur, E.: Glacier thickening and decay
analysis from 50 years of glaciological observations performed on Glacier
d'Argentière, Mont Blanc area, France, Ann. Glaciol., 50, 73–79,
https://doi.org/10.3189/172756409787769500, 2009. a
Vincent, C., Harter, M., Gilbert, A., Berthier, E., and Six, D.: Future
fluctuations of Mer de Glace, French Alps, assessed using a parameterized
model calibrated with past thickness changes, Ann. Glaciol., 55, 15–24,
https://doi.org/10.3189/2014AoG66A050, 2014. a, b, c, d
Vincent, C., Peyaud, V., Laarman, O., Six, D., Gilbert, A., Gillet-Chaulet, F.,
Berthier, E., Morin, S., Verfaillie, D., Rabatel, A., Jourdain, B., and
Bolibar, J.: Déclin des deux plus grands glaciers des Alpes françaises au
cours du XXI siècle: Argentière et Mer de Glace, La
Météorologie, 106,
49–58, https://doi.org/10.4267/2042/70369, 2019. a
Vionnet, V., Six, D., Auger, L., Dumont, M., Lafaysse, M., Quéno, L.,
Réveillet, M., Dombrowski-Etchevers, I., Thibert, E., and Vincent, C.:
Sub-kilometer Precipitation Datasets for Snowpack and Glacier Modeling in
Alpine Terrain, Front. Earth Sci., 7, 182, https://doi.org/10.3389/feart.2019.00182,
2019. a
Welling, J. T., Árnason, Þ., and Ólafsdottír, R.: Glacier
tourism: A scoping review, Tourism Geogr., 17, 635–662,
https://doi.org/10.1080/14616688.2015.1084529, 2015. a
Zekollari, H., Fürst, J. J., and Huybrects, P.: Modelling the evolution of
Vadret da Morteratsch, Switzerland, since the Little Ice Age and into the
future, J. Glaciol., 60, 1155–1168, https://doi.org/10.3189/2014JoG14J053, 2014. a
Zekollari, H., Huss, M., and Farinotti, D.: Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble, The Cryosphere, 13, 1125–1146, https://doi.org/10.5194/tc-13-1125-2019, 2019.
a, b, c
Zekollari, H., Huss, M., and Farinotti, D.: On the Imbalance and Response Time
of Glaciers in the European Alps, Geophys. Res. Let., 47, e2019GL085578,
https://doi.org/10.1029/2019GL085578, 2020. a
Zemp, M., Haeberli, W., Hoelzle, M., and Paul, F.: Alpine glaciers to disappear
within decades?, Geophys. Res. Lett., 33, L13504, https://doi.org/10.1029/2006GL026319, 2006. a
Zemp, M., Frey, H., Gärtner-Roer, I., and Nussbaumer, S. U.”: Historically unprecedented global glacier decline in the
early 21st century, J. Glaciol., 61, 745–762, https://doi.org/10.3189/2015JoG15J017, 2015. a
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun, M., Machguth, H., Nussbaumer, S. U., Gärtner-Roer, I., Thomson, L., Paul, F., Maussion, F., Kutuzov, S., and Cogley, J. G.: Global glacier mass changes
and their contributions to sea-level rise from 1961 to 2016, Nature, 568,
382–386, https://doi.org/10.1038/s41586-019-1071-0, 2019. a
Short summary
Alpine glaciers are retreating at an accelerating rate in a warming climate. Numerical models allow us to study and anticipate these changes, but the performance of a model is difficult to evaluate. So we compared an ice flow model with the long dataset of observations obtained between 1979 and 2015 on Mer de Glace (Mont Blanc area). The model accurately reconstructs the past evolution of the glacier. We simulate the future evolution of Mer de Glace; it could retreat by 2 to 6 km by 2050.
Alpine glaciers are retreating at an accelerating rate in a warming climate. Numerical models...