Articles | Volume 14, issue 11
https://doi.org/10.5194/tc-14-3907-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-3907-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Permafrost thawing exhibits a greater influence on bacterial richness and community structure than permafrost age in Arctic permafrost soils
Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau
Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, China
Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau
Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, China
CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China
Chao Liang
Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
Tianqi Zhou
Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau
Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, China
Hongzeng Jia
Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau
Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, China
Xiaobin Dong
State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Resources Science and Technology, Beijing Normal University, Beijing 100875, China
Related authors
Yongqin Liu, Songnian Hu, Tao Yu, Yingfeng Luo, Zhihao Zhang, Yuying Chen, Shunchao Guo, Qinglan Sun, Guomei Fan, Linhuan Wu, Juncai Ma, Keshao Liu, Pengfei Liu, Junzhi Liu, Ruyi Dong, and Mukan Ji
Earth Syst. Sci. Data, 17, 5165–5179, https://doi.org/10.5194/essd-17-5165-2025, https://doi.org/10.5194/essd-17-5165-2025, 2025
Short summary
Short summary
Based on amplicon sequencing, metagenome sequencing, and cultivated genome sequencing, the dataset contains 64,510 bacterial and archaeal species, 62,595,715 unique genes, and 4,501 microbial genomes of bacteria and archaea from glaciers of the Antarctic, Arctic, Tibetan Plateau, and other alpine regions. The data can be useful to ecologists, microbiologists, and policymakers regarding microbial distribution, evolution, and biohazard assessment for glacier microbiome under global climate change.
Junzhi Liu, Pengcheng Fang, Yefeng Que, Liang-Jun Zhu, Zheng Duan, Guoan Tang, Pengfei Liu, Mukan Ji, and Yongqin Liu
Earth Syst. Sci. Data, 14, 3791–3805, https://doi.org/10.5194/essd-14-3791-2022, https://doi.org/10.5194/essd-14-3791-2022, 2022
Short summary
Short summary
The management and conservation of lakes should be conducted in the context of catchments because lakes collect water and materials from their upstream catchments. This study constructed the first dataset of lake-catchment characteristics for 1525 lakes with an area from 0.2 to 4503 km2 on the Tibetan Plateau (TP), which provides exciting opportunities for lake studies in a spatially explicit context and promotes the development of landscape limnology on the TP.
Yongqin Liu, Pengcheng Fang, Bixi Guo, Mukan Ji, Pengfei Liu, Guannan Mao, Baiqing Xu, Shichang Kang, and Junzhi Liu
Earth Syst. Sci. Data, 14, 2303–2314, https://doi.org/10.5194/essd-14-2303-2022, https://doi.org/10.5194/essd-14-2303-2022, 2022
Short summary
Short summary
Glaciers are an important pool of microorganisms, organic carbon, and nitrogen. This study constructed the first dataset of microbial abundance and total nitrogen in Tibetan Plateau (TP) glaciers and the first dataset of dissolved organic carbon in ice cores on the TP. These new data could provide valuable information for research on the glacier carbon and nitrogen cycle and help in assessing the potential impacts of glacier retreat due to global warming on downstream ecosystems.
Yuying Chen, Keshao Liu, Yongqin Liu, Trista J. Vick-Majors, Feng Wang, and Mukan Ji
The Cryosphere, 16, 1265–1280, https://doi.org/10.5194/tc-16-1265-2022, https://doi.org/10.5194/tc-16-1265-2022, 2022
Short summary
Short summary
We investigated the bacterial communities in surface and subsurface snow samples in a Tibetan Plateau glacier using 16S rRNA gene sequences. Our results revealed rapid temporal changes in nitrogen (including nitrate and ammonium) and bacterial communities in both surface and subsurface snow. These findings advance our understanding of bacterial community variations and bacterial interactions after snow deposition and provide a possible biological explanation for nitrogen dynamics in snow.
Yongqin Liu, Songnian Hu, Tao Yu, Yingfeng Luo, Zhihao Zhang, Yuying Chen, Shunchao Guo, Qinglan Sun, Guomei Fan, Linhuan Wu, Juncai Ma, Keshao Liu, Pengfei Liu, Junzhi Liu, Ruyi Dong, and Mukan Ji
Earth Syst. Sci. Data, 17, 5165–5179, https://doi.org/10.5194/essd-17-5165-2025, https://doi.org/10.5194/essd-17-5165-2025, 2025
Short summary
Short summary
Based on amplicon sequencing, metagenome sequencing, and cultivated genome sequencing, the dataset contains 64,510 bacterial and archaeal species, 62,595,715 unique genes, and 4,501 microbial genomes of bacteria and archaea from glaciers of the Antarctic, Arctic, Tibetan Plateau, and other alpine regions. The data can be useful to ecologists, microbiologists, and policymakers regarding microbial distribution, evolution, and biohazard assessment for glacier microbiome under global climate change.
Junzhi Liu, Pengcheng Fang, Yefeng Que, Liang-Jun Zhu, Zheng Duan, Guoan Tang, Pengfei Liu, Mukan Ji, and Yongqin Liu
Earth Syst. Sci. Data, 14, 3791–3805, https://doi.org/10.5194/essd-14-3791-2022, https://doi.org/10.5194/essd-14-3791-2022, 2022
Short summary
Short summary
The management and conservation of lakes should be conducted in the context of catchments because lakes collect water and materials from their upstream catchments. This study constructed the first dataset of lake-catchment characteristics for 1525 lakes with an area from 0.2 to 4503 km2 on the Tibetan Plateau (TP), which provides exciting opportunities for lake studies in a spatially explicit context and promotes the development of landscape limnology on the TP.
Yongqin Liu, Pengcheng Fang, Bixi Guo, Mukan Ji, Pengfei Liu, Guannan Mao, Baiqing Xu, Shichang Kang, and Junzhi Liu
Earth Syst. Sci. Data, 14, 2303–2314, https://doi.org/10.5194/essd-14-2303-2022, https://doi.org/10.5194/essd-14-2303-2022, 2022
Short summary
Short summary
Glaciers are an important pool of microorganisms, organic carbon, and nitrogen. This study constructed the first dataset of microbial abundance and total nitrogen in Tibetan Plateau (TP) glaciers and the first dataset of dissolved organic carbon in ice cores on the TP. These new data could provide valuable information for research on the glacier carbon and nitrogen cycle and help in assessing the potential impacts of glacier retreat due to global warming on downstream ecosystems.
Yuying Chen, Keshao Liu, Yongqin Liu, Trista J. Vick-Majors, Feng Wang, and Mukan Ji
The Cryosphere, 16, 1265–1280, https://doi.org/10.5194/tc-16-1265-2022, https://doi.org/10.5194/tc-16-1265-2022, 2022
Short summary
Short summary
We investigated the bacterial communities in surface and subsurface snow samples in a Tibetan Plateau glacier using 16S rRNA gene sequences. Our results revealed rapid temporal changes in nitrogen (including nitrate and ammonium) and bacterial communities in both surface and subsurface snow. These findings advance our understanding of bacterial community variations and bacterial interactions after snow deposition and provide a possible biological explanation for nitrogen dynamics in snow.
Cited articles
Anderson, M.: Distance–based tests for homogeneity of multivariate
dispersions, Biometrics, 62, 245–253, 2006.
Anderson, M. J.: A new method for non–parametric multivariate analysis of
variance, Austral Ecol., 26, 32–46, 2001.
Archer, E.: RfPermute: Version 2.1.5 to Accompany R Journal Paper, Zenodo,
https://doi.org/10.5281/zenodo.159219, 2016.
Bardgett, R. D. and Walker, L. R.: Impact of coloniser plant species on the
development of decomposer microbial communities following deglaciation, Soil
Biol. Biochem., 36, 555–559, 2004.
Brown, M. B. and Forsythe, A. B.: Robust tests for the equality of
variances, J. Am. Stat. Assoc., 69, 364–367, 1974.
Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley,
J., Fierer, N., Owens, S. M., Betley, J., Fraser, L., Bauer, M., Gormley,
N., Gilbert, J. A., Smith, G., and Knight, R.: Ultra-high-throughput
microbial community analysis on the Illumina HiSeq and MiSeq platforms, ISME
J., 6, 1621–1624, 2012.
Chen, L., Liang, J., Qin, S., Liu, L., Fang, K., Xu, Y., Ding, J., Li, F.,
Luo, Y., and Yang, Y.: Determinants of carbon release from the active layer
and permafrost deposits on the Tibetan Plateau, Nat. Commun., 7,
13046–13046, 2016.
Chen, L., Liu, L., Mao, C., Qin, S., Wang, J., Liu, F., Blagodatsky, S.,
Yang, G., Zhang, Q., Zhang, D., Yu, J., and Yang, Y.: Nitrogen availability
regulates topsoil carbon dynamics after permafrost thaw by altering
microbial metabolic efficiency, Nat. Commun., 9, 3951, https://doi.org/10.1038/s41467-018-06232-y 2018.
Chen, Y.-L., Deng, Y., Ding, J.-Z., Hu, H.-W., Xu, T.-L., Li, F., Yang,
G.-B., and Yang, Y.-H.: Distinct microbial communities in the active and
permafrost layers on the Tibetan Plateau, Microb. Ecol., 26, 6608–6620,
2017.
Clarke, K. R. and Warwick, R. M.: PRIMER v6: user manual/tutorial,
PRIMER–E, Plymouth, 2006.
Colatriano, D., Tran, P. Q., Gueguen, C., Williams, W. J., Lovejoy, C., and
Walsh, D. A.: Genomic evidence for the degradation of terrestrial organic
matter by pelagic Arctic Ocean Chloroflexi bacteria, Commun. Biol., 1,
90–90, 2018.
Coolen, M. J. L. and Orsi, W. D.: The transcriptional response of microbial
communities in thawing Alaskan permafrost soils, Front. Microbiol., 6, 14, https://doi.org/10.3389/fmicb.2015.00197, 2015.
Deng, J., Gu, Y., Zhang, J., Xue, K., Qin, Y., Yuan, M., Yin, H., He, Z.,
Wu, L., Schuur, E. A. G., Tiedje, J. M., and Zhou, J.: Shifts of tundra
bacterial and archaeal communities along a permafrost thaw gradient in
Alaska, Microb. Ecol., 24, 222–234, 2015.
Ding, J., Zhang, Y., Wang, M., Sun, X., Cong, J., Deng, Y., Lu, H., Yuan,
T., Van Nostrand, J. D., Li, D., Zhou, J., and Yang, Y.: Soil organic matter
quantity and quality shape microbial community compositions of subtropical
broadleaved forests, Microb. Ecol., 24, 5175–5185, 2015.
Docherty, K. M., Young, K. C., Maurice, P. A., and Bridgham, S. D.:
Dissolved organic matter concentration and quality influences upon structure
and function of freshwater microbial communities, Microb. Ecol., 52,
378–388, 2006.
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., and Knight, R.:
UCHIME improves sensitivity and speed of chimera detection, Bioinformatics,
27, 2194–2200, 2011.
Frank-Fahle, B. A., Yergeau, E., Greer, C. W., Lantuit, H., and Wagner, D.:
Microbial functional potential and community composition in
permafrost–affected soils of the NW Canadian Arctic, PLoS One, 9, e84761, https://doi.org/10.1371/journal.pone.0084761, 2014.
Freedman, Z. and Zak, D. R.: Soil bacterial communities are shaped by
temporal and environmental filtering: evidence from a long–term
chronosequence, Appl. Environ. Microbiol., 17, 3208–3218, 2015.
Gilichinskii, D. A.: Microbial life in permafrost: a historical review,
Permafr. Periglac., 6, 243–250, 1995.
Guo, G., Kong, W., Liu, J., Zhao, J., Du, H., Zhang, X., and Xia, P.:
Diversity and distribution of autotrophic microbial community along
environmental gradients in grassland soils on the Tibetan Plateau, Appl.
Microbiol. Biotechnol., 99, 8765–8776, 2015.
Hernández, D. L. and Hobbie, S. E.: The effects of substrate
composition, quantity, and diversity on microbial activity, Plant Soil, 335,
397–411, 2010.
Hinkel, K. M., Eisner, W. R., Bockheim, J. G., Nelson, F. E., Peterson, K.
M., and Dai, X.: Spatial extent, age, and carbon stocks in drained thaw lake
basins on the Barrow peninsula, Alaska, Arct. Antarct. Alp. Res., 35,
291–300, 2003.
Hobbie, S. E., Schimel, J. P., Trumbore, S. E., and Randerson, J. R.:
Controls over carbon storage and turnover in high–latitude soils, Glob.
Change Biol., 6, 196–210, 2000.
Jansson, J. K. and Tas, N.: The microbial ecology of permafrost, Nat. Rev.
Microbiol., 12, 414–425, 2014.
Johnson, S. S., Hebsgaard, M. B., Christensen, T. R., Mastepanov, M.,
Nielsen, R., Munch, K., Brand, T., Gilbert, M. T., Zuber, M. T., Bunce, M.,
Ronn, R., Gilichinsky, D., Froese, D., and Willerslev, E.: Ancient bacteria
show evidence of DNA repair, P. Natl. Acad. Sci. USA, 104,
14401–14405, 2007.
Kao-Kniffin, J., Woodcroft, B. J., Carver, S. M., Bockheim, J. G.,
Handelsman, J., Tyson, G. W., Hinkel, K. M., and Mueller, C. W.: Archaeal
and bacterial communities across a chronosequence of drained lake basins in
arctic alaska, Sci. Rep., 5, 18165, https://doi.org/10.1038/srep18165, 2015.
Kazemi, S., Hatam, I., and Lanoil, B.: Bacterial community succession in a
high–altitude subarctic glacier foreland is a three–stage process, Mol.
Ecol., 25, 5557–5567, 2016.
Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H.,
Ackerly, D. D., Blomberg, S. P., and Webb, C. O.: Picante: R tools for
integrating phylogenies and ecology, Bioinformatics, 26, 1463–1464, 2010.
Kim, M., Jung, J. Y., Laffly, D., Kwon, H. Y., and Lee, Y. K.: Shifts in
bacterial community structure during succession in a glacier foreland of the
High Arctic, FEMS Microbiol. Ecol., 93, 9, https://doi.org/10.1093/femsec/fiw213, 2017.
Kwon, H. Y., Jung, J. Y., Laffly, D., Lim, H. S., and Lee, Y. K.: Soil
development and bacterial community shifts along the chronosequence of the
Midtre Lovenbreen glacier foreland in Svalbard, J. Ecol. Nat. Environ., 38,
461–476, 2015.
Liu, J., Kong, W., Zhang, G., Khan, A., Guo, G., Zhu, C., Wei, X., Kang, S.,
and Morgan–Kiss, R. M.: Diversity and succession of autotrophic microbial
community in high–elevation soils along deglaciation chronosequence, FEMS
Microbiol. Ecol., 92, fiw160, https://doi.org/10.1093/femsec/fiw160, 2016.
Lozupone, C., Lladser, M., Knights, D., Stombaugh, J., Knight, R.: UniFrac:
an effective distance metric for microbial community comparison, ISME J.,
5, 169–172, 2011.
Mackelprang, R., Waldrop, M. P., DeAngelis, K. M., David, M. M., Chavarria,
K. L., Blazewicz, S. J., Rubin, E. M., and Jansson, J. K.: Metagenomic
analysis of a permafrost microbial community reveals a rapid response to
thaw, Nature, 480, 368–371, 2011.
Mackelprang, R., Burkert, A., Haw, M., Mahendrarajah, T., Conaway, C. H.,
Douglas, T. A., and Waldrop, M. P.: Microbial survival strategies in ancient
permafrost: insights from metagenomics, ISME J., 11, 2305–2318, 2017.
Mondav, R., McCalley, C. K., Hodgkins, S. B., Frolking, S., Saleska, S. R.,
Rich, V. I., Chanton, J. P., and Crill, P. M.: Microbial network,
phylogenetic diversity and community membership in the active layer across a
permafrost thaw gradient, Appl. Environ. Microbiol., 19, 3201–3218, 2017.
Monteux, S., Weedon, J. T., Blume–Werry, G., Gavazov, K., Jassey, V. E. J.,
Johansson, M., Keuper, F., Olid, C., and Dorrepaal, E.: Long–term in situ
permafrost thaw effects on bacterial communities and potential aerobic
respiration, ISME J., 12, 2129–2141, 2018.
Morgalev, Y. N., Lushchaeva, I. V., Morgaleva, T. G., Kolesnichenko, L. G.,
Loiko, S. V., Krickov, I. V., Lim, A., Raudina, T. V., Volkova, I. I.,
Shirokova, L. S., Morgalev, S. Y., Vorobyev, S. N., Kirpotin, S. N., and
Pokrovsky, O. S.: Bacteria primarily metabolize at the active
layer/permafrost border in the peat core from a permafrost region in western
Siberia, Polar Bio., 40, 1645–1659, 2017.
Mueller, C. W., Rethemeyer, J., Kao-Kniffin, J., Loeppmann, S., Hinkel, K.
M., and G. Bockheim, J.: Large amounts of labile organic carbon in
permafrost soils of northern Alaska, Glob. Change Biol., 21, 2804–2817,
2015.
Mueller, O., Bang–Andreasen, T., White III, R. A., Elberling, B., Tas, N.,
Kneafsey, T., Jansson, J. K., and Ovreas, L.: Disentangling the complexity
of permafrost soil by using high resolution profiling of microbial community
composition, key functions and respiration rates, Appl. Environ. Microbiol.,
20, 4328–4342, 2018.
Ning, D. L., Deng, Y., Tiedje, J. M., and Zhou, J. Z.: A general framework
for quantitatively assessing ecological stochasticity, P. Natl. Acad.
Sci. USA, 116, 16892–16898, 2019.
Park, S. J., Park, B. J., Jung, M. Y., Kim, S. J., Chae, J. C., Roh, Y.,
Forwick, M., Yoon, H. I., and Rhee, S. K.: Influence of deglaciation on
microbial communities in marine sediments off the coast of Svalbard, Arctic
circle, Microb. Ecol., 62, 537–548, 2011.
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M.,
Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., and
Robinson, C. J.: Introducing mothur: open–source, platform–Independent,
community–supported software for describing and comparing microbial
communities, Appl. Environ. Microbiol., 75, 7537–7541, 2009.
Schostag, M., Prieme, A., Jacquiod, S., Russel, J., Ekelund, F., and
Jacobsen, C. S.: Bacterial and protozoan dynamics upon thawing and freezing
of an active layer permafrost soil, ISME J., 13, 1345–1359, 2019.
Stegen, J. C., Lin, X., Konopka, A. E., and Fredrickson, J. K.: Stochastic
and deterministic assembly processes in subsurface microbial communities,
ISME J., 6, 1653–1664, 2012.
Tuorto, S. J., Darias, P., McGuinness, L. R., Panikov, N., Zhang, T.,
Haeggblom, M. M., and Kerkhof, L. J.: Bacterial genome replication at
subzero temperatures in permafrost, ISME J., 8, 139–149, 2014.
Turetsky, M. R., Abbott, B. W., Jones, M. C., Anthony, K. W., Olefeldt, D.,
Schuur, E. A. G., Koven, C., McGuire, A. D., Grosse, G., Kuhry, P.,
Hugelius, G., Lawrence, D. M., Gibson, C., and Sannel, A. B. K.: Permafrost
collapse is accelerating carbon release, Nature, 569, 32–34, 2019.
Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R.: Naïve
Bayesian classifier for rapid assignment of rRNA sequences into the new
bacterial taxonomy, Appl. Environ. Microbiol., 73, 5261–5267, 2007.
Wu, X., Xu, H., Liu, G., Ma, X., Mu, C., and Zhao, L.: Bacterial communities
in the upper soil layers in the permafrost regions on the Qinghai–Tibetan
plateau, Appl. Soil Ecol., 120, 81–88, 2017.
Wu, X., Xu, H., Liu, G., Zhao, L., and Mu, C.: Effects of permafrost
collapse on soil bacterial communities in a wet meadow on the northern
Qinghai–Tibetan Plateau, BMC Ecol., 18, 27 https://doi.org/10.1186/s12898-018-0183-y, 2018.
Yang, Y. H., Fang, J. Y., Smith, P., Tang, Y. H., Chen, A. P., Ji, C. J.,
Hu, H. F., Rao, S., Tan, K., and He, J. S.: Changes in topsoil carbon stock
in the Tibetan grasslands between the 1980s and 2004, Glob. Change Biol.,
15, 2723–2729, 2009.
Yergeau, E., Hogues, H., Whyte, L. G., and Greer, C. W.: The functional
potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR
and microarray analyses, ISME J., 4, 1206–1214, 2010.
Yuan, M. M., Zhang, J., Xue, K., Wu, L., Deng, Y., Deng, J., Hale, L., Zhou,
X., He, Z., Yang, Y., Van Nostrand, J. D., Schuur, E. A. G., Konstantinidis,
K. T., Penton, C. R., Cole, J. R., Tiedje, J. M., Luo, Y., and Zhou, J.:
Microbial functional diversity covaries with permafrost thaw–induced
environmental heterogeneity in tundra soil, Glob. Change Biol., 24,
297–307, 2018.
Short summary
Old permafrost soil usually has more carbohydrates, while younger soil contains more aliphatic carbons, which substantially impacts soil bacterial communities. However, little is known about how permafrost age and thawing drive microbial communities. We found that permafrost thawing significantly increased bacterial richness in young permafrost and changed soil bacterial compositions at all ages. This suggests that thawing results in distinct bacterial species and alters soil carbon degradation.
Old permafrost soil usually has more carbohydrates, while younger soil contains more aliphatic...