Articles | Volume 14, issue 11
https://doi.org/10.5194/tc-14-3843-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-3843-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Review article: Geothermal heat flow in Antarctica: current and future directions
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3
0ET, UK
Ricarda Dziadek
Alfred Wegener Institute – Helmholtz Centre for Polar and Marine
Research, Am Alten Hafen, Bremerhaven, Germany
Carlos Martin
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3
0ET, UK
Related authors
Alex Burton-Johnson and Nina Sofia Wyniawskyj
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-115, https://doi.org/10.5194/tc-2020-115, 2020
Publication in TC not foreseen
Short summary
Short summary
Accurate maps of Polar Regions are vital for navigation and scientific research. However, automated mapping of snow and rock requires low resolution infrared imagery. This is the first paper to evaluate mapping rocks and snow from colour imagery, and presents a new methodology. The techniques are evaluated, and shown to have high accuracy. By allowing usage of high resolution and abundant colour imagery we hope to improve Polar mapping and geospatial research in diverse disciplines.
Alex Burton-Johnson, Martin Black, Peter T. Fretwell, and Joseph Kaluza-Gilbert
The Cryosphere, 10, 1665–1677, https://doi.org/10.5194/tc-10-1665-2016, https://doi.org/10.5194/tc-10-1665-2016, 2016
Short summary
Short summary
We present a new rock outcrop map for the entire Antarctic continent, a principal base dataset for research and mapping in Antarctica with broad applications. To derive the map, a new methodology was developed and applied to allow automated identification of rock outcrops from Landsat 8 satellite images whilst excluding sunlit and shaded snow, clouds and liquid water – the first such automated methodology. The new dataset reveals that exposed rock forms only 0.18 % of the entire continent.
Alex Burton-Johnson and Nina Sofia Wyniawskyj
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-115, https://doi.org/10.5194/tc-2020-115, 2020
Publication in TC not foreseen
Short summary
Short summary
Accurate maps of Polar Regions are vital for navigation and scientific research. However, automated mapping of snow and rock requires low resolution infrared imagery. This is the first paper to evaluate mapping rocks and snow from colour imagery, and presents a new methodology. The techniques are evaluated, and shown to have high accuracy. By allowing usage of high resolution and abundant colour imagery we hope to improve Polar mapping and geospatial research in diverse disciplines.
Alex Burton-Johnson, Martin Black, Peter T. Fretwell, and Joseph Kaluza-Gilbert
The Cryosphere, 10, 1665–1677, https://doi.org/10.5194/tc-10-1665-2016, https://doi.org/10.5194/tc-10-1665-2016, 2016
Short summary
Short summary
We present a new rock outcrop map for the entire Antarctic continent, a principal base dataset for research and mapping in Antarctica with broad applications. To derive the map, a new methodology was developed and applied to allow automated identification of rock outcrops from Landsat 8 satellite images whilst excluding sunlit and shaded snow, clouds and liquid water – the first such automated methodology. The new dataset reveals that exposed rock forms only 0.18 % of the entire continent.
Related subject area
Discipline: Ice sheets | Subject: Subglacial Processes
Improved monitoring of subglacial lake activity in Greenland
Basal conditions of Denman Glacier from glacier hydrology and ice dynamics modeling
Mapping age and basal conditions of ice in the Dome Fuji region, Antarctica, by combining radar internal layer stratigraphy and flow modeling
Towards modelling of corrugation ridges at ice-sheet grounding lines
Compensating errors in inversions for subglacial bed roughness: same steady state, different dynamic response
Drainage and refill of an Antarctic Peninsula subglacial lake reveal an active subglacial hydrological network
Filling and drainage of a subglacial lake beneath the Flade Isblink ice cap, northeast Greenland
Radar sounding survey over Devon Ice Cap indicates the potential for a diverse hypersaline subglacial hydrological environment
Grounding zone subglacial properties from calibrated active-source seismic methods
Subglacial lakes and hydrology across the Ellsworth Subglacial Highlands, West Antarctica
The role of electrical conductivity in radar wave reflection from glacier beds
Exceptionally high heat flux needed to sustain the Northeast Greenland Ice Stream
Subglacial roughness of the Greenland Ice Sheet: relationship with contemporary ice velocity and geology
Subglacial hydrological control on flow of an Antarctic Peninsula palaeo-ice stream
Louise Sandberg Sørensen, Rasmus Bahbah, Sebastian B. Simonsen, Natalia Havelund Andersen, Jade Bowling, Noel Gourmelen, Alex Horton, Nanna B. Karlsson, Amber Leeson, Jennifer Maddalena, Malcolm McMillan, Anne Solgaard, and Birgit Wessel
The Cryosphere, 18, 505–523, https://doi.org/10.5194/tc-18-505-2024, https://doi.org/10.5194/tc-18-505-2024, 2024
Short summary
Short summary
Under the right topographic and hydrological conditions, lakes may form beneath the large ice sheets. Some of these subglacial lakes are active, meaning that they periodically drain and refill. When a subglacial lake drains rapidly, it may cause the ice surface above to collapse, and here we investigate how to improve the monitoring of active subglacial lakes in Greenland by monitoring how their associated collapse basins change over time.
Koi McArthur, Felicity S. McCormack, and Christine F. Dow
The Cryosphere, 17, 4705–4727, https://doi.org/10.5194/tc-17-4705-2023, https://doi.org/10.5194/tc-17-4705-2023, 2023
Short summary
Short summary
Using subglacial hydrology model outputs for Denman Glacier, East Antarctica, we investigated the effects of various friction laws and effective pressure inputs on ice dynamics modeling over the same glacier. The Schoof friction law outperformed the Budd friction law, and effective pressure outputs from the hydrology model outperformed a typically prescribed effective pressure. We propose an empirical prescription of effective pressure to be used in the absence of hydrology model outputs.
Zhuo Wang, Ailsa Chung, Daniel Steinhage, Frédéric Parrenin, Johannes Freitag, and Olaf Eisen
The Cryosphere, 17, 4297–4314, https://doi.org/10.5194/tc-17-4297-2023, https://doi.org/10.5194/tc-17-4297-2023, 2023
Short summary
Short summary
We combine radar-based observed internal layer stratigraphy of the ice sheet with a 1-D ice flow model in the Dome Fuji region. This results in maps of age and age density of the basal ice, the basal thermal conditions, and reconstructed accumulation rates. Based on modeled age we then identify four potential candidates for ice which is potentially 1.5 Myr old. Our map of basal thermal conditions indicates that melting prevails over the presence of stagnant ice in the study area.
Kelly A. Hogan, Katarzyna L. P. Warburton, Alastair G. C. Graham, Jerome A. Neufeld, Duncan R. Hewitt, Julian A. Dowdeswell, and Robert D. Larter
The Cryosphere, 17, 2645–2664, https://doi.org/10.5194/tc-17-2645-2023, https://doi.org/10.5194/tc-17-2645-2023, 2023
Short summary
Short summary
Delicate sea floor ridges – corrugation ridges – that form by tidal motion at Antarctic grounding lines record extremely fast retreat of ice streams in the past. Here we use a mathematical model, constrained by real-world observations from Thwaites Glacier, West Antarctica, to explore how corrugation ridges form. We identify
till extrusion, whereby deformable sediment is squeezed out from under the ice like toothpaste as it settles down at each low-tide position, as the most likely process.
Constantijn J. Berends, Roderik S. W. van de Wal, Tim van den Akker, and William H. Lipscomb
The Cryosphere, 17, 1585–1600, https://doi.org/10.5194/tc-17-1585-2023, https://doi.org/10.5194/tc-17-1585-2023, 2023
Short summary
Short summary
The rate at which the Antarctic ice sheet will melt because of anthropogenic climate change is uncertain. Part of this uncertainty stems from processes occurring beneath the ice, such as the way the ice slides over the underlying bedrock.
Inversion methodsattempt to use observations of the ice-sheet surface to calculate how these sliding processes work. We show that such methods cannot fully solve this problem, so a substantial uncertainty still remains in projections of sea-level rise.
Dominic A. Hodgson, Tom A. Jordan, Neil Ross, Teal R. Riley, and Peter T. Fretwell
The Cryosphere, 16, 4797–4809, https://doi.org/10.5194/tc-16-4797-2022, https://doi.org/10.5194/tc-16-4797-2022, 2022
Short summary
Short summary
This paper describes the drainage (and refill) of a subglacial lake on the Antarctic Peninsula resulting in the collapse of the overlying ice into the newly formed subglacial cavity. It provides evidence of an active hydrological network under the region's glaciers and close coupling between surface climate processes and the base of the ice.
Qi Liang, Wanxin Xiao, Ian Howat, Xiao Cheng, Fengming Hui, Zhuoqi Chen, Mi Jiang, and Lei Zheng
The Cryosphere, 16, 2671–2681, https://doi.org/10.5194/tc-16-2671-2022, https://doi.org/10.5194/tc-16-2671-2022, 2022
Short summary
Short summary
Using multi-temporal ArcticDEM and ICESat-2 altimetry data, we document changes in surface elevation of a subglacial lake basin from 2012 to 2021. The long-term measurements show that the subglacial lake was recharged by surface meltwater and that a rapid drainage event in late August 2019 induced an abrupt ice velocity change. Multiple factors regulate the episodic filling and drainage of the lake. Our study also reveals ~ 64 % of the surface meltwater successfully descended to the bed.
Anja Rutishauser, Donald D. Blankenship, Duncan A. Young, Natalie S. Wolfenbarger, Lucas H. Beem, Mark L. Skidmore, Ashley Dubnick, and Alison S. Criscitiello
The Cryosphere, 16, 379–395, https://doi.org/10.5194/tc-16-379-2022, https://doi.org/10.5194/tc-16-379-2022, 2022
Short summary
Short summary
Recently, a hypersaline subglacial lake complex was hypothesized to lie beneath Devon Ice Cap, Canadian Arctic. Here, we present results from a follow-on targeted aerogeophysical survey. Our results support the evidence for a hypersaline subglacial lake and reveal an extensive brine network, suggesting more complex subglacial hydrological conditions than previously inferred. This hypersaline system may host microbial habitats, making it a compelling analog for bines on other icy worlds.
Huw J. Horgan, Laurine van Haastrecht, Richard B. Alley, Sridhar Anandakrishnan, Lucas H. Beem, Knut Christianson, Atsuhiro Muto, and Matthew R. Siegfried
The Cryosphere, 15, 1863–1880, https://doi.org/10.5194/tc-15-1863-2021, https://doi.org/10.5194/tc-15-1863-2021, 2021
Short summary
Short summary
The grounding zone marks the transition from a grounded ice sheet to a floating ice shelf. Like Earth's coastlines, the grounding zone is home to interactions between the ocean, fresh water, and geology but also has added complexity and importance due to the overriding ice. Here we use seismic surveying – sending sound waves down through the ice – to image the grounding zone of Whillans Ice Stream in West Antarctica and learn more about the nature of this important transition zone.
Felipe Napoleoni, Stewart S. R. Jamieson, Neil Ross, Michael J. Bentley, Andrés Rivera, Andrew M. Smith, Martin J. Siegert, Guy J. G. Paxman, Guisella Gacitúa, José A. Uribe, Rodrigo Zamora, Alex M. Brisbourne, and David G. Vaughan
The Cryosphere, 14, 4507–4524, https://doi.org/10.5194/tc-14-4507-2020, https://doi.org/10.5194/tc-14-4507-2020, 2020
Short summary
Short summary
Subglacial water is important for ice sheet dynamics and stability. Despite this, there is a lack of detailed subglacial-water characterisation in West Antarctica (WA). We report 33 new subglacial lakes. Additionally, a new digital elevation model of basal topography was built and used to simulate the subglacial hydrological network in WA. The simulated subglacial hydrological catchments of Pine Island and Thwaites glaciers do not match precisely with their ice surface catchments.
Slawek M. Tulaczyk and Neil T. Foley
The Cryosphere, 14, 4495–4506, https://doi.org/10.5194/tc-14-4495-2020, https://doi.org/10.5194/tc-14-4495-2020, 2020
Short summary
Short summary
Much of what we know about materials hidden beneath glaciers and ice sheets on Earth has been interpreted using radar reflection from the ice base. A common assumption is that electrical conductivity of the sub-ice materials does not influence the reflection strength and that the latter is controlled only by permittivity, which depends on the fraction of water in these materials. Here we argue that sub-ice electrical conductivity should be generally considered when interpreting radar records.
Silje Smith-Johnsen, Basile de Fleurian, Nicole Schlegel, Helene Seroussi, and Kerim Nisancioglu
The Cryosphere, 14, 841–854, https://doi.org/10.5194/tc-14-841-2020, https://doi.org/10.5194/tc-14-841-2020, 2020
Short summary
Short summary
The Northeast Greenland Ice Stream (NEGIS) drains a large part of Greenland and displays fast flow far inland. However, the flow pattern is not well represented in ice sheet models. The fast flow has been explained by abnormally high geothermal heat flux. The heat melts the base of the ice sheet and the water produced may lubricate the bed and induce fast flow. By including high geothermal heat flux and a hydrology model, we successfully reproduce NEGIS flow pattern in an ice sheet model.
Michael A. Cooper, Thomas M. Jordan, Dustin M. Schroeder, Martin J. Siegert, Christopher N. Williams, and Jonathan L. Bamber
The Cryosphere, 13, 3093–3115, https://doi.org/10.5194/tc-13-3093-2019, https://doi.org/10.5194/tc-13-3093-2019, 2019
Robert D. Larter, Kelly A. Hogan, Claus-Dieter Hillenbrand, James A. Smith, Christine L. Batchelor, Matthieu Cartigny, Alex J. Tate, James D. Kirkham, Zoë A. Roseby, Gerhard Kuhn, Alastair G. C. Graham, and Julian A. Dowdeswell
The Cryosphere, 13, 1583–1596, https://doi.org/10.5194/tc-13-1583-2019, https://doi.org/10.5194/tc-13-1583-2019, 2019
Short summary
Short summary
We present high-resolution bathymetry data that provide the most complete and detailed imagery of any Antarctic palaeo-ice stream bed. These data show how subglacial water was delivered to and influenced the dynamic behaviour of the ice stream. Our observations provide insights relevant to understanding the behaviour of modern ice streams and forecasting the contributions that they will make to future sea level rise.
Cited articles
Aboud, E., Salem, A., and Mekkawi, M.: Curie depth map for Sinai Peninsula,
Egypt deduced from the analysis of magnetic data, Tectonophysics, 506,
46–54, 2011.
Aitken, A. R. A., Betts, P. G., Young, D. A., Blankenship, D. D., Roberts,
J. L., and Siegert, M. J.: The Australo-Antarctic Columbia to Gondwana
transition, Gondwana Res., 29, 136–152, 2016.
Alessio, K. L., Hand, M., Kelsey, D. E., Williams, M. A., Morrissey, L. J., and Barovich, K.: Conservation of deep crustal heat production, Geology,
46, 335–338, 2018.
Amante, C. and Eakins, B. W.: ETOPO1 Arc-Minute Global Relief Model:
Procedures, Data Sources and Analysis, National Oceanic and Atmospheric
Administration Technical Memorandum NESDIS NGDC-24, 2009.
An, M., Wiens, D. A., Zhao, Y., Feng, M., Nyblade, A. A., Kanao, M., Li, Y.,
Maggi, A., and Lévêque, J.-J.: S-velocity model and inferred Moho
topography beneath the Antarctic Plate from Rayleigh waves,
J. Geophys. Res.-Sol. Ea., 120, 359–383, 2015a.
An, M., Wiens, D. A., Zhao, Y., Feng, M., Nyblade, A., Kanao, M., Li, Y.,
Maggi, A., and Lévêque, J.-J.: Temperature, lithosphere-asthenosphere
boundary, and heat flux beneath the Antarctic Plate inferred from seismic
velocities, J. Geophys. Res.-Sol. Ea., 120,
8720–8742, 2015b.
Andrés, J., Marzán, I., Ayarza, P., Martí, D., Palomeras, I.,
Torné, M., Campbell, S., and Carbonell, R.: Curie point depth of the
Iberian Peninsula and surrounding margins. A thermal and tectonic
perspective of its evolution, J. Geophys. Res.-Sol. Ea.,
123, 2049–2068, 2018.
AntArchitecture Action Group: AntArchitecture: Archiving and interrogating
Antarctica's internal structure from radar sounding, Final Report, in:
Workshop to establish scientific goals, working practices and funding
routes, University of Edinburgh, UK, University of Edinburgh, UK,
available at:
https://www.scar.org/library/science-4/geosciences/antarchitecture/5240-antarchitecture-workshop-2017/file (last access: 5 November 2020),
2017.
Arnaiz-Rodríguez, M. S. and Orihuela, N.: Curie point depth in
Venezuela and the Eastern Caribbean, Tectonophysics, 590, 38–51, 2013.
Artemieva, I.: Lithosphere: an interdisciplinary approach, Cambridge
University Press, Cambridge, UK, 2011.
Artemieva, I. M. and Mooney, W. D.: Thermal thickness and evolution of
Precambrian lithosphere: A global study, J. Geophys. Res.-Sol. Ea., 106, 16387–16414, 2001.
Ashmore, D. W. and Bingham, R. G.: Antarctic subglacial hydrology: current
knowledge and future challenges, Antarct. Sci., 26, 758–773, 2014.
Bansal, A. R., Gabriel, G., Dimri, V. P., and Krawczyk, C. M.: Estimation of
depth to the bottom of magnetic sources by a modified centroid method for
fractal distribution of sources: An application to aeromagnetic data in
Germany, Geophysics, 76, L11–L22, 2011.
Bansal, A. R., Anand, S. P., Rajaram, M., Rao, V. K., and Dimri, V. P.: Depth
to the bottom of magnetic sources (DBMS) from aeromagnetic data of Central
India using modified centroid method for fractal distribution of sources,
Tectonophysics, 603, 155–161, 2013.
Barletta, V. R., Bevis, M., Smith, B. E., Wilson, T., Brown, A., Bordoni,
A., Willis, M., Khan, S. A., Rovira-Navarro, M., and Dalziel, I.: Observed
rapid bedrock uplift in Amundsen Sea Embayment promotes ice-sheet stability,
Science, 360, 1335–1339, 2018.
Baron Fourier, J. B. J.: Théorie analytique de la chaleur, Chez Firmin
Didot, père et fils, Paris, 1822.
Barrett, B. E., Nicholls, K. W., Murray, T., Smith, A. M., and Vaughan, D.
G.: Rapid recent warming on Rutford Ice Stream, West Antarctica, from
borehole thermometry, Geophys. Res. Lett., 36, L02708, https://doi.org/10.1029/2008GL036369, 2009.
Bea, F.: The sources of energy for crustal melting and the geochemistry of
heat-producing elements, Lithos, 153, 278–291,
https://doi.org/10.1016/j.lithos.2012.01.017, 2012.
Bea, F. and Montero, P.: Behavior of accessory phases and redistribution of
Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites
in the lower crust: an example from the Kinzigite Formation of
Ivrea-Verbano, NW Italy, Geochim. Cosmochim. Ac., 63, 1133–1153,
1999.
Beamish, D. and Busby, J.: The Cornubian geothermal province: heat
production and flow in SW England: estimates from boreholes and airborne
gamma-ray measurements, Geothermal Energy, 4, 4, https://doi.org/10.1186/s40517-016-0046-8, 2016.
Beardsmore, G. R. and Cull, J. P.: Crustal heat flow: a guide to measurement
and modelling, Cambridge University Press, Cambridge, UK, 2001.
Begeman, C. B., Tulaczyk, S. M., and Fisher, A. T.: Spatially variable
geothermal heat flux in West Antarctica: evidence and implications,
Geophys. Res. Lett., 44, 9823–9832, 2017.
Berg, J. H., Moscati, R. J., and Herz, D. L.: A petrologic geotherm from a
continental rift in Antarctica, Earth Planet. Sc. Lett., 93,
98–108, 1989.
Bhattacharyya, B. K. and Leu, L.-K.: Analysis of magnetic anomalies over
Yellowstone National Park: mapping of Curie point isothermal surface for
geothermal reconnaissance, J. Geophys. Res., 80,
4461–4465, 1975.
Blakely, R. J.: Potential theory in gravity and magnetic applications,
Cambridge university press, Cambridge, UK, 1996.
Blakely, R. J., Brocher, T. M., and Wells, R. E.: Subduction-zone magnetic
anomalies and implications for hydrated forearc mantle, Geology, 33,
445–448, 2005.
Boden, D. R.: Geology and Heat Architecture of the Earth's Interior, in
Geologic Fundamentals of Geothermal Energy, Routledge, 2016.
Bodorkos, S., Sandiford, M., Minty, B. R., and Blewett, R. S.: A
high-resolution, calibrated airborne radiometric dataset applied to the
estimation of crustal heat production in the Archaean northern Pilbara
Craton, Western Australia, Precambrian Res., 128, 57–82, 2004.
Bucher, G. J.: Heat flow and radioactivity studies in the Ross Island-Dry
Valley area, Antarctica and their tectonic implications, PhD Thesis,
University of Wyoming, Wyoming, USA, 1980.
Bücker, C., Jarrard, R. D., and Wonik, T.: Downhole temperature,
radiogenic heat production, and heat flow from the CRP-3 drillhole, Victoria
Land Basin, Antarctica, Terra Antartica, 8, 151–160, 2001.
Bullard, E. C.: The disturbance of the temperature gradient in the earth's
crust by inequalities of height, Geophysical Supplements, Mon. Not. R. Astron. Soc., 4, 360–362, 1938.
Bullard, E. C.: The time taken for a borehole to attain temperature
equilibrium, Geophysical Supplements, Mon. Not. R. Astron. Soc., 5, 127–130, 1947.
Burton-Johnson, A., Halpin, J. A., Whittaker, J. M., Graham, F. S., and
Watson, S. J.: A new heat flux model for the Antarctic Peninsula
incorporating spatially variable upper crustal radiogenic heat production,
Geophys. Res. Lett., 44, 5436–5446, https://doi.org/10.1002/2017GL073596,
2017.
Burton-Johnson, A., Dziadek, R., and Shen, W.: Report of the Geothermal Heat
Flux Side Meeting at XIII ISAES, 2019, Incheon, Republic of Korea,
available at:
https://www.scar.org/scar-library/search/science-4/research-programmes/serce/5334-ghf-meeting-report-2019/file (last access: 5 November 2020),
2019.
Burton-Johnson, A., Dziadek, R., Martin, C., Halpin, J. A., Whitehouse, P.
L., Ebbing, J., Martos, Y. M., Martin, A. P., Schroeder, D. M., Shen, W.,
Ritz, C., Goodge, J. W., Van Liefferinge, B., Pattyn, F., Reading, A. M.,
Ferraccioli, F., and The SERCE Geothermal Heat Flow Sub-Group: Antarctic
Geothermal Heat Flow: Future research directions, SCAR-SERCE White Paper,
available at:
https://www.scar.org/scar-library/search/science-4/research-programmes/serce/5454-scar-serce-white-paper-on-antarctic-geothermal-heat-flow/, last access: 5 November 2020.
Carlson, R. W., Pearson, D. G., and James, D. E.: Physical, chemical and
chronological characteristics of continental mantle, Rev. Geophys.,
43, RG1001, https://doi.org/10.1029/2004RG000156, 2005.
Carslaw, H. S. and Jaeger, J. C.: Conduction of heat in solids, Oxford:
Clarendon Press, 1959, 2nd Edn., 1959.
Carson, C. J. and Pittard, M.: A Reconaissance Crustal Heat Production
Assessment of the Australian Antarctic Territory (AAT), Geoscience
Australia, Canberra, Australia, 2012.
Carson, C. J., McLaren, S., Roberts, J. L., Boger, S. D., and Blankenship, D.
D.: Hot rocks in a cold place: high sub-glacial heat flow in East
Antarctica, J. Geol. Soc., 171, 9–12, 2014.
Carter, S. P., Blankenship, D. D., Young, D. A., and Holt, J. W.: Using
radar-sounding data to identify the distribution and sources of subglacial
water: application to Dome C, East Antarctica, J. Glaciol.,
55, 1025–1040, 2009.
Chen, B., Haeger, C., Kaban, M. K., and Petrunin, A. G.: Variations of the
effective elastic thickness reveal tectonic fragmentation of the Antarctic
lithosphere, Tectonophysics, 746, 412–424, 2018.
Clauser, C., Giese, P., Huenges, E., Kohl, T., Lehmann, H., Rybach, L.,
Šafanda, J., Wilhelm, H., Windloff, K., and Zoth, G.: The thermal regime
of the crystalline continental crust: implications from the KTB, J. Geophys. Res.-Sol. Ea., 102, 18417–18441, 1997.
Clow, G. D., Cuffey, K. M., and Waddington, E. D.: High heat-flow beneath the
central portion of the West Antarctic Ice Sheet, in: AGU Fall Meeting
Abstracts, 2012.
Courtney, R. C. and White, R. S.: Anomalous heat flow and geoid across the
Cape Verde Rise: evidence for dynamic support from a thermal plume in the
mantle, Geophys. J. Int., 87, 815–867, 1986.
Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, 4th Edn.,
Elsevier, Oxford, UK, 2010.
Daczko, N. R., Halpin, J. A., Fitzsimons, I. C., and Whittaker, J. M.: A
cryptic Gondwana-forming orogen located in Antarctica, Sci. Rep.,
8, 8371, 2018.
Dahl-Jensen, D., Morgan, V. I., and Elcheikh, A.: Monte Carlo inverse
modelling of the Law Dome (Antarctica) temperature profile, Ann.
Glaciol., 29, 145–150, 1999.
Dalby, C. J., Shail, R. K., Batchelor, A., Cotton, L., Gutmanis, J.,
Rollinson, G. K., Wall, F., and Hickey, J.: Deep geothermal energy from the
Cornubian Batholith: preliminary lithological and heat flow insights from
the United Downs Deep Geothermal Power Project, Plymouth, UK, 2020.
Davis, E. E., Villinger, H., MacDonald, R. D., Meldrum, R. D., and Grigel,
J.: A robust rapid-response probe for measuring bottom-hole temperatures in
deep-ocean boreholes, Mar. Geophys. Res., 19, 267–281, 1997.
Decker, E. R.: Preliminary geothermal studies of the Dry Valley Drilling
Project holes at McMurdo Station, Lake Vanda, Lake Vida, and New Harbor,
Antarctica, Bulletin-Dry Valley Drilling Project (DVDP), 4, 22–23, 1974.
Decker, E. R. and Bucher, G. J.: Geothermal studies in the Ross Island-Dry
Valley region, Antarct. Geosci., 4, 887–894, 1982.
Decker, E. R., Baker, K. H., and Harris, H.: Geothermal studies in the Dry
Valleys and on Ross Island, Antarct. J., 10, 176, 1975.
Dyment, J. and Arkani-Hamed, J.: Equivalent source magnetic dipoles
revisited, Geophys. Res. Lett., 25, 2003–2006, 1998.
Dziadek, R. and Burton-Johnson, A.: Antarctic-GHF-DB, GitHub, available at: https://github.com/RicardaDziadek/Antarctic-GHF-DB, last access:
6 November 2020.
Dziadek, R., Gohl, K., Diehl, A., and Kaul, N.: Geothermal heat flux in the
Amundsen Sea sector of West Antarctica: New insights from temperature
measurements, depth to the bottom of the magnetic source estimation, and
thermal modeling, Geochem. Geophy. Geosys., 18, 2657–2672,
2017.
Dziadek, R., Gohl, K., and Kaul, N.: Elevated geothermal surface heat flow in
the Amundsen Sea Embayment, West Antarctica, Earth Planet. Sc.
Lett., 506, 530–539, 2019.
Ebbing, J., Lundin, E., Olesen, O., and Hansen, E. K.: The mid-Norwegian
margin: a discussion of crustal lineaments, mafic intrusions, and remnants
of the Caledonian root by 3D density modelling and structural
interpretation, J. Geol. Soc., 163, 47–59, 2006.
Ebbing, J., Gernigon, L., Pascal, C., Olesen, O., and Osmundsen, P. T.: A
discussion of structural and thermal control of magnetic anomalies on the
mid-Norwegian margin, Geophys. Prospect., 57, 665–681, 2009.
Elbeze, A. C.: On the existence of another source of heat production for the
earth and planets, and its connection with gravitomagnetism, SpringerPlus,
2, 1–13, https://doi.org/10.1186/2193-1801-2-513, 2013.
Engelhardt, H.: Ice temperature and high geothermal flux at Siple Dome, West
Antarctica, from borehole measurements, J. Glaciol., 50,
251–256, 2004.
Fahnestock, M., Abdalati, W., Joughin, I., Brozena, J., and Gogineni, P.:
High geothermal heat flow, basal melt, and the origin of rapid ice flow in
central Greenland, Science, 294, 2338–2342, 2001.
Ferraccioli, F., Finn, C. A., Jordan, T. A., Bell, R. E., Anderson, L. M., and Damaske, D.: East Antarctic rifting triggers uplift of the Gamburtsev
Mountains, Nature, 479, 388–392, 2011.
Ferré, E. C., Friedman, S. A., Martín-Hernández, F., Feinberg,
J. M., Conder, J. A., and Ionov, D. A.: The magnetism of mantle xenoliths and
potential implications for sub-Moho magnetic sources, Geophys. Res. Lett., 40, 105–110, 2013.
Fischer, H., Severinghaus, J., Brook, E., Wolff, E., Albert, M., Alemany, O., Arthern, R., Bentley, C., Blankenship, D., Chappellaz, J., Creyts, T., Dahl-Jensen, D., Dinn, M., Frezzotti, M., Fujita, S., Gallee, H., Hindmarsh, R., Hudspeth, D., Jugie, G., Kawamura, K., Lipenkov, V., Miller, H., Mulvaney, R., Parrenin, F., Pattyn, F., Ritz, C., Schwander, J., Steinhage, D., van Ommen, T., and Wilhelms, F.: Where to find 1.5 million yr old ice for the IPICS “Oldest-Ice” ice core, Clim. Past, 9, 2489–2505, https://doi.org/10.5194/cp-9-2489-2013, 2013.
Fisher, A. T. and Harris, R. N.: Using seafloor heat flow as a tracer to map
subseafloor fluid flow in the ocean crust, Geofluids, 10, 142–160,
2010.
Fisher, A. T., Mankoff, K. D., Tulaczyk, S. M., Tyler, S. W., Foley, N., and The Wissard Science Team: High geothermal heat flux measured below the West Antarctic Ice Sheet, Sci. Adv., 1, e1500093, https://doi.org/10.1126/sciadv.1500093, 2015.
Flowerdew, M. J., Tyrrell, S., Boger, S. D., Fitzsimons, I. C. W., Harley,
S. L., Mikhalsky, E. V., and Vaughan, A. P. M.: Pb isotopic domains from the
Indian Ocean sector of Antarctica: implications for past Antarctica–India
connections, Geological Society, London, Special Publications, 383,
59–72, 2013.
Foster, T. D.: Temperature and salinity fields under the Ross Ice Shelf,
Antarct. J. US, 13, 81–82, 1978.
Fox Maule, C., Purucker, M. E., Olsen, N., and Mosegaard, K.: Heat flux
anomalies in Antarctica revealed by satellite magnetic data, Science,
309, 464–467, 2005.
Fricker, H. A., Scambos, T., Bindschadler, R., and Padman, L.: An active
subglacial water system in West Antarctica mapped from space, Science,
315, 1544–1548, 2007.
Frost, B. R. and Shive, P. N.: Magnetic mineralogy of the lower
continental-crust, J. Geophys. Res.-Sol. Ea.,
91, 6513–6521, 1986.
Fudge, T. J., Biyani, S., Clemens-Sewall, D., and Hawley, B.: Constraining
geothermal flux at coastal domes of the Ross Ice Sheet, Antarctica,
Geophys. Res. Lett., 46, 13090–13098, 2019.
Gard, M., Hasterok, D., and Halpin, J. A.: Global whole-rock geochemical database compilation, Earth Syst. Sci. Data, 11, 1553–1566, https://doi.org/10.5194/essd-11-1553-2019, 2019.
Godey, S., Deschamps, F., Trampert, J., and Snieder, R.: Thermal and
compositional anomalies beneath the North American continent, J. Geophys. Res.-Sol. Ea., 1, B1, https://doi.org/10.1029/2002JB002263, 2004.
Goelzer, H., Robinson, A., Seroussi, H., and Van De Wal, R. S.: Recent
progress in Greenland ice sheet modelling, Current Climate Change Reports,
3, 291–302, 2017.
Gohl, K., Wellner, J. S., Klaus, A., and Expedition 379 Scientists:
Expedition 379 Preliminary Report: Amundsen Sea West Antarctic Ice Sheet
History, International Ocean Discovery Program, 379,
https://doi.org/10.14379/iodp.pr.379.2019, 2019.
Golynsky, A., Chiappini, M., Damaske, D., Ferraccioli, F., Finn, C. A., Ishihara, T., Kim, H. R., Kovacs, L., Masolov, V. N., Morris, P., and von Frese, R.: ADMAP – A digital magnetic anomaly map of the Antarctic, in: Antarctica, pp. 109–116, Springer, 2006.
Goodge, J. W.: Crustal heat production and estimate of terrestrial heat flow in central East Antarctica, with implications for thermal input to the East Antarctic ice sheet, The Cryosphere, 12, 491–504, https://doi.org/10.5194/tc-12-491-2018, 2018.
Goodge, J. W. and Severinghaus, J. P.: Rapid Access Ice Drill: a new tool
for exploration of the deep Antarctic ice sheets and subglacial geology,
J. Glaciol., 62, 1049–1064, 2016.
Gow, A. J., Ueda, H. T., and Garfield, D. E.: Antarctic ice sheet:
preliminary results of first core hole to bedrock, Science, 161,
1011–1013, 1968.
Granot, R. and Dyment, J.: Late Cenozoic unification of East and West
Antarctica, Nat. Commun., 9, 3189, https://doi.org/10.1038/s41467-018-05270-w, 2018.
Grauch, V. J. S.: Limitations on digital filtering of the DNAG magnetic data
set for the conterminous US, Geophysics, 58, 1281–1296, 1993.
Greve, R. and Hutter, K.: Polythermal three-dimensional modelling of the
Greenland ice sheet with varied geothermal heat flux, Ann. Glaciol.,
21, 8–12, 1995.
Guimarães, S. N. P., Hamza, V. M., and Ravat, D.: Curie depths using
combined analysis of centroid and matched filtering methods in inferring
thermomagnetic characteristics of Central Brazil, in: 13th International
Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro,
Brazil, 26–29 August 2013, Society of Exploration
Geophysicists and Brazilian Geophysical Society, 1853–1858, 2013.
Gutenberg, B.: 6. Temperature and Thermal Processes in the Earth, in
International Geophysics, vol. 1, edited by: Gutenberg, B., 121–148,
Academic Press Inc., New York., 1959.
Haggerty, S. E.: Mineralogical contraints on Curie isotherms in deep crustal
magnetic anomalies, Geophys. Res. Lett., 5, 105–108, 1978.
Halpin, J. A. and Reading, A. M.: Report on Taking the Temperature of the
Antarctic Continent (TACtical) Workshop 21–23 March 2018, Hobart, Tasmania,
Australia, Hobart, Australia, 2018.
Halpin, J. A., Whittaker, J. M., Gard, M., Hasterok, D., Burton-Johnson, A., Staal, T., Maritati, A., Reading, A. M., McLaren, S., Hand, M., and Raimondo, T.: Heterogenous Antarctic crustal heat production, in: ISAES XIII International Symposium on Antarctic Earth Sciences, Incheon, Republic of Korea, 2019.
Hasterok, D. and Chapman, D. S.: Continental thermal isostasy: 1. Methods
and sensitivity, J. Geophys. Res.-Sol. Ea., 112, B06414, https://doi.org/10.1029/2006JB004663,
2007a.
Hasterok, D. and Chapman, D. S.: Continental thermal isostasy: 2.
Application to North America, J. Geophys. Res.-Sol. Ea.,
112, B06415, https://doi.org/10.1029/2006JB004664, 2007b.
Hasterok, D. and Chapman, D. S.: Heat production and geotherms for the
continental lithosphere, Earth Planet. Sc. Lett., 307,
59–70, https://doi.org/10.1016/j.epsl.2011.04.034, 2011.
Hasterok, D. and Gard, M.: Utilizing thermal isostasy to estimate
sub-lithospheric heat flow and anomalous crustal radioactivity, Earth
Planet. Sc. Lett., 450, 197–207, 2016.
Hasterok, D., Gard, M., Halpin, J. A., Hand, M. P., Pollett, A., McLaren,
S., Raimondo, T., Willcocks, S., and Linke, M.: Constraining Geothermal Heat
Flux Beneath Ice Sheets Using Thermal Isostasy, in: AGU Fall Meeting 2019,
AGU, 2019.
Heesemann, M., Villinger, H., Fisher, A. T., Tréhu, A. M., and White, S.:
Data report: testing and deployment of the new APCT-3 tool to determine in
situ temperatures while piston coring, in: Proceedings of the Integrated
Ocean Drilling Program, 311, edited by: Riedel, M., Collett, T., Malone, M., and
the Expedition 311 Scientists, Integrated Ocean Drilling Program Management
International, Inc., Washington, DC, 2006.
Hillenbrand, C.-D., Smith, J. A., Hodell, D. A., Greaves, M., Poole, C. R.,
Kender, S., Williams, M., Andersen, T. J., Jernas, P. E., and Elderfield, H.:
West Antarctic Ice Sheet retreat driven by Holocene warm water incursions,
Nature, 547, 7661, https://doi.org/10.1038/nature22995, 2017.
Hindmarsh, R. C. and Ritz, C. M.: How deep do you need to drill through ice
to measure the geothermal heat flux?, EGU General Assembly, Vienna, Austria, p. 8629, 2012EGUGA..14.8629H, 22–27 April 2012.
Hondoh, T., Shoji, H., Watanabe, O., Salamatin, A. N., and Lipenkov, V. Y.:
Depth–age and temperature prediction at Dome Fuji station, East Antarctica,
Ann. Glaciol., 35, 384–390, 2002.
Huang, Y., Chubakov, V., Mantovani, F., Rudnick, R. L., and McDonough, W. F.:
A reference Earth model for the heat-producing elements and associated
geoneutrino flux, Geochem. Geophy. Geosy., 14, 2003–2029,
2013.
Hughes, T.: Modeling ice sheets from the bottom up, Quaternary Sci.
Rev., 28, 1831–1849, 2009.
Hyndman, R. D., Langseth, M. G., and Von Herzen, R. P.: Deep Sea Drilling
Project geothermal measurements: a review, Rev. Geophys., 25,
1563–1582, 1987.
Hyvönen, E., Turunen, P., Vanhanen, E., Arkimaa, H., and Sutinen, R.: Airborne gamma-ray surveys in Finland, in: Aerogeophysics in Finland 1972–2004, edited by: Airo, M.-L., Geological Survey of Finland, Espoo, Finland, 39, 119–134, 2005.
Jaeger, J. C.: Numerical values for the temperature in radial heat flow,
J. Math. Phys., 34, 316–321, 1956.
Jaeger, J. C.: The effect of the drilling fluid on temperatures measured in
bore holes, J. Geophys. Res., 66, 563–569, 1961.
Jaeger, J. C.: Application of the theory of heat conduction to geothermal
measurements, Terrestrial Heat Flow, 8, 7–23, 1965.
James, D. W.: The thermal diffusivity of ice and water between −40 and +60 ∘C, J. Mater. Sci., 3, 540–543, 1968.
Jezek, K. C., Johnson, J. T., Drinkwater, M. R., Macelloni, G., Tsang, L.,
Aksoy, M., and Durand, M.: Radiometric approach for estimating relative
changes in intraglacier average temperature, IEEE T. Geosci.
Remote, 53, 134–143, 2014.
Jordan, T., Martin, C., Ferraccioli, F., Matsuoka, K., Corr, H., Forsberg,
R., Olesen, A., and Siegert, M. J.: Newly discovered geothermal anomaly at
South Pole ice divide; origins and implications, EGU 2018 General Assembly, Vienna, Austria, p. 15511, 2018EGUGA..2015511J, 8–13 April 2018.
Jordan, T. A., Riley, T. R., and Siddoway, C. S.: The geological history and
evolution of West Antarctica, Nature Reviews Earth & Environment, 1,
117–133, 2020.
Kawakatsu, H. and Watada, S.: Seismic evidence for deep-water transportation
in the mantle, Science, 316, 1468–1471, 2007.
Kerr, Y. H., Waldteufel, P., Wigneron, J.-P., Delwart, S., Cabot, F.,
Boutin, J., Escorihuela, M.-J., Font, J., Reul, N., and Gruhier, C.: The SMOS
mission: New tool for monitoring key elements ofthe global water cycle,
Proce. IEEE, 98, 666–687, 2010.
Kingslake, J., Scherer, R. P., Albrecht, T., Coenen, J., Powell, R. D.,
Reese, R., Stansell, N. D., Tulaczyk, S., Wearing, M. G., and Whitehouse, P.
L.: Extensive retreat and re-advance of the West Antarctic Ice Sheet during
the Holocene, Nature, 558, 430–434, 2018.
Korenaga, J.: Earth's heat budget: Clairvoyant geoneutrinos, Nat.
Geosci., 4, 581–582, https://doi.org/10.1038/ngeo1240, 2011.
Kuchar, J. and Milne, G. A.: The influence of viscosity structure in the
lithosphere on predictions from models of glacial isostatic adjustment,
J. Geodyn., 86, 1–9, 2015.
Lachenbruch, A. H.: Preliminary geothermal model of the Sierra Nevada,
J. Geophys. Res., 73, 6977–6989, 1968.
Lachenbruch, A. H.: Crustal temperature and heat production: Implications of
the linear heat-flow relation, J. Geophys. Res., 75,
3291–3300, 1970.
Lachenbruch, A. H. and Brewer, M. C.: Dissipation of the temperature effect
of drilling a well in Arctic Alaska, United States Geological Survey
Bulletin, 1083, 73–109, 1959.
Langel, R. A. and Hinze, W. J.: The magnetic field of the Earth's
lithosphere: The satellite perspective, Cambridge University Press,
Cambridge, UK, 1998.
Larour, E., Morlighem, M., Seroussi, H., Schiermeier, J., and Rignot, E.: Ice
flow sensitivity to geothermal heat flux of Pine Island Glacier, Antarctica,
J. Geophys. Res.-Earth, 117, F4, https://doi.org/10.1029/2012JF002371, 2012.
Leat, P. T., Jordan, T. A., Flowerdew, M. J., Riley, T. R., Ferraccioli, F., and Whitehouse, M. J.: Jurassic high heat production granites associated
with the Weddell Sea rift system, Antarctica, Tectonophysics, 722, 249–264,
2018.
Lees, C. H.: On the shapes of the isogeotherms under mountain ranges in
radio-active districts, P. Roy. Soc. Lond. A, 83,
339–346, 1910.
Li, C.-F., Lu, Y., and Wang, J.: A global reference model of Curie-point
depths based on EMAG2, Sci. Rep., 7, 45129, https://doi.org/10.1038/srep45129, 2017.
Llubes, M., Lanseau, C., and Rémy, F.: Relations between basal condition,
subglacial hydrological networks and geothermal flux in Antarctica, Earth
Planet. Sc. Lett., 241, 655–662, 2006.
Lowrie, W.: Fundamentals of geophysics, 2nd Edn., Cambridge University Press,
Cambridge, 2007.
Lucazeau, F.: Analysis and mapping of an updated terrestrial heat flow
dataset, Geochem. Geophys. Geosy., 20, 4001–4024, 2019.
Macelloni, G., Leduc-Leballeur, M., Brogioni, M., Ritz, C., and Picard, G.:
Analyzing and modeling the SMOS spatial variations in the East Antarctic
Plateau, Remote Sens. Environ., 180, 193–204, 2016.
Macelloni, G., Leduc-Leballeur, M., Montomoli, F., Brogioni, M., Ritz, C., and Picard, G.: On the retrieval of internal temperature of Antarctica Ice
Sheet by using SMOS observations, Remote Sens. Environ., 233, 111405, https://doi.org/10.1016/j.rse.2019.111405,
2019.
Mareschal, J. C. and Jaupart, C.: Radiogenic heat production, thermal regime
and evolution of continental crust, Tectonophysics, 609, 524–534,
https://doi.org/10.1016/j.tecto.2012.12.001, 2013.
Martin, A. P. and van der Wal, W. (Eds.): The Antarctic Mantle, The
Geological Society, London, UK, in preparation, 2020.
Martin, A. P., Cooper, A. F., and Price, R. C.: Increased mantle heat flow
with on-going rifting of the West Antarctic rift system inferred from
characterisation of plagioclase peridotite in the shallow Antarctic mantle,
Lithos, 190, 173–190, 2014.
Martos, Y. M., Catalán, M., Jordan, T. A., Golynsky, A., Golynsky, D.,
Eagles, G., and Vaughan, D. G.: Heat flux distribution of Antarctica
unveiled, Geophys. Res. Lett., 44, 11–417, 2017.
Martos, Y. M., Jordan, T. A., Catalán, M., Jordan, T. M., Bamber, J. L., and Vaughan, D. G.: Geothermal heat flux reveals the Iceland hotspot track
underneath Greenland, Geophys. Res. Lett., 45, 8214–8222,
2018.
Maus, S.: Magnetic field model MF7, available at:
http://www.geomag.us/models/MF7.html (last access: 28 August 2018), 2010.
Mayhew, M. A.: Inversion of satellite magnetic anomaly data, J.
Geophys., 45, 119–128, 1979.
McDonough, W. F. and Sun, S. s.: The composition of the Earth, Chem.
Geol., 120, 223–253, https://doi.org/10.1016/0009-2541(94)00140-4, 1995.
McKay, R., De Santis, L., Kulhanek, D. K., and Expedition 374 Scientists:
International Ocean Discovery Program Expedition 374 Preliminary Report:
Ross Sea West Antarctic Ice Sheet History, International Ocean Discovery
Program, 374, https://doi.org/10.14379/iodp.pr.374.2018, 2018.
McKenzie, D., Jackson, J., and Priestley, K.: Thermal structure of oceanic
and continental lithosphere, Earth Planet. Sc. Lett., 233,
337–349, 2005.
Morgan, J. P., Rüpke, L. H., and White, W. M.: The Current Energetics of
Earth's Interior: A Gravitational Energy Perspective, Front. Earth
Sci., 4, 1–28, https://doi.org/10.3389/feart.2016.00046, 2016.
Morin, R. H., Williams, T., Henrys, S. A., Magens, D., Niessen, F., and
Hansaraj, D.: Heat flow and hydrologic characteristics at the AND-1B
borehole, ANDRILL McMurdo Ice Shelf Project, Antarctica, Geosphere, 6,
370–378, 2010.
Mulder, J. A., Halpin, J. A., Daczko, N. R., Orth, K., Meffre, S., Thompson,
J. M., and Morrissey, L. J.: A Multiproxy provenance approach to uncovering
the assembly of East Gondwana in Antarctica, Geology, 47, 645–649, 2019.
Müller, C., Usbeck, R., and Miesner, F.: Temperatures in shallow marine
sediments: Influence of thermal properties, seasonal forcing, and man-made
heat sources, Appl. Therm. Eng., 108, 20–29, 2016.
Mulvaney, R., Abram, N. J., Hindmarsh, R. C., Arrowsmith, C., Fleet, L.,
Triest, J., Sime, L. C., Alemany, O., and Foord, S.: Recent Antarctic
Peninsula warming relative to Holocene climate and ice-shelf history,
Nature, 489, 141–144, 2012.
Mulvaney, R., Martin, C., Massam, A., Rix, J., and Ritz, C.: Estimating
geothermal heat flux from ice sheet borehole temperature measurements, in
XIII International Symosium on Antarctic Earth Sciences, Incheon, Republic
of Korea, 2019.
Nicholls, K. W. and Paren, J. G.: Extending the Antarctic meteorological
record using ice-sheet temperature profiles, J. Climate, 6,
141–150, 1993.
Obande, G. E., Lawal, K. M., and Ahmed, L. A.: Spectral analysis of
aeromagnetic data for geothermal investigation of Wikki Warm Spring,
north-east Nigeria, Geothermics, 50, 85–90, 2014.
Okubo, Y., Graf, R. J., Hansen, R. O., Ogawa, K., and Tsu, H.: Curie point
depths of the island of Kyushu and surrounding areas, Japan, Geophysics,
50, 481–494, 1985.
Olesen, O., Balling, N., Barrère, C., Breiner, N., Davidsen, B., Ebbing, J., Elvebakk, H., Gernigon, L., Koziel, J., Lutro, O., Midttømme, K., Nordgulen, Ø., Olsen, L., Osmundsen, P. T., Pascal, C., Ramstad, R. K., Rønning, J. S., Skilbrei, J. R., Slagstad, T., and Wissing, B.: KONTIKI final report, continental crust and heat generation in 3D, Geological Survey of Norway, Trondheim, Norway, 2007: KONTIKI
final report, continental crust and heat generation in 3D, NGU Report, 2007.042,
ISSN 0800-3416, 42,
2007.
Pappa, F., Ebbing, J., Ferraccioli, F., and van der Wal, W.: Modeling
satellite gravity gradient data to derive density, temperature, and
viscosity structure of the Antarctic lithosphere, J. Geophys. Res.-Sol. Ea., 124, 12053–12076, 2019a.
Pappa, F., Ebbing, J., and Ferraccioli, F.: Moho Depths of Antarctica:
Comparison of Seismic, Gravity, and Isostatic Results, Geochem.
Geophy. Geosy., 20, 1629–1645, 2019b.
Passalacqua, O., Ritz, C., Parrenin, F., Urbini, S., and Frezzotti, M.: Geothermal flux and basal melt rate in the Dome C region inferred from radar reflectivity and heat modelling, The Cryosphere, 11, 2231–2246, https://doi.org/10.5194/tc-11-2231-2017, 2017.
Passalacqua, O., Picard, G., Ritz, C., Leduc-Leballeur, M., Quiquet, A.,
Larue, F., and Macelloni, G.: Retrieval of the Absorption Coefficient of
L-Band Radiation in Antarctica From SMOS Observations, Remote Sensing,
10, 1954, https://doi.org/10.3390/rs10121954, 2018.
Pattyn, F.: Antarctic subglacial conditions inferred from a hybrid ice
sheet/ice stream model, Earth Planet. Sc. Lett., 295,
451–461, 2010.
Pfender, M. and Villinger, H.: Miniaturized data loggers for deep sea
sediment temperature gradient measurements, Mar. Geol., 186,
557–570, 2002.
Phaneuf, C. and Mareschal, J.-C.: Estimating concentrations of heat
producing elements in the crust near the Sudbury Neutrino Observatory,
Ontario, Canada, Tectonophysics, 622, 135–144, 2014.
Pittard, M. L., Galton-Fenzi, B. K., Roberts, J. L., and Watson, C. S.:
Organization of ice flow by localized regions of elevated geothermal heat
flux, Geophys. Res. Lett., 43, 3342–3350, 2016a.
Pittard, M. L., Roberts, J. L., Galton-Fenzi, B. K., and Watson, C. S.:
Sensitivity of the Lambert-Amery glacial system to geothermal heat flux,
Ann. Glaciol., 57, 56–68, 2016b.
Pollack, H. N. and Chapman, D. S.: Mantle heat flow, Earth Planet.
Sc. Lett., 34, 174–184, 1977.
Pollack, H. N., Hurter, S. J., and Johnson, J. R.: Heat flow from the Earth's
interior: Analysis of the global data set, Rev. Geophys., 31,
267–280, https://doi.org/10.1029/93RG01249, 1993.
Pollard, D., DeConto, R. M., and Nyblade, A. A.: Sensitivity of Cenozoic
Antarctic ice sheet variations to geothermal heat flux, Global Planet.
Change, 49, 63–74, 2005.
Pollett, A., Hasterok, D., Raimondo, T., Halpin, J. A., Hand, M., Bendall,
B., and McLaren, S.: Heat flow in southern Australia and connections with
East Antarctica, Geochem. Geophy. Geosy., 20, 5352–5370,
2019.
Popov, Y. A., Pevzner, S. L., Pimenov, V. P., and Romushkevich, R. A.: New
geothermal data from the Kola superdeep well SG-3, Tectonophysics,
306, 345–366, 1999.
Price, P. B., Nagornov, O. V., Bay, R., Chirkin, D., He, Y., Miocinovic, P.,
Richards, A., Woschnagg, K., Koci, B., and Zagorodnov, V.: Temperature
profile for glacial ice at the South Pole: Implications for life in a nearby
subglacial lake, P. Natl. Acad. Sci. USA, 99,
7844–7847, 2002.
Pruss, E. F., Decker, E. R., and Smithson, S. B.: Preliminary
temperature-measurements at DVDP holes 3, 4, 6, and 8, Antarct. J. US, 9, 133–134, 1974.
Purucker, M.: Geothermal heat flux data set based on low resolution
observations collected by the CHAMP satellite between 2000 and 2010, and
produced from the MF-6 model following the technique described in Fox Maule
et al. (2005), available at:
http://websrv.cs.umt.edu/isis/images/c/c8/Antarctica_heat_flux_5km.nc (last access: 5 November 2020), 2012.
Purucker, M. and Whaler, K.: Crustal magnetism, edited by M. Kono, Treatise
on Geophysics, 5, 195–237, 2007.
Ravat, D., Pignatelli, A., Nicolosi, I., and Chiappini, M.: A study of
spectral methods of estimating the depth to the bottom of magnetic sources
from near-surface magnetic anomaly data, Geophys. J. Int.,
169, 421–434, 2007.
Rémy, F. and Legresy, B.: Subglacial hydrological networks in Antarctica
and their impact on ice flow, Ann. Glaciol., 39, 67–72, 2004.
Rezvanbehbahani, S., Stearns, L. A., Kadivar, A., Walker, J. D., and van der
Veen, C. J.: Predicting the geothermal heat flux in Greenland: A machine
learning approach, Geophys. Res. Lett., 44, 12271–12279, 2017.
Risk, G. F. and Hochstein, M. P.: Heat flow at arrival heights, Ross Island,
Antarctica, New Zeal. J. Geol. Geop., 17, 629–644,
1974.
Ritz, C.: Time dependent boundary conditions for calculation of temperature
fields in ice sheets, in: The Physical Basis of Ice Sheet Modelling, Proceedings of the Vancouver Symposium, August 1987,
Vancouver, Canada, 170, 207–216, 1987.
Ritz, C.: Interpretation of the temperature profile measured at Vostok, East
Antarctica, Ann. Glaciol., 12, 138–144, 1989.
Rix, J., Mulvaney, R., Hong, J., and Ashurst, D.: Development of the British
Antarctic Survey Rapid Access Isotope Drill, J. Glaciol., 65,
288–298, 2019.
Rogozhina, I., Hagedoorn, J. M., Martinec, Z., Fleming, K., Soucek, O.,
Greve, R., and Thomas, M.: Effects of uncertainties in the geothermal heat
flux distribution on the Greenland Ice Sheet: An assessment of existing heat
flow models, J. Geophys. Res.-Earth, 117, F02025,
https://doi.org/10.1029/2011JF002098, 2012.
Ross, H. E., Blakely, R. J., and Zoback, M. D.: Testing the use of
aeromagnetic data for the determination of Curie depth in California,
Geophysics, 71, L51–L59, 2006.
Roy, R. F., Blackwell, D. D., and Birch, F.: Heat generation of plutonic
rocks and continental heat flow provinces, Earth Planet. Sc.
Lett., 5, 1–12, 1968.
Rudnick, R. and Fountain, D.: Nature and composition of the continental
crust: a lower crustal perspective, Rev. Geophys., 95, 267–309,
1995.
Rudnick, R. L., McDonough, W. F., and O'Connell, R. J.: Thermal structure,
thickness and composition of continental lithosphere, Chem. Geol.,
145, 395–411, 1998.
Rybach, L.: Amount and significance of radioactive heat sources in
sediments, Coll. Col. Se., 44, 311–322, 1986.
Salamatin, A. N., Lipenkov, V. Y., Barkov, N. I., Jouzel, J., Petit, J. R., and Raynaud, D.: Ice core age dating and paleothermometer calibration based
on isotope and temperature profiles from deep boreholes at Vostok Station
(East Antarctica), J. Geophys. Res.-Atmos., 103,
8963–8977, 1998.
Salem, A., Green, C., Ravat, D., Singh, K. H., East, P., Fairhead, J. D.,
Mogren, S., and Biegert, E.: Depth to Curie temperature across the central
Red Sea from magnetic data using the de-fractal method, Tectonophysics, 624,
75–86, 2014.
Sandiford, M. and Hand, M.: Controls on the locus of intraplate deformation
in central Australia, Earth Planet. Sc. Lett., 162,
97–110, 1998.
Sandiford, M. and McLaren, S.: Tectonic feedback and the ordering of heat
producing elements within the continental lithosphere, Earth Planet.
Sc. Lett, 204, 133–150, 2002.
Schroeder, D. M., Blankenship, D. D., Young, D. A., and Quartini, E.:
Evidence for elevated and spatially variable geothermal flux beneath the
West Antarctic Ice Sheet, P. Natl. Acad. Sci. USA,
111, 9070–9072, 2014.
Sclater, J., Jaupart, C., and Galson, D.: The heat flow through oceanic and
continental crust and the heat loss of the Earth, Rev. Geophys.,
18, 269–311, 1980.
Shapiro, N. M. and Ritzwoller, M. H.: Monte-Carlo inversion for a global
shear-velocity model of the crust and upper mantle, Geophys. J.
Int., 151, 88–105, 2002.
Shapiro, N. M. and Ritzwoller, M. H.: Inferring surface heat flux
distributions guided by a global seismic model: particular application to
Antarctica, Earth Planet. Sc. Lett., 223, 213–224, 2004.
Shen, W., Wiens, D., Lloyd, A.,
and Nyblade, A.: A geothermal
heat flux map of Antarctica empirically
constrained by seismic structure,
Geophys. Res. Lett., 47,
e2020GL086955, https://doi.org/10.1029/2020GL086955, 2020.
Siddoway, C. S.: Tectonics of the West Antarctic Rift System: new light on
the history and dynamics of distributed intracontinental extension,
Antarctica: A Keystone in a Changing World, 91–114, 2008.
Siegert, M. J.: Antarctic subglacial lakes, Earth-Sci. Rev., 50,
29–50, 2000.
Siegert, M. J. and Dowdeswell, J. A.: Spatial variations in heat at the base
of the Antarctic ice sheet from analysis of the thermal regime above
subglacial lakes, J. Glaciol., 42, 501–509, 1996.
Slagstad, T.: Radiogenic heat production of Archaean to Permian geological provinces in Norway, Norwegian Journal of Geology/Norsk Geologisk Forening, 88, 149–166, 2008.
Spector, A. and Grant, F. S.: Statistical models for interpreting
aeromagnetic data, Geophysics, 35, 293–302, 1970.
Stein, C. A. and Stein, S.: A model for the global variation in oceanic depth and heat flow with lithospheric age, Nature, 359, 123–129, https://doi.org/10.1038/359123a0, 1992.
Stein, C. A. and Stein, S.: Mantle plumes: heat-flow near Iceland, Astron.
Geophys., 44, 1–8, 2003.
Suárez, F., Dozier, J., Selker, J. S., Hausner, M. B., and Tyler, S. W.:
Heat transfer in the environment: development and use of fiber-optic
distributed temperature sensing, INTECH Open Access Publisher Rijeka, 2011.
Swanberg, C. A.: Vertical distribution of heat generation in the Idaho
batholith, J. Geophys. Res., 77, 2508–2513, 1972.
Talalay, P. G. and Pyne, A. R.: Geological drilling in McMurdo Dry Valleys
and McMurdo Sound, Antarctica: Historical development, Cold Reg. Sci.
Technol., 141, 131–162, 2017.
Tanaka, A., Okubo, Y., and Matsubayashi, O.: Curie point depth based on
spectrum analysis of the magnetic anomaly data in East and Southeast Asia,
Tectonophysics, 306, 461–470, 1999.
Taylor, S. R. and McLennan, S. M.: The continental crust: its composition
and evolution, Blackwell Publishing, Oxford, UK, 1985.
Trifonova, P., Zhelev, Z., Petrova, T., and Bojadgieva, K.: Curie point
depths of Bulgarian territory inferred from geomagnetic observations and its
correlation with regional thermal structure and seismicity, Tectonophysics,
473, 362–374, 2009.
Turcotte, D. L. and Schubert, G.: Geodynamics, Cambridge University Press,
Cambridge, UK, 2014.
Ukil, A., Braendle, H., and Krippner, P.: Distributed temperature sensing:
review of technology and applications, IEEE Sens. J., 12,
885–892, 2011.
van der Wal, W., Barnhoorn, A., Stocchi, P., Gradmann, S., Wu, P., Drury, M., and Vermeersen, B.: Glacial isostatic adjustment model with composite 3-D
Earth rheology for Fennoscandia, Geophysical Journal International, 194(1),
61–77, 2013.
van der Wal, W., Whitehouse, P. L., and Schrama, E. J.: Effect of GIA models
with 3D composite mantle viscosity on GRACE mass balance estimates for
Antarctica, Earth Planet. Sc. Lett., 414, 134–143, 2015.
Van Liefferinge, B. and Pattyn, F.: Using ice-flow models to evaluate potential sites of million year-old ice in Antarctica, Clim. Past, 9, 2335–2345, https://doi.org/10.5194/cp-9-2335-2013, 2013.
Van Liefferinge, B., Pattyn, F., Cavitte, M. G. P., Karlsson, N. B., Young, D. A., Sutter, J., and Eisen, O.: Promising Oldest Ice sites in East Antarctica based on thermodynamical modelling, The Cryosphere, 12, 2773–2787, https://doi.org/10.5194/tc-12-2773-2018, 2018.
Veikkolainen, T. and Kukkonen, I. T.: Highly varying radiogenic heat
production in Finland, Fennoscandian Shield, Tectonophysics, 750, 93–116,
2019.
Vieli, G.-M. L., Martin, C., Hindmarsh, R. C. A., and Lüthi, M. P.: Basal
freeze-on generates complex ice-sheet stratigraphy, Nat. Commun.,
9, 1–13, 2018.
Vitorello, I. and Pollack, H. N.: On the variation of continental heat flow
with age and the thermal evolution of continents, J. Geophys. Res.-Sol. Ea., 85, 983–995, 1980.
Vosteen, H.-D. and Schellschmidt, R.: Influence of temperature on thermal
conductivity, thermal capacity and thermal diffusivity for different types
of rock, Phys. Chem. Earth, 28,
499–509, 2003.
Wangen, M.: Physical principles of sedimentary basin analysis, Cambridge
University Press, Cambridge, UK, 2010.
Wasilewski, P. J. and Mayhew, M. A.: The Moho as a magnetic boundary
revisited, Geophys. Res. Lett., 19, 2259–2262, 1992.
Winsborrow, M. C., Clark, C. D., and Stokes, C. R.: What controls the
location of ice streams?, Earth-Sci. Rev., 103, 45–59, 2010.
Wright, A. and Siegert, M.: A fourth inventory of Antarctic subglacial
lakes, Antarct. Sci., 24, 659–664, 2012.
Zagorodnov, V., Nagornov, O., Scambos, T. A., Muto, A., Mosley-Thompson, E., Pettit, E. C., and Tyuflin, S.: Borehole temperatures reveal details of 20th century warming at Bruce Plateau, Antarctic Peninsula, The Cryosphere, 6, 675–686, https://doi.org/10.5194/tc-6-675-2012, 2012.
Short summary
The Antarctic ice sheet is the largest source for sea level rise. However, one key control on ice sheet flow remains poorly constrained: the effect of heat from the rocks beneath the ice sheet (known as
geothermal heat flow). Although this may not seem like a lot of heat, beneath thick, slow ice this heat can control how well the ice flows and can lead to melting of the ice sheet. We discuss the methods used to estimate this heat, compile existing data, and recommend future research.
The Antarctic ice sheet is the largest source for sea level rise. However, one key control on...