Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 4.713
IF4.713
IF 5-year value: 4.927
IF 5-year
4.927
CiteScore value: 8.0
CiteScore
8.0
SNIP value: 1.425
SNIP1.425
IPP value: 4.65
IPP4.65
SJR value: 2.353
SJR2.353
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 53
h5-index53
Download
Short summary
The Antarctic ice sheet is the largest source for sea level rise. However, one key control on ice sheet flow remains poorly constrained: the effect of heat from the rocks beneath the ice sheet (known as geothermal heat flow). Although this may not seem like a lot of heat, beneath thick, slow ice this heat can control how well the ice flows and can lead to melting of the ice sheet. We discuss the methods used to estimate this heat, compile existing data, and recommend future research.
The Antarctic ice sheet is the largest source for sea level rise. However, one key control on...
TC | Articles | Volume 14, issue 11
The Cryosphere, 14, 3843–3873, 2020
https://doi.org/10.5194/tc-14-3843-2020
The Cryosphere, 14, 3843–3873, 2020
https://doi.org/10.5194/tc-14-3843-2020

Review article 10 Nov 2020

Review article | 10 Nov 2020

Review article: Geothermal heat flow in Antarctica: current and future directions

Alex Burton-Johnson et al.

Related authors

Rock and snow differentiation from colour (RGB) images
Alex Burton-Johnson and Nina Sofia Wyniawskyj
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-115,https://doi.org/10.5194/tc-2020-115, 2020
Revised manuscript has not been submitted
Short summary
An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and area estimation for the entire Antarctic continent
Alex Burton-Johnson, Martin Black, Peter T. Fretwell, and Joseph Kaluza-Gilbert
The Cryosphere, 10, 1665–1677, https://doi.org/10.5194/tc-10-1665-2016,https://doi.org/10.5194/tc-10-1665-2016, 2016
Short summary

Related subject area

Discipline: Ice sheets | Subject: Subglacial Processes
Subglacial lakes and hydrology across the Ellsworth Subglacial Highlands, West Antarctica
Felipe Napoleoni, Stewart S. R. Jamieson, Neil Ross, Michael J. Bentley, Andrés Rivera, Andrew M. Smith, Martin J. Siegert, Guy J. G. Paxman, Guisella Gacitúa, José A. Uribe, Rodrigo Zamora, Alex M. Brisbourne, and David G. Vaughan
The Cryosphere, 14, 4507–4524, https://doi.org/10.5194/tc-14-4507-2020,https://doi.org/10.5194/tc-14-4507-2020, 2020
Short summary
The role of electrical conductivity in radar wave reflection from glacier beds
Slawek M. Tulaczyk and Neil T. Foley
The Cryosphere, 14, 4495–4506, https://doi.org/10.5194/tc-14-4495-2020,https://doi.org/10.5194/tc-14-4495-2020, 2020
Short summary
Exceptionally high heat flux needed to sustain the Northeast Greenland Ice Stream
Silje Smith-Johnsen, Basile de Fleurian, Nicole Schlegel, Helene Seroussi, and Kerim Nisancioglu
The Cryosphere, 14, 841–854, https://doi.org/10.5194/tc-14-841-2020,https://doi.org/10.5194/tc-14-841-2020, 2020
Short summary
Subglacial roughness of the Greenland Ice Sheet: relationship with contemporary ice velocity and geology
Michael A. Cooper, Thomas M. Jordan, Dustin M. Schroeder, Martin J. Siegert, Christopher N. Williams, and Jonathan L. Bamber
The Cryosphere, 13, 3093–3115, https://doi.org/10.5194/tc-13-3093-2019,https://doi.org/10.5194/tc-13-3093-2019, 2019
Subglacial hydrological control on flow of an Antarctic Peninsula palaeo-ice stream
Robert D. Larter, Kelly A. Hogan, Claus-Dieter Hillenbrand, James A. Smith, Christine L. Batchelor, Matthieu Cartigny, Alex J. Tate, James D. Kirkham, Zoë A. Roseby, Gerhard Kuhn, Alastair G. C. Graham, and Julian A. Dowdeswell
The Cryosphere, 13, 1583–1596, https://doi.org/10.5194/tc-13-1583-2019,https://doi.org/10.5194/tc-13-1583-2019, 2019
Short summary

Cited articles

Aboud, E., Salem, A., and Mekkawi, M.: Curie depth map for Sinai Peninsula, Egypt deduced from the analysis of magnetic data, Tectonophysics, 506, 46–54, 2011. 
Aitken, A. R. A., Betts, P. G., Young, D. A., Blankenship, D. D., Roberts, J. L., and Siegert, M. J.: The Australo-Antarctic Columbia to Gondwana transition, Gondwana Res., 29, 136–152, 2016. 
Alessio, K. L., Hand, M., Kelsey, D. E., Williams, M. A., Morrissey, L. J., and Barovich, K.: Conservation of deep crustal heat production, Geology, 46, 335–338, 2018. 
Amante, C. and Eakins, B. W.: ETOPO1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, National Oceanic and Atmospheric Administration Technical Memorandum NESDIS NGDC-24, 2009. 
An, M., Wiens, D. A., Zhao, Y., Feng, M., Nyblade, A. A., Kanao, M., Li, Y., Maggi, A., and Lévêque, J.-J.: S-velocity model and inferred Moho topography beneath the Antarctic Plate from Rayleigh waves, J. Geophys. Res.-Sol. Ea., 120, 359–383, 2015a. 
Publications Copernicus
Download
Short summary
The Antarctic ice sheet is the largest source for sea level rise. However, one key control on ice sheet flow remains poorly constrained: the effect of heat from the rocks beneath the ice sheet (known as geothermal heat flow). Although this may not seem like a lot of heat, beneath thick, slow ice this heat can control how well the ice flows and can lead to melting of the ice sheet. We discuss the methods used to estimate this heat, compile existing data, and recommend future research.
The Antarctic ice sheet is the largest source for sea level rise. However, one key control on...
Citation