Articles | Volume 14, issue 11
https://doi.org/10.5194/tc-14-3843-2020
https://doi.org/10.5194/tc-14-3843-2020
Review article
 | Highlight paper
 | 
10 Nov 2020
Review article | Highlight paper |  | 10 Nov 2020

Review article: Geothermal heat flow in Antarctica: current and future directions

Alex Burton-Johnson, Ricarda Dziadek, and Carlos Martin

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (19 Aug 2020) by Alexander Robinson
AR by Alex Burton-Johnson on behalf of the Authors (19 Aug 2020)  Author's response   Manuscript 
ED: Publish as is (09 Sep 2020) by Alexander Robinson
AR by Alex Burton-Johnson on behalf of the Authors (11 Sep 2020)  Author's response   Manuscript 
Download
Short summary
The Antarctic ice sheet is the largest source for sea level rise. However, one key control on ice sheet flow remains poorly constrained: the effect of heat from the rocks beneath the ice sheet (known as geothermal heat flow). Although this may not seem like a lot of heat, beneath thick, slow ice this heat can control how well the ice flows and can lead to melting of the ice sheet. We discuss the methods used to estimate this heat, compile existing data, and recommend future research.