Research article
31 Oct 2020
Research article | 31 Oct 2020
Investigation of spatial and temporal variability of river ice phenology and thickness across Songhua River Basin, northeast China
Qian Yang et al.
Related authors
Influence of environmental factors on spectral characteristics of chromophoric dissolved organic matter (CDOM) in Inner Mongolia Plateau, China
Z. D. Wen, K. S. Song, Y. Zhao, J. Du, and J. H. Ma
Hydrol. Earth Syst. Sci., 20, 787–801, https://doi.org/10.5194/hess-20-787-2016,https://doi.org/10.5194/hess-20-787-2016, 2016
Short summary
Spatiotemporal characterization of dissolved carbon for inland waters in semi-humid/semi-arid region, China
K. S. Song, S. Y. Zang, Y. Zhao, L. Li, J. Du, N. N. Zhang, X. D. Wang, T. T. Shao, Y. Guan, and L. Liu
Hydrol. Earth Syst. Sci., 17, 4269–4281, https://doi.org/10.5194/hess-17-4269-2013,https://doi.org/10.5194/hess-17-4269-2013, 2013
Related subject area
Cited articles
Barber, J. J.: Bayesian Core: A Practical Approach to Computational Bayesian Statistics, J. Am. Stat. Assoc., 103, 432–433, 2008.
Beltaos, S. and Prowse, T.: River-ice hydrology in a shrinking cryosphere, Hydrol. Process., 23, 122–144, https://doi.org/10.1002/hyp.7165, 2009.
Castro, M. C. D. and Singer, B. H.: Controlling the False Discovery Rate: A
New Application to Account for Multiple and Dependent Tests in Local
Statistics of Spatial Association, Geogr. Anal., 38, 180–208, 2006.
Chen, H., Zhang, W., Nie, N., and Guo, Y.: Long-term groundwater storage
variations estimated in the Songhua River Basin by using GRACE products, land surface models, and in-situ observations, Sci. Total Environ., 649, 372–387, 2019.
Choinski, A., Ptak, M., Skowron, R., and Strzelczak, A.: Changes in ice
phenology on polish lakes from 1961 to 2010 related to location and morphometry, Limnologica, 53, 42–49, 2015.
Duguay, C. R., Bernier, M., Gauthier, Y., and Kouraev, A.: Remote sensing of lake and river ice, in: Remot
e Sensing of the Cryosphere, edited by: Tedesco, M., John Wiley & Sons, Ltd, Hoboken, New Jersey, USA, 273–306, https://doi.org/10.1002/9781118368909.ch12, 2015.
Gao, S., Zhu, Z., Liu, S., Jin, R., Yang, G., and Tan, L.: Estimating the spatial distribution of soil moisture based on Bayesian maximum entropy method with auxiliary data from remote sensing, Int. J. Appl. Earth Obs., 32, 54–66, 2014.
Hampton, S. E., Galloway, A. W., Powers, S. M., Ozersky, T., Woo, K. H., Batt, R. D., Labou, S. G., O'Reilly, C. M., Sharma, S., Lottig, N. R., Stanley, E. H., North, R. L., Stockwell, J. D., Adrian, R., Weyhenmeyer, G.
A., Arvola, L., Baulch, H. M., Bertani, I., Bowman Jr., L. L., Carey, C. C., Catalan, J., Colom-Montero, W., Domine, L. M., Felip, M., Granados, I., Gries, C., Grossart, H. P., Haberman, J., Haldna, M., Hayden, B., Higgins, S. N., Jolley, J. C., Kahilainen, K. K., Kaup, E., Kehoe, M. J., MacIntyre, S., Mackay, A. W., Mariash, H. L., McKay, R. M., Nixdorf, B., Noges, P., Noges, T., Palmer, M., Pierson, D. C., Post, D. M., Pruett, M. J., Rautio, M., Read, J. S., Roberts, S. L., Rucker, J., Sadro, S., Silow, E. A., Smith, D. E., Sterner, R. W., Swann, G. E., Timofeyev, M. A., Toro, M., Twiss, M. R., Vogt, R. J., Watson, S. B., Whiteford, E. J., and Xenopoulos, M. A.: Ecology under lake ice, Ecol. Lett., 20, 98–111, 2017.
Ionita, M., Badaluta, C. A., Scholz, P., and Chelcea, S.: Vanishing river
ice cover in the lower part of the Danube basin – signs of a changing
climate, Sci. Rep., 8, 7948, https://doi.org/10.1038/s41598-018-26357-w, 2018.
Jenson, B. J., Magnuson, J. J., Card, V. M., Soranno, P. A., and Stewart, K.
M.: Spatial Analysis of Ice Phenology Trends across the Laurentian Great
Lakes Region during a Recent Warming Period, Limnol. Oceanogr., 52, 2013–2026, 2007.
Kang, K. K., Duguay, C. R., Lemmetyinen, J., and Gel, Y.: Estimation of ice
thickness on large northern lakes from AMSR-E brightness temperature
measurements, Remote Sens. Environ., 150, 1–19, 2014.
Khan, M. I., Liu, D., Fu, Q., and Faiz, M. A.: Detecting the persistence of
drying trends under changing climate conditions using four meteorological
drought indices, Meteorol. Appl., 25, 184–194, 2018.
Kirillin, G., Lepparanta, M., Terzhevik, A., Granin, N., Bernhardt, J.,
Engelhardt, C., Efremova, T., Golosov, S., Palshin, N., Sherstyankin, P.,
Zdorovennova, G., and Zdorovennov, R.: Physics of seasonally ice-covered lakes: a review, Aquat. Sci., 74, 659–682, 2012.
Li, R., Chen, N., Zhang, X., Zeng, L., Wang, X., Tang, S., Li, D., and Niyogi, D.: Quantitative analysis of agricultural drought propagation process in the Yangtze River Basin by using cross wavelet analysis and spatial autocorrelation, Agr. Forest Meteorol., 280, 107809, https://doi.org/10.1016/j.agrformet.2019.107809, 2020.
Magnuson, J. J., Robertson, D. M., Benson, B. J., Wynne, R. H., Livingstone,
D. M., Arai, T., Assel, R. A., Barry, R. G., Card, V., and Kuusisto, E.:
Historical Trends in Lake and River Ice Cover in the Northern Hemisphere,
Science, 289, 1743–1746, 2000.
Mitchell, A.: The ESRI Guide to GIS Analysis, VI, 238, ESRI Press, Redlands, California, available at:
http://www.doc88.com/p-3897763072733.html (last access: 1 December 2017), 2005.
Morris, K., Jeffries, M., and Duguay, C.: Model simulation of the effects of climate variability and change on lake ice in central Alaska, USA, Ann. Glaciol., 40, 113–118, https://doi.org/10.3189/172756405781813663, 2005.
Palecki, M. A. and Barry, R. G.: Freeze-up and Break-up of Lakes as an Index
of Temperature Changes during the Transition Seasons: A Case Study for Finland, J. Appl. Meteorol., 25, 893–902, 1986.
Paramasivam, C. R. and Venkatramanan, S.: An Introduction to Various Spatial Analysis Techniques, in: GIS and Geostatistical Techniques for Groundwater Science, edited by: Venkatramanan, S., Prasanna, M. V., and Chung, S. Y., Elsevier, Amsterdam, the Netherlands, 23–30, https://doi.org/10.1016/B978-0-12-815413-7.00003-1, 2019.
Park, H., Yoshikawa, Y., Oshima, K., Kim, Y., Ngo-Duc, T., Kimball, J. S.,
and Yang, D.: Quantification of Warming Climate-Induced Changes in Terrestrial Arctic River Ice Thickness and Phenology, J. Climate, 29, 1733–1754, 2016.
Pavelsky, T. M. and Smith, L. C.: Spatial and temporal patterns in Arctic
river ice breakup observed with MODIS and AVHRR time series, Remote Sens.
Environ., 93, 328–338, 2004.
Prowse, T. D. and Beltaos, S.: Climatic control of river-ice hydrology: a review, Hydrol. Process., 16, 805–822, https://doi.org/10.1002/hyp.369, 2002.
Rokaya, P., Morales-Marin, L., and Lindenschmidt, K.-E.: A physically-based
modelling framework for operational forecasting of river ice breakup, Adv. Water Resour., 139, 103554, https://doi.org/10.1016/j.advwatres.2020.103554, 2020.
Seidou, O., Ouarda, T. B. M. J., Bilodeau, L., Bruneau, B., and St-Hilaire,
A.: Modeling ice growth on Canadian lakes using artificial neural networks,
Water Resour. Res., 42, 2526–2528, 2006.
Sharma, S., Blagrave, K., Magnuson, J. J., O'Reilly, C. M., Oliver, S., Batt, R. D., Magee, M. R., Straile, D., Weyhenmeyer, G. A., Winslow, L., and Woolway, R. I.: Widespread loss of lake ice around the Northern Hemisphere
in a warming world, Nat. Clim. Change, 9, 227–231, 2019.
Shiklomanov, A. I. and Lammers, R. B.: River ice responses to a warming
Arctic – recent evidence from Russian rivers, Environ. Res. Lett., 9, 035008, https://doi.org/10.1088/1748-9326/9/3/035008, 2014.
Shuter, B. J., Finstad, A. G., Helland, I. P., Zweimüller, I., and Hölker, F.: The role of winter phenology in shaping the ecology of
freshwater fish and their sensitivities to climate change, Aquat. Sci., 74, 637–657, 2012.
Šmejkalová, T., Edwards, M. E., and Dash, J.: Arctic lakes show
strong decadal trend in earlier spring ice-out, Scient. Rep., 6, 38449,
https://doi.org/10.1038/srep38449, 2016.
Song, C., Huang, B., Ke, L., and Richards, K. S.: Remote sensing of alpine
lake water environment changes on the Tibetan Plateau and surroundings: A
review, ISPRS J. Photogram. Remote Sens., 92, 26–37, 2014.
Stefan, H. G. and Fang, X.: Simulated climate change effects on ice and snow
covers on lakes in a temperate region, Cold Reg. Sci. Technol., 25, 137–152, 1997.
Wang, M., Lei, X., Liao, W., and Shang, Y.: Analysis of changes in flood
regime using a distributed hydrological model: a case study in the Second
Songhua River basin, China, Int. J. Water Resour. Dev., 34, 386–404, 2018.
Wang, S., Wang, Y., Ran, L., and Su, T.: Climatic and anthropogenic impacts
on runoff changes in the Songhua River basin over the last 56 years (1955–2010), Northeastern China, Catena, 127, 258–269, 2015.
Williams, S. G. and Stefan, H. G.: Modeling of Lake Ice Characteristics in
North America using Climate, Geography, and Lake Bathymetry, J. Cold Reg. Eng., 20, 140–167, 2006.
Yang, Q., Song, K., Hao, X., Chen, S., and Zhu, B.: An Assessment of Snow
Cover Duration Variability Among Three Basins of Songhua River in Northeast
China Using Binary Decision Tree, Chin. Geogr. Sci., 28, 946–956, 2018.
Yang, Q., Song, K. S., Wen, Z. D., Hao, X. H., and Fang, C.: Recent trends
of ice phenology for eight large lakes using MODIS products in Northeast
China, Int. J. Remote Sens., 40, 5388–5410, 2019.
Zaier, I., Shu, C., Ouarda, T. B. M. J., Seidou, O., and Chebana, F.: Estimation of ice thickness on lakes using artificial neural network ensembles, J. Hydrol., 383, 330–340, 2010.
Zhang, F., Li, Z., and Lindenschmidt, K.-E.: Potential of RADARSAT-2 to Improve Ice Thickness Calculations in Remote, Poorly Accessible Areas: A Case Study on the Slave River, Canada, Can. J. Remote Sens., 45, 234–245, 2019.
Zhao, K., Valle, D., Popescu, S., Zhang, X., and Mallick, B.: Hyperspectral
remote sensing of plant biochemistry using Bayesian model averaging with
variable and band selection, Remote Sens. Environ., 132, 102–119, 2013.
Zhao, Y., Song, K., Lv, L., Wen, Z., Du, J., and Shang, Y.: Relationship
changes between CDOM and DOC in the Songhua River affected by highly
polluted tributary, Northeast China, Environ. Sci. Pollut. Res., 25, 25371–25382, 2018.