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Abstract. The regional role and trends of freshwater ice are
critical factors for aquatic ecosystems, climate variability,
and human activities. The ice regime has been scarcely in-
vestigated in the Songhua River Basin of northeast China.
Using daily ice records of 156 hydrological stations across
the region, we examined the spatial variability in the river
ice phenology and river ice thickness from 2010 to 2015
and explored the role of snow depth and air temperature on
the ice thickness. The river ice phenology showed a latitu-
dinal distribution and a changing direction from southeast
to northwest. We identified two spatial clusters based on
Moran’s I spatial autocorrelation, and results showed that the
completely frozen duration with high values clustered in the
Xiao Hinggan Range and that with low values clustered in
the Changbai Mountains at the 95 % confidence level. The
maximum ice thickness over 125 cm was distributed along
the ridge of the Da Hinggan Range and Changbai Moun-
tains, and the maximum ice thickness occurred most often in
February and March. In three subbasins of the Songhua River
Basin, we developed six Bayesian regression models to pre-
dict ice thickness from air temperature and snow depth. The
goodness of the fit (R2) for these regression models ranged
from 0.80 to 0.95, and the root mean square errors ranged
from 0.08 to 0.18 m. Results showed significant and posi-
tive correlations between snow cover and ice thickness when
freshwater was completely frozen. Ice thickness was influ-

enced by the cumulative air temperature of freezing through
the heat loss of ice formation and decay instead of just air
temperature.

1 Introduction

The freeze–thaw process of temperate lakes’ and rivers’ sur-
face ice plays a crucial role in the interactions among the
climate system (Yang et al., 2020), the freshwater ecosystem
(Kwok and Fahnestock, 1996), and the biological environ-
ment (Prowse and Beltaos, 2002). The presence of freshwater
ice is closely associated with social and economic activities,
such as from human-made structures, water transportation,
and winter recreation (Lindenschmidt et al., 2017; Williams
and Stefan, 2006). Ice cover on rivers and lakes exerts large
forces due to thermal expansion and could cause extensive
infrastructure losses to bridges, docks, and shorelines (Shuter
et al., 2012). Ice cover on waterbodies also provides a natu-
ral barrier between the atmosphere and the water. Moreover,
ice cover also blocks the solar radiation which is necessary
for photosynthesis to provide enough dissolved oxygen for
fish, thus posing a negative effect on freshwater ecosystems.
In extreme cases, it can lead to the winter deaths of fish
(Hampton et al., 2017). Generally, the duration of freshwa-
ter ice has shown a declining trend with later freeze-up and
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earlier break-up throughout the Northern Hemisphere. For
example, the freeze-up has been occurring 0.57 d later per
decade and the break-up 0.63 d earlier per decade during the
period of 1846–1995 (Beltaos and Prowse, 2009; Magnuson
et al., 2000; Sharma et al., 2019). Despite the growing impor-
tance of river ice under global warming, very little work has
been undertaken to explain the considerable variation of ice
characteristics in northeast China, where lakes and rivers are
frozen for as long as 5 to 6 months a year. A robust and quan-
titative investigation on the variations of the river ice regime
associated with changes in snow depth on ice and air temper-
ature are fundamental for understanding climate changes at
regional scales.

The earliest ice record in the literature dates back to
the 1840s in the Northern Hemisphere (Magnuson et al.,
2000). Ice development and ice diversity scales have been
regarded as sensitive climate indicators. Ice phenology and
ice thickness have been studied to obtain a deeper under-
standing of ice processes. The optical remote sensing data
at medium and large scales are widely adopted for deriving
ice phenology (Šmejkalová et al., 2016; Song et al., 2014).
In contrast, microwave remote sensing is used to estimate
ice thickness and snow depth over ice (Kang et al., 2014;
Zhang et al., 2019). Wide-ranging satellites make it possi-
ble to link ice characteristic with climate indices, such as air
temperature (Yang et al., 2020) and large-scale teleconnec-
tions (Ionita et al., 2018). Still, their spatial resolutions are
too coarse to detect ice thickness and the snow depth over ice
at local scales accurately. For example, the microwave satel-
lite data of the Advanced Microwave Scanning Radiometer
for the Earth Observing System (AMSR-E) have a spatial
resolution of 25 km, but the largest width of the Nenjiang
River only ranges from 1700 to 1800 m. The spatial resolu-
tion limits the ability of satellite observations to inverse ice
thickness precisely, let alone the snow depth.

In terms of point-based measurements, the most com-
monly used ground observations include the fixed-station ob-
servations, the ice charts, the volunteer monitoring, and the
field measurements (Duguay et al., 2015). Ground observa-
tions depend on the spatial distribution and the representa-
tion, which are limited by the accessibility of surface-based
networks. Various models, such as physically based mod-
els (Park et al., 2016), linear regressions (Palecki and Barry,
1986; Williams and Stefan, 2006), logistic regressions (Yang
et al., 2020), and artificial neural networks (Seidou et al.,
2006; Zaier et al., 2010), have been developed to derive ice
phenology and ice thickness. The physically based models
mainly consider the energy exchange and physical changes
in freshwater ice and require detailed information and data
support, including hydrological, meteorological, hydraulic,
and morphological information (Rokaya et al., 2020). As the
relevant information at local scales is more readily avail-
able, the physically based models are more suitable for small
watershed applications (e.g., within 100 km2). On the other
hand, empirical models are more commonly adopted to pre-

dict changes in the ice regime from relatively limited climate
data available over larger basins (Yang et al., 2020). Ice pa-
rameters, such as ice thickness and freeze-up and break-up
dates, differ notably from point to point on a given river con-
tinuum (Pavelsky and Smith, 2004), and the uneven distribu-
tion of hydrological stations poses an obstacle for spatial in-
vestigation and modeling. Therefore, sufficient historical ice
records are necessary to model the ice regime and validate
the reliability of remote sensing data.

The ice cover of water bodies experiences three stages: the
freeze-up, the ice growth, and the break-up (Duguay et al.,
2015). The ice phenology, the ice thickness, and the ice com-
position change considerably in different stages. Although
air temperature influences the freeze–thaw cycle of river ice
dramatically, the effect of snow cover cannot be ignored.
Generally, the effect of snow depth on the ice forming pro-
cess is more vital than the impact of air temperature (Morris
et al., 2005; Park et al., 2016). In contrast to these studies,
Stefan and Fang (1997) found that the air temperature had a
more substantial effect on the ice thickness formation than
the snow depth. Furthermore, in situ observations at Rus-
sian river mouths, where ice thickness has decreased, did not
show any striking correlation between the ice thickness and
the snow depth (Shiklomanov and Lammers, 2014). Previous
studies have analyzed the relationship in view of spatial dis-
tributions but ignored the frozen status of ice formation pro-
cesses. The relative influence of snow depth and air temper-
ature on the freshwater ice regimes in northeast China calls
for a detailed exploration.

To estimate the interaction between the ice regime and the
climate systems, a comprehensive investigation and robust
analysis of the ice regime are essential in providing relevant
information for projecting future changes in the ice regime.
The work is the first to present continuous river ice records of
three sub-catchments of the Songhua River Basin from 2010
to 2015, and the study compares the spatial and temporal
changes in ice phenology and ice thickness. The influence of
snow cover and air temperature on the ice regime is quanti-
tatively explored in the three sub-catchments in order to con-
sider the frozen status of the river ice.

2 Materials and methods

2.1 Study area

The Songhua River Basin is located in the middle area of
northeast China (Fig. 1), which includes Liaoning Province,
Jilin Province, Heilongjiang Province, and the eastern part of
the Inner Mongolia Autonomous Region. The Songhua River
is the third-longest river in China and has three main tribu-
taries, namely, the Nenjiang River, the main Songhua River,
and the second Songhua River (Khan et al., 2018; Zhao et
al., 2018). The basins of the three tributary rivers include the
Nenjiang River Basin (NJ), the downstream Songhua River
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Figure 1. The geographic location of the Songhua River Basin showing (a) the elevation and (b) the location of 156 hydrological stations.
The Songhua River Basin includes three subbasins: the Nenjiang River Basin (NJ), the downstream Songhua River Basin (SD), and the
upstream Songhua River Basin (SU). Elevation data are from the Shuttle Radar Topography Mission (SRTM) with a spatial resolution of
90 m.

Basin (SD), and the upstream Songhua River Basin (SU)
(Fig. 1). The Nenjiang River is 1370 km in length, and the
corresponding drainage has an area of 2.55× 106 km2. The
main Songhua River has a length of 939 km, and the down-
stream catchment of the Songhua River Basin (SD) cov-
ers an area of 1.86× 106 km2. The second Songhua River
has a length of 958 km, and the upstream catchment of the
Songhua River Basin has an area of 6.19×105 km2 (Chen et
al., 2019; Yang et al., 2018). Temperate and cold temperate
climates characterize the whole Songhua River Basin; winter
is long and cold, and spring is windy and dry. The annual av-
erage air temperature ranges between 3 and 5◦C, while yearly
precipitation ranges from 400 to 800 mm from the southeast
to the northwest region (Wang et al., 2015, 2018).

2.2 Data source

2.2.1 Ice phenology

The ice records were obtained from the annual hydrological
report, including ice phenology, yearly maximum ice thick-
ness of the river center, and the corresponding day of year
(DOY) (Hydrographic bureau of Chinese Ministry of Water
Resources, 2010–2015). There were 50, 35, and 71 hydrolog-
ical stations in the NJ, SU, and SD basins, totalling 156 sta-
tions. Five lake ice phenologies were available, and the def-
initions are listed below (Duguay et al., 2015; Hydrographic
bureau of Chinese Ministry of Water Resources, 2015).

– The freeze-up start is considered the first day when the
floating ice can be observed with temperatures below
0◦C.

– The freeze-up end is the day when a steady ice carapace
can be observed on the river and the area of ice cover
takes up more than 80 % in the view range.

– The break-up start is the first day when ice melting can
be observed with surface ponding.

– The break-up end is the day when the surface is mainly
covered by open water and the area of open water ex-
ceeds 20 %.

– The complete frozen duration regards the ice cover du-
ration when the lake is completely frozen during the
winter period from freeze-up end to break-up start.

2.2.2 Ice thickness

We used ice thickness, snow depth, and air temperature from
120 stations for the period ranging from 2010 to 2015 to
study changes in ice thickness and establish the regression
model described below. There were 37, 28, and 55 stations
located in the NJ, SU, and SD basins, respectively. The hy-
drological report also provided ice thickness, snow depth on
ice, and air temperature on bank every 5 d from November
through April, totalling 37 measurements in one cold sea-
son. The average snow depths were derived from the mean
of three or four measurements around the ice hole for ice
thickness measurements without human disturbances (Hy-
drographic bureau of Chinese Ministry of Water Resources,
2015). To enhance the performance of the regression model,
the cumulative air temperature of freezing was derived from
air temperature from November to March.
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2.3 Data analysis

Our overall method can be summarized in the following
steps. First, we used kriging to spatially interpolate in situ
measurements of ice phenology. Second, we used Moran’s I

spatial autocorrelation to identify spatial clusters based on
the interpolated ice phenology data. Finally, we analyzed the
drivers of spatial and temporal variability of the river ice
thickness for each cluster. To do so, we used Bayesian linear
regression to quantify the links between the river ice thick-
ness and snow depth and air temperature.

2.3.1 Kriging

Kriging has been widely applied to spatially interpolate in
situ measurements of ice phenology (Choinski et al., 2015;
Jenson et al., 2007), such as freeze-up start, freeze-up end,
break-up start, break-up end, and complete frozen duration.
The average values of five ice phenologies were calculated
during the period from 2010 to 2015 and explored accord-
ingly with the Geostatistical Analyst software of ArcGIS.
The interpolation results exhibited their spatial distribution.
We chose the ordinary kriging method and set the varia-
tion function as the spherical model. Moreover, isophanes
connecting locations with the same ice phenology were also
graphed with the interpolation results (Paramasivam and
Venkatramanan, 2019).

2.3.2 Moran’s I

Moran’s I , developed by Patrick Alfred Pierce Moran, aims
to observe the spatial autocorrelation, and the spatial autocor-
relation is characterized by a correlation in a signal among
nearby locations in space (Li et al., 2020). We calculated the
Global Moran’s I and Anselin Local Moran’s I of the com-
plete frozen duration and ice thickness in the ArcGIS soft-
ware environment. The Moran’s I indicates whether the dis-
tribution of regional values is aggregated, discrete, or random
(Mitchell, 2005). A positive Moran’s I indicates a tendency
toward clustering, while a negative Moran’s I indicates a ten-
dency of dispersion (Castro and Singer, 2006). The Anselin
Local Moran’s I statistics identified the clustered spots, and
those which were statistically significant were evaluated by
the combined thresholds of the z score or p values.

2.3.3 Bayesian linear regression

Ice thickness had been modeled by the air temperature and
the snow depth using Bayesian linear regression, which has
been widely adopted in hydrological and environmental anal-
ysis (Gao et al., 2014; Zhao et al., 2013). Bayesian linear
regression views regression coefficients and the disturbance
variance as random variables rather than fixed and unknown
quantities. This assumption leads to a more flexible model
and intuitive inferences (Barber, 2008). The Bayesian linear
regression model was implemented in two models: a prior

probability model considered the probability distribution of
the regression coefficients and the disturbance, and a poste-
rior model predicted the response using the prior probability
mentioned below. Using k fold cross-validation, we divided
the input dataset into five equal subsets or folds and used four
subsets as the training set and the remaining as the testing set.
The performance of the regression model was evaluated with
the determination coefficient (R2) and the root mean square
error (RMSE).

In this paper, we treated ice thickness on the river as the
Y data and snow depth over ice and air temperature as the
X data with a dataset size of 31. The ice thickness was mea-
sured on the river every 5 d from November to March when
the river was completely covered with ice with air temper-
ature below 0◦C. Air temperature and cumulative air tem-
perature of freezing were considered in modeling. Addition-
ally, the Pearson correlation was calculated to analyze the
relationship between the five ice phenology events and ice-
related parameters, including maximum ice thickness, snow
depth on ice, and air temperature on bank.

3 Results and discussion

3.1 Spatial variations of river ice phenology

The river ice phenology was analyzed herein, including
freeze-up start, freeze-up end, break-up start, break-up end,
and complete frozen duration. The hydrological report only
supplied one record of river ice phenology each year for all
the 156 stations. For each hydrological station, the average
values of five river ice phenologies were calculated from the
ice records from 2010 to 2015 and interpolated by the krig-
ing method to analyze the spatial distribution of the river ice
phenology.

3.1.1 Freeze-up end and break-up process

Figure 2 illustrates the average spatial distribution of the
freeze-up start, the freeze-up end, and the isophanes in the
Songhua River Basin of northeast China from 2010 to 2015.
Figure 3 shows the spatial distribution of the break-up start
and the break-up end. The corresponding statistics are listed
in Table 1. Freeze-up start ranged from 28 October to
21 November with a mean value of 7 November, and freeze-
up end ranged from 7 November to 8 December with a mean
value of 22 November. Break-up start ranged from 24 March
to 20 April with a mean value of 9 April, and break-up end
ranged from 31 March to 27 April with a mean value of
15 April. These four parameters showed a latitudinal gradi-
ent: freeze-up start and freeze-up end decreased, while break-
up start and break-up end increased with the increase in lati-
tude except in the NJ basin. The middle part of the NJ basin
had the highest freeze-up start and freeze-up end and de-
creased to the southern and northern parts. As the latitude
decreased, the air temperature tended to increase, leading to
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Table 1. Summary of statistics of ice phenology interpolated by the
kriging method from 2010 to 2015. The ice phenology indicators in-
cluded freeze-up start (FUS), freeze-up end, break-up start (BUS),
break-up end (BUE), and complete frozen duration (CFD). NJ, SD,
and SU represent the Nenjiang Basin, the downstream Songhua
River Basin, and the upstream Songhua River Basin. DOY denotes
day of year. Std. dev. denotes standard deviation.

Basins Statistics FUS FUE BUS BUE CFD
(DOY) (DOY) (DOY) (DOY) (day)

NJ

Maximum 319.14 334.98 110.54 117.61 163.00
Mean 307.02 324.58 98.65 106.64 139.39
Minimum 301.41 311.30 84.53 90.40 119.11
Std. dev. 3.91 5.69 8.16 6.80 13.22

SD

Maximum 321.08 334.36 110.01 102.84 154.06
Mean 313.74 326.70 102.55 97.15 140.86
Minimum 305.64 316.80 93.22 92.37 125.32
Std. dev. 2.83 3.13 3.92 2.12 5.69

SU

Maximum 325.92 342.09 98.25 114.37 133.62
Mean 320.39 334.35 91.93 106.43 122.61
Minimum 313.79 327.68 83.46 95.69 110.74
Std. dev. 2.34 3.09 3.21 4.24 4.85

Total

Maximum 325.92 342.09 110.54 117.61 163.00
Mean 311.16 326.58 99.25 105.38 137.86
Minimum 301.41 311.30 83.46 90.40 110.74
Std. dev. 5.74 5.54 7.17 6.34 11.68

later freeze-up and earlier break-up times with shorter ice-
covered durations, and vice versa.

3.1.2 Complete frozen duration

Figure 4a illustrates the average spatial distribution of com-
plete frozen duration interpolated by kriging and the iso-
phanes in the Songhua River Basin from 2010 to 2015. The
complete frozen duration ranged from 110.74 to 163.00 d
with a mean value of 137.86 d which increased with lati-
tude. Interestingly, the isophanes of complete frozen dura-
tion had different directionality, increasing from the south-
east to northwest, which could also be found in the other
parameters. Both freeze-up start and freeze-up end corre-
lated negatively with the latitude with coefficients of −0.66
and −0.53, respectively (n= 156, p < 0.001). However, the
break-up start, the break-up end, and the complete frozen
duration were all positively correlated with latitude with
coefficients of 0.48, 0.57, and 0.55, respectively (n= 156,
p < 0.001). We built the linear regression equations between
the river ice phenology and latitude. As the latitude increased
by 1◦C, freeze-up start and freeze-up end occurred 2.56 and
2.32 d early, and the break-up start and break-up end arrived
2.36 and 2.37 d late, causing an increase of 4.68 d for the
complete frozen duration. This could be explained by the de-
creasing solar radiation with latitude influencing the ice thaw
and melting processes directly.

The Global Moran’s I statistics of the complete frozen du-
ration were 1.36 with a z score and p value of 2.41 and 0.02,
which indicates that the complete frozen duration exhibited

a clustered pattern with a confidence level of 95 % for the
whole basin. Then Anselin Local Moran’s I was calculated
to identify statistically significant spatial outliers for each
hydrological location in Fig. 4c. Results showed that 14 of
156 hydrological stations showed a statistically significant
cluster of high values, 17 of 156 showed a statistically sig-
nificant cluster of low values, and 125 of 156 showed no
significant cluster at the 95 % confidence level. Both Global
and Local Moran’s I results indicated that the high values of
complete frozen duration clustered along the Xiao Hinggan
Range and that the low values of complete frozen duration
grouped around the Changbai Mountains.

3.2 Variations of ice thickness

We explored the spatial pattern of ice thickness using the
yearly maximum ice thickness gathered from 156 stations
and examined the seasonal changes in ice thickness, snow
depth on ice, and air temperature based on the time series
from November to April.

3.2.1 Spatial patterns of ice thickness

Figure 5 illustrates the spatial distribution of the yearly max-
imum ice thickness of the river center and the corresponding
DOY. Table 2 summarizes the statistical results of maximum
ice thickness and the DOY. Maximum ice thickness ranged
from 12 cm to 146 m with an average value of 78 cm. The
maximum ice thickness between 76 and 100 cm accounted
for the most significant percentage of 43.33 %, followed by
31.67 % for maximum ice thickness between 50 and 75 cm.
As shown in Table 2, five stations had a more exceptional
maximum ice thickness than 125 cm. The DOY of maxi-
mum ice thickness had an average value of 21 February, and
maximum ice thickness mainly occurred 59 and 40 times in
February and March, respectively. Four of the five highest
maximum ice thicknesses greater than 125 cm happened in
March, which is consistent with the interannual changes in
ice development shown in Fig. 6. The results suggest that the
river ice was always the thickest and the steadiest in February
or March, which has important implications for human ac-
tivities, such as ice fishing and entertainment. The ice thick-
ness did not show the same latitudinal distribution as ice phe-
nology, which suggests that more climate factors should be
taken into consideration, such as snow depth and wind speed.

3.2.2 Seasonal changes in ice thickness

Figure 6 displays the seasonal changes in ice development
using ice thickness, average snow depth on ice, and air
temperature, which was collected on the bank every 5 d
from November to April during the period between 2010
and 2015. The variations of ice characteristics differed sig-
nificantly due to time and location. Among the three basins,
the NJ basin had the lowest air temperature of −29.15±
9.99◦C, followed by −25.61± 9.02◦C in the SD basin and
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Figure 2. The average spatial distribution of freeze-up start (FUS) (a) and freeze-up end (FUE) (b) in the Songhua River Basin of northeast
China from 2010 to 2015. The number labels indicate the day of year (DOY) of the isophenes.

Figure 3. The average spatial distribution of break-up start (BUS) (a) and break-up end (BUE) (b) in the Songhua River Basin of northeast
China from 2010 to 2015. The number labels indicate the day of year (DOY) of the isophenes.

−22.17±7.33◦C in the SU basin. The SD basin had the high-
est snow depth of 9.18± 3.39 cm on the average level, fol-
lowed by 8.35± 4.60 cm in the SU basin and 8.23± 3.92 cm
in the NJ basin. The changes in daily ice thickness and snow
depth had a similar overall trend, while air temperature fol-
lowed the opposite pattern. Both ice thickness and snow

depth increased from November, reached a peak in March,
and then dropped at the beginning of April. The air temper-
ature showed a distinct trend and reached the lowest in the
middle of February, which is earlier than the peaks of maxi-
mum ice thickness and snow depth. In Fig. 6, the day when
ice thickness reached the maximum value was 50, 54, and
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Figure 4. The spatial distribution of complete frozen duration (a) interpolated using the kriging method and Anselin Local Moran’s I (b) in
the Songhua River Basin of northeast China.

Figure 5. The spatial distribution of yearly maximum ice thickness (MIT) of the river center (a) and the corresponding date (b).

60 d later than the day when air temperature reached the low-
est value in the NJ, SU, and SD basin, respectively.

3.3 The relationship between ice regime and climate
factors

3.3.1 Correlation analysis

Figure 7 displays the correlation matrix between lake ice
phenology events and three ground measurements from
120 hydrological stations. The lake ice phenology events in-
cluded the freeze-up start, the freeze-up end, the break-up
start, the break-up end, and the complete frozen duration.
The three ground measurements covered the yearly mean
values of snow depth, the air temperature on bank, and the
maximum ice thickness. The color intensity and sizes of the
ellipses are proportional to the correlation coefficients. The
maximum ice thickness had a higher correlation with four of
the five indices than snow depth and air temperature on bank
except with freeze-up start. The maximum ice thickness and

break-up end had the highest correlation of 0.63 (n= 120,
p < 0.01). During the freeze-up process, two freeze-up dates
had a negative association with the maximum ice thickness
and snow depth. During the break-up process, two break-
up dates had positive correlations with maximum ice thick-
ness and snow depth. The complete frozen duration showed a
positive correlation with the maximum ice thickness and the
snow depth and a negative correlation with air temperature.
Regarding the annual changes, no significant correlation was
found between snow depth and five ice phenology events in
Fig. 7.

Figure 8 shows the bivariate scatter plots between the
yearly maximum ice thickness and the ice phenology along
with regression equations attached. The break-up process
had a negative correlation with the maximum ice thickness,
while the freeze-up had a positive correlation. Moreover, the
break-up process had a higher correlation with the maximum
ice thickness, and the break-up end had the highest corre-
lation coefficients with the maximum ice thickness of 0.65
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Figure 6. Average seasonal changes in ice thickness (IT), aver-
age snow depth (ASD), and air temperature on bank (BAT) from
November to April for the period 2010–2015.

Table 2. The frequency of yearly maximum ice thickness from
November to April. The first column represents different months in
the cold season, and the other columns represent yearly maximum
ice thickness (MIT) with the unit in centimeters.

MIT/month < 50 51–75 76–100 101–125 126–150

December 4 1 0 1 0
January 4 4 1 0 0
February 4 25 26 3 1
March 1 3 24 8 4
April 0 2 1 0 0
After April 0 3 0 0 0

Total 13 38 52 12 5

Figure 7. Correlation matrix between maximum ice thick-
ness (MIT), snow depth (SD), and air temperature on bank (BAT)
and lake ice phenology events with data from 120 stations. The as-
terisks indicate the significance level of the correlation coefficients:
∗∗ means significant at 99 % level (p < 0.01), and ∗ means signifi-
cant at 95 % level (p < 0.05).

Figure 8. The bivariate scatter plots with linear regression lines be-
tween yearly maximum ice thickness (MIT) and ice phenology with
a dataset size of 120; r and p denote the correlation coefficient and
p value of the regression line. The ice phenology events include
freeze-up start (FUS), freeze-up end (FUE), break-up start (BUS),
break-up end (BUE), and complete frozen duration (CFD).
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Table 3. Correlation coefficients between maximum ice thick-
ness (MIT) and average snow depth (ASD) and air temperature on
bank (BAT) with a dataset size of 120 stations. The asterisks indi-
cate the significant level of correlation coefficients: ∗∗ means sig-
nificant at 99 % level (p < 0.01), and ∗ means significant at 95 %
level (p < 0.05).

Correlation November December January February March
coefficients

MIT vs. ASD 0.17 0.66∗ 0.53∗ 0.59∗ 0.75∗∗

MIT vs. BAT −0.90∗∗ −0.80∗∗ −0.55∗ −0.30 −0.45

(p < 0.01). The complete frozen duration also had a positive
correlation with a maximum ice thickness of 0.57 (p < 0.01),
which means that a thicker ice cover in winter can lead to a
delay in the melting time in spring. The break-up does not
only depend on the spring climate conditions, but it is also
influenced by the ice thickness during the preceding winter.
A thicker ice cover stores more heat in winter, taking a longer
time to melt in spring (Yang et al., 2019). The limited perfor-
mance of the regression model can be attributed to the dif-
ficulties in determining river ice phenology. Although a uni-
form specification for ice regime observations was required,
the inhomogeneities among different stations could not be
ignored.

To further explore the role of snow cover, the monthly
correlation coefficients between the ice thickness, the snow
depth, and the air temperature on bank were calculated and
are listed in Table 3. The correlation coefficients between the
ice thickness and the snow depth increased from November
to March and reached a peak of 0.75 in March when ice was
the thickest. This indicated an increasingly important role of
the snow depth on the ice thickness as the ice accumulated.
The higher correlation coefficients between the ice thickness
and the air temperature on bank in November and December
revealed that the air temperature played a more critical role
in the freeze-up process. The positive correlation coefficient
between snow depth and ice thickness (Table 3) showed two
opposite effects of the snow depth during ice development.
During the ice-growth process, snow depth protects the ice
from cold air and slows down the growth rate of ice thick-
ness. During the ice-decay process, the lake bottom ice stops
growing, the surface snow or ice melts, and slush forms ac-
cordingly. The melting speed depends on the ability to absorb
heat, and the slush can absorb more heat, which would pro-
mote melting (Kirillin et al., 2012). The slush often exists in
multiple freeze–thaw cycles of river ice before it completely
disappears. Therefore, when studying the role of snow cover,
the status of river ice can not be neglected.

3.3.2 Regression modeling

We carried out a cross-validation for Bayesian linear regres-
sion using the k fold method, and the K value was set as 5.
For each iteration, a different fold was used for testing, and

Table 4. The cross-validation of Bayesian linear regression using
the k fold method, and the K value was set as 5. Ice thickness was
treated as dependent variables, and air temperature and snow depth
on ice were treated as independent variables. Air temperature and
cumulative air temperature of freezing were considered in the model
building. The R2 values of the best linear regression avoiding over-
fitting are marked in bold.

Cumulative air
Air temperature temperature

Basin Training Testing Training Testing

NJ

0.80 0.99 0.84 0.99
0.89 0.80 0.90 0.86
0.84 0.92 0.89 0.82
0.90 0.56 0.91 0.61
0.85 0.91 0.89 0.89

SU

0.83 0.92 0.95 0.98
0.83 0.65 0.96 0.83
0.81 0.94 0.95 0.99
0.84 0.79 0.95 0.93
0.82 0.82 0.94 0.98

SD

0.80 0.96 0.82 0.98
0.84 0.16 0.86 0.25
0.81 0.84 0.82 0.87
0.79 0.97 0.79 0.96
0.81 0.80 0.82 0.83

the remaining four subsets were applied for training. The
training and testing were repeated for five iterations. Table 4
lists the R2 of the training and testing process for each it-
eration. The best Bayesian linear regression was determined
when the bias between testing and training regressions was
the smallest. The corresponding R2 of the best regression is
shown in bold in Table 4.

Figure 9 illustrates the scatter plot between the measured
and the predicted ice thickness with Bayesian linear regres-
sion in three subbasins in northeast China. From Fig. 9, the
R2 of Bayesian linear regression varies from 0.81 to 0.95,
and RMSE varies from 0.08 to 0.18 m. The model works best
in the SU basin, followed by the NJ and the SD basins. Fig-
ure 9 indicates that the snow depth outweighs the air temper-
ature in terms of the effect on ice thickness, which is consis-
tent with previous studies (Magnuson et al., 2000; Sharma et
al., 2019). Moreover, replacing air temperature on bank with
cumulative air temperature of freezing enhanced the model
performance in all three basins, revealing a more important
role of cumulative air temperature of freezing than air tem-
perature. For the Bayesian linear regressions, we used the
field measurements that spanned from November to March,
thus focusing only on the coldest part of the year. During
this period, the river surface is completely frozen, and the air
temperature that falls below 0◦C promotes the ice growth.
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Figure 9. Scatter plots between measured and predicted ice thicknesses using Bayesian linear regression in three subbasins (NJ: Nenjiang
Basin; SU: upstream Songhua River Basin; and SD: downstream Songhua River Basin) in northeast China. The model treated ice thickness as
the independent variable and snow depth and air temperature as dependent variables. Two types of air temperature were used: BAT represents
air temperature on bank, and ATC represents the cumulative air temperature of freezing.

April is the month when the rise in air temperatures above
0◦C enables the river ice to melt.

The correlation between air temperature and ice regime in
Fig. 7 was not as significant as was found in some previous
studies (Park et al., 2016; Stefan and Fang, 1997). One of the
reasons is that previous studies often averaged the air tem-
peratures over a longer period and at a regional scale, there-
fore losing the signal on seasonality at a local scale (Pavel-
sky and Smith, 2004; Yang et al., 2020). To circumvent this
shortcoming, we applied the regression analysis on seasonal
time series of ice thickness and air temperature. Our work
considered this and established the regression using the sea-
sonal time series of ice thickness and air temperature. When

building the Bayesian regression equation, the increasing R2

showed that the cumulative air temperature of freezing be-
haved better than the air temperature on bank, which suggests
that heat exchanges between river surface and atmosphere
dominate the ice process. Heat loss is mainly made up of
sensible and latent heat exchange (Beltaos and Prowse, 2009;
Robertson et al., 1992) , which is proportional to the cumu-
lative air temperature of freezing during the cooling process.
During the complete frozen duration, the snow depth, along
with the wind speed, began to influence the heat exchange
and ice thickening. Air temperature exerted a lesser vital ef-
fect on spring break-up, which is more dependent on the ice
thickness and the snow depth. In summary, snow depth dom-
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inated the ice process when the river was completely frozen.
At the same time, the cumulative air temperature was dom-
inant during the transition process between open water and
completely frozen conditions.

4 Conclusions

Five river ice phenology proxies, including freeze-up end,
freeze-up start, break-up end, break-up start, and complete
frozen duration in the Songhua River Basin of northeast
China, have been investigated using in situ measurements
for the period from 2010 to 2015. According to the spatial
distribution interpolated by the ordinary kriging method, the
river ice phenology indicators followed the latitudinal gradi-
ent and a changing direction from southeast to northwest. As
the latitude increased by 1◦C, the freeze-up start and freeze-
up end happened 2.56 and 2.32 d earlier, and the break-up
start and break-up end arrived 2.36 and 2.37 d later, resulting
in a 4.68 d increase in complete frozen duration.

The spatial autocorrelation of the completely frozen dura-
tion and maximum ice thickness has been explored by Global
and Anselin Local Moran’s I . The Global Moran’s I with a
z score of 1.36 showed that the complete frozen duration ex-
hibited a clustered pattern at the 95 % confidence level. In
contrast, the maximum ice thickness did not show a signifi-
cantly clustered pattern. The Anselin Local Moran’s I results
indicated that the high values of complete frozen duration
clustered along the Xiao Hinggan Range and that the low val-
ues of the complete frozen duration clustered in the Chang-
bai Mountains. The maximum ice thickness over 125 cm was
distributed along the ridge of the Da Hinggan Range and
Changbai Mountains, and maximum ice thickness occurred
most often in February and March during the cold season.

Based on the analysis of monthly time series measure-
ments, snow cover played an increasingly important role as
the river became completely frozen. The temporal variability
in air temperature was more correlated with the variability in
ice phenology, while snow depth was more correlated with
ice thickness. Six Bayesian regression models were estab-
lished for the ice thickness, air temperature, and snow depth
in three subbasins of the Songhua River with respect to air
temperature and cumulative air temperature. Results showed
that snow cover correlated with ice thickness significantly
and positively during the periods when the freshwater was
completely frozen. In line with the performance metrics (R2,
root mean square error), the cumulative air temperature of
freezing was shown to provide a better predictor than the
air temperature in simulating the ice thickness changes com-
pared to the air temperature.

This study provides a quantitative investigation of the ice
regime in the Songhua River Basin of northeast China and
established potential regression models for projecting future
changes in the ice regime. Remote sensing data could pro-
vide long-term and wide-ranging information on ice thick-

ness and ice phenology from 1980 onwards. Data analyzed in
this study present a valuable reference for future studies that
rely on remote sensing observations of the river ice thickness
in this area. Therefore, we plan to use satellite data to enlarge
our study scope in our future work.
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