Articles | Volume 14, issue 8
The Cryosphere, 14, 2715–2727, 2020
The Cryosphere, 14, 2715–2727, 2020

Brief communication 27 Aug 2020

Brief communication | 27 Aug 2020

Brief communication: Evaluating Antarctic precipitation in ERA5 and CMIP6 against CloudSat observations

Marie-Laure Roussel et al.

Related authors

Ten years of temperature and wind observation on a 45-m tower at Dome C, East Antarctic plateau
Christophe Genthon, Dana E. Veron, Etienne Vignon, Delphine Six, Jean-Louis Dufresne, Jean-Baptiste Madeleine, Emmanuelle Sultan, and François Forget
Earth Syst. Sci. Data Discuss.,,, 2021
Revised manuscript under review for ESSD
Short summary
Evaluation of coastal Antarctic precipitation in MAR3.9 regional and LMDz6 global atmospheric model with ground-based radar observations
Florentin Lemonnier, Alizée Chemison, Hubert Gallée, Gerhard Krinner, Jean-Baptiste Madeleine, Chantal Claud, and Christophe Genthon
The Cryosphere Discuss.,,, 2020
Manuscript not accepted for further review
Short summary
Evaluation of CloudSat snowfall rate profiles by a comparison with in situ micro-rain radar observations in East Antarctica
Florentin Lemonnier, Jean-Baptiste Madeleine, Chantal Claud, Christophe Genthon, Claudio Durán-Alarcón, Cyril Palerme, Alexis Berne, Niels Souverijns, Nicole van Lipzig, Irina V. Gorodetskaya, Tristan L'Ecuyer, and Norman Wood
The Cryosphere, 13, 943–954,,, 2019
Short summary
The vertical structure of precipitation at two stations in East Antarctica derived from micro rain radars
Claudio Durán-Alarcón, Brice Boudevillain, Christophe Genthon, Jacopo Grazioli, Niels Souverijns, Nicole P. M. van Lipzig, Irina V. Gorodetskaya, and Alexis Berne
The Cryosphere, 13, 247–264,,, 2019
Short summary
Assessing bias corrections of oceanic surface conditions for atmospheric models
Julien Beaumet, Gerhard Krinner, Michel Déqué, Rein Haarsma, and Laurent Li
Geosci. Model Dev., 12, 321–342,,, 2019
Short summary

Related subject area

Discipline: Snow | Subject: Antarctic
Spectral characterization, radiative forcing and pigment content of coastal Antarctic snow algae: approaches to spectrally discriminate red and green communities and their impact on snowmelt
Alia L. Khan, Heidi M. Dierssen, Ted A. Scambos, Juan Höfer, and Raul R. Cordero
The Cryosphere, 15, 133–148,,, 2021
Short summary
Distinguishing the impacts of ozone and ozone-depleting substances on the recent increase in Antarctic surface mass balance
Rei Chemke, Michael Previdi, Mark R. England, and Lorenzo M. Polvani
The Cryosphere, 14, 4135–4144,,, 2020
Short summary
Representative surface snow density on the East Antarctic Plateau
Alexander H. Weinhart, Johannes Freitag, Maria Hörhold, Sepp Kipfstuhl, and Olaf Eisen
The Cryosphere, 14, 3663–3685,,, 2020
Short summary
Drifting-snow statistics from multiple-year autonomous measurements in Adélie Land, East Antarctica
Charles Amory
The Cryosphere, 14, 1713–1725,,, 2020
Short summary
Impact of exhaust emissions on chemical snowpack composition at Concordia Station, Antarctica
Detlev Helmig, Daniel Liptzin, Jacques Hueber, and Joel Savarino
The Cryosphere, 14, 199–209,,, 2020
Short summary

Cited articles

Boening, C., Lebsock, M., Landerer, F., and Stephens, G.: Snowfall-driven mass change on the East Antarctic ice sheet, Geophys. Res. Lett., 39, L21501,, 2012. a
Cinquini, L., Crichton, D., Mattmann, C., Harney, J., Shipman, G., Wang, F., Ananthakrishnan, R., Miller, N., Denvil, S., Morgan, M., Pobre, Z., Bell, G. M., Doutriaux, C., Drach, R., Williams, D., Kershaw, P., Pascoe, S., Gonzalez, E., Fiore, S., and Schweitzer, R.: The Earth System Grid Federation: An open infrastructure for access to distributed geospatial data, Future Generation Computer Systems, 36, 400–417, doi10.1016/j.future.2013.07.002, 2014. a
Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, dataset available at (9 December 2019), 2017. a, b
Di Luca, A., de Elía, R., and Laprise, R.: Potential for added value in precipitation simulated by high-resolution nested regional climate models and observations, Clim. Dynam., 38, 1229–1247, 2012. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958,, 2016. a, b
Short summary
The Antarctic precipitation is evaluated against space radar data in the most recent climate model intercomparison CMIP6 and reanalysis ERA5. The seasonal cycle is mostly well reproduced, but relative errors are higher in areas of complex topography, particularly in the higher-resolution models. At continental and regional scales all results are biased high, with no significant progress in the more recent models. Predicting Antarctic contribution to sea level still requires model improvements.