Articles | Volume 14, issue 8
https://doi.org/10.5194/tc-14-2715-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-2715-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Brief communication: Evaluating Antarctic precipitation in ERA5 and CMIP6 against CloudSat observations
Marie-Laure Roussel
CORRESPONDING AUTHOR
Laboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace, Sorbonne Université/CNRS/École Normale Supérieure – PSL Research University/École Polytechnique – IPP, Paris, France
Florentin Lemonnier
Laboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace, Sorbonne Université/CNRS/École Normale Supérieure – PSL Research University/École Polytechnique – IPP, Paris, France
Christophe Genthon
Laboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace, Sorbonne Université/CNRS/École Normale Supérieure – PSL Research University/École Polytechnique – IPP, Paris, France
Gerhard Krinner
Institut des Géosciences de l'Environnement, CNRS, Univ. Grenoble Alpes, 38000 Grenoble, France
Related authors
No articles found.
Adrian Hamel, Massimo del Guasta, Carl Schmitt, Christophe Genthon, Emma Järvinen, and Martin Schnaiter
EGUsphere, https://doi.org/10.5194/egusphere-2025-3598, https://doi.org/10.5194/egusphere-2025-3598, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We measured the size and shape of small ice particles in the dry and cold atmosphere of inland Antarctica. We observed that particles originating near the surface are smaller than those falling from higher altitudes. Inland Antarctic particles of frozen fog occur at lower concentrations and are less complex than those observed in an urban, polluted environment. These findings help to improve Antarctic climate models and to accurately interpret satellite observations of the polar atmosphere.
Étienne Vignon, Nicolas Chiabrando, Cécile Agosta, Charles Amory, Valentin Wiener, Justine Charrel, Thomas Dubos, and Christophe Genthon
EGUsphere, https://doi.org/10.5194/egusphere-2025-2871, https://doi.org/10.5194/egusphere-2025-2871, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The erosion of surface snow by the wind is an important process for the Antarctic surface mass balance. This study presents the first development of a parameterisation of blowing snow for a global climate model. Simulations avec evaluated using measurements in Antarctica. Results show an overall decrease of the snow accumulation in the escarpment region of the ice sheet due to snow erosion and an increase at the coast due to blowing snow deposition and increase in precipitation.
Valentin Wiener, Étienne Vignon, Thomas Caton Harrison, Christophe Genthon, Felipe Toledo, Guylaine Canut-Rocafort, Yann Meurdesoif, and Alexis Berne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2046, https://doi.org/10.5194/egusphere-2025-2046, 2025
Short summary
Short summary
Katabatic winds are a key feature of the climate of Antarctica, but substantial biases remain in their representation in atmospheric models. This study investigates a katabatic wind event in the ICOLMDZ model using in-situ observations. The framework allows to disentangle which part of the bias is due to horizontal resolution, to parameter calibration and to structural deficiencies in the model. We underline in particular the need to refine the physics of the model snow cover.
Inès Ollivier, Thomas Lauwers, Niels Dutrievoz, Cécile Agosta, Mathieu Casado, Elise Fourré, Christophe Genthon, Olivier Jossoud, Frédéric Prié, Hans Christian Steen-Larsen, and Amaëlle Landais
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-35, https://doi.org/10.5194/essd-2025-35, 2025
Preprint under review for ESSD
Short summary
Short summary
We present a novel 2.5-month record of the atmospheric water vapour isotopic composition during the austral summer 2023–2024 at Concordia Station on the Antarctic Plateau. We show that two independent laser spectrometers accurately record the diurnal variability of the atmospheric water vapour 𝛿18O, 𝛿D, and d-excess. We compare the measurements against outputs of the isotope-enabled general circulation model LMDZ6-iso to show how the data can be used to evaluate such models.
Inès Ollivier, Hans Christian Steen-Larsen, Barbara Stenni, Laurent Arnaud, Mathieu Casado, Alexandre Cauquoin, Giuliano Dreossi, Christophe Genthon, Bénédicte Minster, Ghislain Picard, Martin Werner, and Amaëlle Landais
The Cryosphere, 19, 173–200, https://doi.org/10.5194/tc-19-173-2025, https://doi.org/10.5194/tc-19-173-2025, 2025
Short summary
Short summary
The role of post-depositional processes taking place at the ice sheet's surface on the water stable isotope signal measured in polar ice cores is not fully understood. Using field observations and modelling results, we show that the original precipitation isotopic signal at Dome C, East Antarctica, is modified by post-depositional processes and provide the first quantitative estimation of their mean impact on the isotopic signal observed in the snow.
Valentin Wiener, Marie-Laure Roussel, Christophe Genthon, Étienne Vignon, Jacopo Grazioli, and Alexis Berne
Earth Syst. Sci. Data, 16, 821–836, https://doi.org/10.5194/essd-16-821-2024, https://doi.org/10.5194/essd-16-821-2024, 2024
Short summary
Short summary
This paper presents 7 years of data from a precipitation radar deployed at the Dumont d'Urville station in East Antarctica. The main characteristics of the dataset are outlined in a short statistical study. Interannual and seasonal variability are also investigated. Then, we extensively describe the processing method to retrieve snowfall profiles from the radar data. Lastly, a brief comparison is made with two climate models as an application example of the dataset.
Étienne Vignon, Lea Raillard, Christophe Genthon, Massimo Del Guasta, Andrew J. Heymsfield, Jean-Baptiste Madeleine, and Alexis Berne
Atmos. Chem. Phys., 22, 12857–12872, https://doi.org/10.5194/acp-22-12857-2022, https://doi.org/10.5194/acp-22-12857-2022, 2022
Short summary
Short summary
The near-surface atmosphere over the Antarctic Plateau is cold and pristine and resembles to a certain extent the high troposphere where cirrus clouds form. In this study, we use innovative humidity measurements at Concordia Station to study the formation of ice fogs at temperatures <−40°C. We provide observational evidence that ice fogs can form through the homogeneous freezing of solution aerosols, a common nucleation pathway for cirrus clouds.
Christophe Genthon, Dana E. Veron, Etienne Vignon, Jean-Baptiste Madeleine, and Luc Piard
Earth Syst. Sci. Data, 14, 1571–1580, https://doi.org/10.5194/essd-14-1571-2022, https://doi.org/10.5194/essd-14-1571-2022, 2022
Short summary
Short summary
The surface atmosphere of the high Antarctic Plateau is very cold and clean. Such conditions favor water vapor supersaturation. A 3-year quasi-continuous series of atmospheric moisture in a ~40 m atmospheric layer at Dome C is reported that documents time variability, vertical profiles and occurrences of supersaturation. Supersaturation with respect to ice is frequently observed throughout the column, with relative humidities occasionally reaching values near liquid water saturation.
Christophe Genthon, Dana Veron, Etienne Vignon, Delphine Six, Jean-Louis Dufresne, Jean-Baptiste Madeleine, Emmanuelle Sultan, and François Forget
Earth Syst. Sci. Data, 13, 5731–5746, https://doi.org/10.5194/essd-13-5731-2021, https://doi.org/10.5194/essd-13-5731-2021, 2021
Short summary
Short summary
A 10-year dataset of observation in the atmospheric boundary layer at Dome C on the high Antarctic plateau is presented. This is obtained with sensors at six levels along a tower higher than 40 m. The temperature inversion can reach more than 25 °C along the tower in winter, while full mixing by convection can occur in summer. Different amplitudes of variability for wind and temperature at the different levels reflect different signatures of solar vs. synoptic forcing of the boundary layer.
Florentin Lemonnier, Alizée Chemison, Hubert Gallée, Gerhard Krinner, Jean-Baptiste Madeleine, Chantal Claud, and Christophe Genthon
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-167, https://doi.org/10.5194/tc-2020-167, 2020
Manuscript not accepted for further review
Short summary
Short summary
This study presents the first evaluation from snowfall observations in Antarctica of the general circulation model LMDz (global), the atmospheric component of the coupled IPSL Climate Model that is part of CMIP6 (IPCC). We also present an evaluation of the new version of the MAR model (regional), considered as a reference in terms of polar climate modelling. Both models show satisfying results for the modelling of precipitation in Antarctica.
Cited articles
Boening, C., Lebsock, M., Landerer, F., and Stephens, G.: Snowfall-driven mass
change on the East Antarctic ice sheet, Geophys. Res. Lett., 39, L21501, https://doi.org/10.1029/2012GL053316,
2012. a
Cinquini, L., Crichton, D., Mattmann, C., Harney, J.,
Shipman, G., Wang, F., Ananthakrishnan, R., Miller, N., Denvil, S.,
Morgan, M., Pobre, Z., Bell, G. M., Doutriaux, C., Drach, R.,
Williams, D., Kershaw, P., Pascoe, S., Gonzalez, E., Fiore, S., and Schweitzer, R.: The Earth System Grid Federation: An open infrastructure for access to distributed
geospatial data, Future Generation Computer Systems,
36,
400–417,
doi10.1016/j.future.2013.07.002, 2014. a
Di Luca, A., de Elía, R., and Laprise, R.: Potential for added value in
precipitation simulated by high-resolution nested regional climate models and
observations, Clim. Dynam., 38, 1229–1247, 2012. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a, b
Favier, V., Krinner, G., Amory, C., Gallée, H., Beaumet, J., and Agosta,
C.: Antarctica-regional climate and surface mass budget, Current Climate
Change Reports, 3, 303–315, 2017. a
Frieler, K., Clark, P. U., He, F., Buizert, C., Reese, R., Ligtenberg, S. R.,
Van Den Broeke, M. R., Winkelmann, R., and Levermann, A.: Consistent evidence
of increasing Antarctic accumulation with warming, Nat. Clim. Change, 5, 348–352, https://doi.org/10.1038/nclimate2574,
2015. a, b
Genthon, C. and Krinner, G.: Convergence and Disposal of Energy and Moisture on
the Antarctic Polar Cap from ECMWF Reanalyses and Forecasts, J.
Climate, 11, 1703–1716,
https://doi.org/10.1175/1520-0442(1998)011<1703:CADOEA>2.0.CO;2, 1998. a
Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and von Storch, J.-S.: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, 2016. a
Hayhoe, K., Edmonds, J., Kopp, R., LeGrande, A., Sanderson, B., Wehner, M., and
Wuebbles, D.: Climate models, scenarios, and projections, in: ClimateScience
Special Report: A Sustained Assessment Activity of the U.S. Global Change
Research Program, edited by: Wuebbles, D., Fahey, D., Hibbard, K., Dokken,
D. J., Stewart, B., and Maycock, T., U.S. Global Change
Research Program, Washington, DC, USA, 589, 186–227,
available at: https://digitalcommons.unl.edu/usdeptcommercepub/589 (last access: 9 December 2019), 2017. a
Lemonnier, F., Madeleine, J.-B., Claud, C., Genthon, C., Durán-Alarcón, C., Palerme, C., Berne, A., Souverijns, N., van Lipzig, N., Gorodetskaya, I. V., L'Ecuyer, T., and Wood, N.: Evaluation of CloudSat snowfall rate profiles by a comparison with in situ micro-rain radar observations in East Antarctica, The Cryosphere, 13, 943–954, https://doi.org/10.5194/tc-13-943-2019, 2019a. a
Lemonnier, F., Madeleine, J.-B., Claud, C., Palerme, C., Genthon, C., L'Ecuyer, T., and Wood, N. B.: CloudSat-inferred vertical structure of precipitation over the Antarctic continent, PANGAEA, https://doi.org/10.1594/PANGAEA.909434, 2019b. a
Lemonnier, F., Madeleine, J.-B., Claud, C., Palerme, C., Genthon, C., L'Ecuyer,
T., and Wood, N. B.: CloudSat-inferred vertical structure of precipitation
over the Antarctic continent, J. Geophys. Res.-Atmos., 125, e2019JD031399,
https://doi.org/10.1029/2019JD031399, 2020. a, b, c
Masson, D. and Knutti, R.: Climate model genealogy, Geophys. Res.
Lett., 38, L08703, https://doi.org/10.1029/2011GL046864, 2011. a
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G.,
Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, Vikram, Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V.,
Hofstede, C., Howat, I., Humbert, A., Jokat, W., Karlsson, N. B., Lee, W.
S., Matsuoka, K., Millan, R., Mouginot, J., Paden, J., Pattyn, F.,
Roberts, J., Rosier, S., Ruppel, A., Seroussi, H., Smith, E. C.,
Steinhage, D., Sun, B., Van Den Broeke, M. R., Van Ommen, T. D., Van Wessem,
M., and Young, D. A.: Deep glacial
troughs and stabilizing ridges unveiled beneath the margins of the Antarctic
ice sheet, Nat. Geosci., 13, 132–137, https://doi.org/10.1038/s41561-019-0510-8, 2019. a
Palerme, C., Kay, J. E., Genthon, C., L'Ecuyer, T., Wood, N. B., and Claud, C.: How much snow falls on the Antarctic ice sheet?, The Cryosphere, 8, 1577–1587, https://doi.org/10.5194/tc-8-1577-2014, 2014. a, b
Palerme, C., Genthon, C., Claud, C., Kay, J. E., Wood, N. B., and L'Ecuyer,
T.: Evaluation of current and projected Antarctic precipitation in CMIP5
models, Clim. Dynam., 48, 225–239, 2017.
Cryosphere, 12, 3775–3789, https://doi.org/10.5194/tc-12-3775-2018, 2018.
a, b, c
Palerme, C., Claud, C., Wood, N. B., L'Ecuyer, T., and Genthon, C.: How does
ground clutter affect CloudSat snowfall retrievals over ice sheets?, IEEE
Geosci. Remote S., 16, 342–346, 2019. a
Souverijns, N., Gossart, A., Lhermitte, S., Gorodetskaya, I. V., Grazioli, J., Berne, A., Duran-Alarcon, C., Boudevillain, B., Genthon, C., Scarchilli, C., and van Lipzig, N. P. M.: Evaluation of the CloudSat surface snowfall product over Antarctica using ground-based precipitation radars, The a
Turner, J., Colwell, S. R., Marshall, G. J., Lachlan-Cope, T. A., Carleton,
A. M., Jones, P. D., Lagun, V., Reid, P. A., and Iagovkina, S.: The SCAR
READER project: toward a high-quality database of mean Antarctic
meteorological observations, J. Climate, 17, 2890–2898, 2004. a
Wood, N. B., L’Ecuyer, T. S., Heymsfield, A. J., and Stephens, G. L.:
Microphysical Constraints on Millimeter-Wavelength Scattering Properties of
Snow Particles, J. Appl. Meteorol. Clim., 54, 909–931,
https://doi.org/10.1175/JAMC-D-14-0137.1,
2015. a
Short summary
The Antarctic precipitation is evaluated against space radar data in the most recent climate model intercomparison CMIP6 and reanalysis ERA5. The seasonal cycle is mostly well reproduced, but relative errors are higher in areas of complex topography, particularly in the higher-resolution models. At continental and regional scales all results are biased high, with no significant progress in the more recent models. Predicting Antarctic contribution to sea level still requires model improvements.
The Antarctic precipitation is evaluated against space radar data in the most recent climate...