Articles | Volume 14, issue 5
https://doi.org/10.5194/tc-14-1519-2020
https://doi.org/10.5194/tc-14-1519-2020
Research article
 | 
07 May 2020
Research article |  | 07 May 2020

An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC)

Mark A. Tschudi, Walter N. Meier, and J. Scott Stewart

Related authors

Multidecadal Arctic sea ice thickness and volume derived from ice age
Yinghui Liu, Jeffrey R. Key, Xuanji Wang, and Mark Tschudi
The Cryosphere, 14, 1325–1345, https://doi.org/10.5194/tc-14-1325-2020,https://doi.org/10.5194/tc-14-1325-2020, 2020
Short summary
Intercomparison of snow depth retrievals over Arctic sea ice from radar data acquired by Operation IceBridge
Ron Kwok, Nathan T. Kurtz, Ludovic Brucker, Alvaro Ivanoff, Thomas Newman, Sinead L. Farrell, Joshua King, Stephen Howell, Melinda A. Webster, John Paden, Carl Leuschen, Joseph A. MacGregor, Jacqueline Richter-Menge, Jeremy Harbeck, and Mark Tschudi
The Cryosphere, 11, 2571–2593, https://doi.org/10.5194/tc-11-2571-2017,https://doi.org/10.5194/tc-11-2571-2017, 2017
Short summary

Related subject area

Discipline: Sea ice | Subject: Sea Ice
Spring 2021 sea ice transport in the southern Beaufort Sea occurred during coastal-lead opening events
MacKenzie E. Jewell, Jennifer K. Hutchings, and Angela C. Bliss
The Cryosphere, 19, 1413–1430, https://doi.org/10.5194/tc-19-1413-2025,https://doi.org/10.5194/tc-19-1413-2025, 2025
Short summary
National Weather Service Alaska Sea Ice Program: gridded ice concentration maps for the Alaskan Arctic
Astrid Pacini, Michael Steele, and Mary-Beth Schreck
The Cryosphere, 19, 1391–1411, https://doi.org/10.5194/tc-19-1391-2025,https://doi.org/10.5194/tc-19-1391-2025, 2025
Short summary
Improving Seasonal Arctic Sea Ice Predictions with the Combination of Machine Learning and Earth System Model
Zikang He, Yiguo Wang, Julien Brajard, Xidong Wang, and Zheqi Shen
EGUsphere, https://doi.org/10.5194/egusphere-2024-4092,https://doi.org/10.5194/egusphere-2024-4092, 2025
Short summary
Estimation of duration and its changes in Lagrangian observations relying on ice floes in the Arctic Ocean utilizing sea ice motion product
Fanyi Zhang, Ruibo Lei, Meng Qu, Na Li, Ying Chen, and Xiaoping Pang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2723,https://doi.org/10.5194/egusphere-2024-2723, 2024
Short summary
Seasonal evolution of the sea ice floe size distribution in the Beaufort Sea from 2 decades of MODIS data
Ellen M. Buckley, Leela Cañuelas, Mary-Louise Timmermans, and Monica M. Wilhelmus
The Cryosphere, 18, 5031–5043, https://doi.org/10.5194/tc-18-5031-2024,https://doi.org/10.5194/tc-18-5031-2024, 2024
Short summary

Cited articles

Aaboe, S., Breivik, L.-A., Sørensen, A., Eastwood, S., and Lavergne, T.: Ocean & Sea Ice SAF Global Sea Ice Edge and Type Product User's Manual, available at: http://osisaf.met.no/docs/osisaf_cdop3_ss2_pum_sea-ice-edge-type_v2p2.pdf (last access: 7 February 2020), 2017. 
Anderson, M. R., Bliss, A. C., and Tschudi, M.: MEaSUREs Arctic Sea Ice Characterization 25 km EASE-Grid 2.0. Boulder, Colorado, USA, NASA DAAC at the National Snow and Ice Data Center, https://doi.org/10.5067/MEASURES/CRYOSPHERE/nsidc-0532.001, 2014. 
Brodzik, M. J. and Knowles, K. W.: EASE-Grid: A Versatile Set of Equal-Area Projections and Grids, in: Discrete Global Grids, edited by: Goodchild, M., Santa Barbara, California, USA, National Center for Geographic Information & Analysis, 2002. 
Cavalieri, D. J., Parkinson, C. L., Gloersen, P., and Zwally, H. J.: Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1, Boulder, Colorado, USA, NASA National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/8GQ8LZQVL0VL, 1996, updated yearly. 
Cavalieri, D. J., Markus, T., and Comiso, J. C.: AMSR-E/Aqua Daily L3 12.5 km Brightness Temperature, Sea Ice Concentration, & Snow Depth Polar Grids, Version 3, Boulder, CA, USA, NASA National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/AMSR-E/AE_SI12.003, 2014a. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
A new version of a set of data products that contain the velocity of sea ice and the age of this ice has been developed. We provide a history of the product development and discuss the improvements to the algorithms that create these products. We find that changes in sea ice motion and age show a significant shift in the Arctic ice cover, from a pack with a high concentration of older ice to a sea ice cover dominated by younger ice, which is more susceptible to summer melt.
Share