Articles | Volume 13, issue 10
https://doi.org/10.5194/tc-13-2615-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-13-2615-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nonlinear response of the Antarctic Ice Sheet to late Quaternary sea level and climate forcing
Center for Ocean Solutions, Stanford University, Palo Alto, CA, USA
Axel Timmermann
Center for Climate Physics, Institute for Basic Science, Busan, South Korea
Pusan National University, Busan, South Korea
Tobias Friedrich
Department of Oceanography, University of Hawai`i at Mānoa, Honolulu, HI, USA
Malte Heinemann
Institute of Geosciences, Kiel University, Kiel, Germany
David Pollard
Earth and Environmental Systems Institute, Pennsylvania State University, University Park, PA, USA
Related authors
No articles found.
Ja-Yeon Moon, Jan Streffing, Sun-Seon Lee, Tido Semmler, Miguel Andrés-Martínez, Jiao Chen, Eun-Byeoul Cho, Jung-Eun Chu, Christian Franzke, Jan P. Gärtner, Rohit Ghosh, Jan Hegewald, Songyee Hong, Nikolay Koldunov, June-Yi Lee, Zihao Lin, Chao Liu, Svetlana Loza, Wonsun Park, Woncheol Roh, Dmitry V. Sein, Sahil Sharma, Dmitry Sidorenko, Jun-Hyeok Son, Malte F. Stuecker, Qiang Wang, Gyuseok Yi, Martina Zapponini, Thomas Jung, and Axel Timmermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2491, https://doi.org/10.5194/egusphere-2024-2491, 2024
Short summary
Short summary
Based on a series of storm-resolving greenhouse warming simulations conducted with the AWI-CM3 model at 9 km global atmosphere, 4–25 km ocean resolution, we present new projections of regional climate change, modes of climate variability and extreme events. The 10-year-long high resolution simulations for the 2000s, 2030s, 2060s, 2090s were initialized from a coarser resolution transient run (31 km atmosphere) which follows the SSP5-8.5 greenhouse gas emission scenario from 1950–2100 CE.
Kyung-Sook Yun, Axel Timmermann, Sun-Seon Lee, Matteo Willeit, Andrey Ganopolski, and Jyoti Jadhav
Clim. Past, 19, 1951–1974, https://doi.org/10.5194/cp-19-1951-2023, https://doi.org/10.5194/cp-19-1951-2023, 2023
Short summary
Short summary
To quantify the sensitivity of the earth system to orbital-scale forcings, we conducted an unprecedented quasi-continuous coupled general climate model simulation with the Community Earth System Model, which covers the climatic history of the past 3 million years. This study could stimulate future transient paleo-climate model simulations and perspectives to further highlight and document the effect of anthropogenic CO2 emissions in the broader paleo-climatic context.
Matteo Willeit, Tatiana Ilyina, Bo Liu, Christoph Heinze, Mahé Perrette, Malte Heinemann, Daniela Dalmonech, Victor Brovkin, Guy Munhoven, Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Andrey Ganopolski
Geosci. Model Dev., 16, 3501–3534, https://doi.org/10.5194/gmd-16-3501-2023, https://doi.org/10.5194/gmd-16-3501-2023, 2023
Short summary
Short summary
In this paper we present the carbon cycle component of the newly developed fast Earth system model CLIMBER-X. The model can be run with interactive atmospheric CO2 to investigate the feedbacks between climate and the carbon cycle on temporal scales ranging from decades to > 100 000 years. CLIMBER-X is expected to be a useful tool for studying past climate–carbon cycle changes and for the investigation of the long-term future evolution of the Earth system.
Keith B. Rodgers, Sun-Seon Lee, Nan Rosenbloom, Axel Timmermann, Gokhan Danabasoglu, Clara Deser, Jim Edwards, Ji-Eun Kim, Isla R. Simpson, Karl Stein, Malte F. Stuecker, Ryohei Yamaguchi, Tamás Bódai, Eui-Seok Chung, Lei Huang, Who M. Kim, Jean-François Lamarque, Danica L. Lombardozzi, William R. Wieder, and Stephen G. Yeager
Earth Syst. Dynam., 12, 1393–1411, https://doi.org/10.5194/esd-12-1393-2021, https://doi.org/10.5194/esd-12-1393-2021, 2021
Short summary
Short summary
A large ensemble of simulations with 100 members has been conducted with the state-of-the-art CESM2 Earth system model, using historical and SSP3-7.0 forcing. Our main finding is that there are significant changes in the variance of the Earth system in response to anthropogenic forcing, with these changes spanning a broad range of variables important to impacts for human populations and ecosystems.
Kyung-Sook Yun, Axel Timmermann, and Malte F. Stuecker
Earth Syst. Dynam., 12, 121–132, https://doi.org/10.5194/esd-12-121-2021, https://doi.org/10.5194/esd-12-121-2021, 2021
Short summary
Short summary
Changes in the Hadley and Walker cells cause major climate disruptions across our planet. What has been overlooked so far is the question of whether these two circulations can shift their positions in a synchronized manner. We here show the synchronized spatial shifts between Walker and Hadley cells and further highlight a novel aspect of how tropical sea surface temperature anomalies can couple these two circulations. The re-positioning has important implications for extratropical rainfall.
David Pollard and Robert M. DeConto
Geosci. Model Dev., 13, 6481–6500, https://doi.org/10.5194/gmd-13-6481-2020, https://doi.org/10.5194/gmd-13-6481-2020, 2020
Short summary
Short summary
Buttressing by floating ice shelves at ice-sheet grounding lines is an
important process that affects ice retreat and whether structural failure
occurs in deep bathymetry. Here, we use a simple algorithm to better
represent 2-D grounding-line curvature in an ice-sheet model. Along with other
enhancements, this improves the performance in idealized-fjord intercomparisons
and enables better diagnosis of potential structural failure at future
retreating Antarctic grounding lines.
Dipayan Choudhury, Axel Timmermann, Fabian Schloesser, Malte Heinemann, and David Pollard
Clim. Past, 16, 2183–2201, https://doi.org/10.5194/cp-16-2183-2020, https://doi.org/10.5194/cp-16-2183-2020, 2020
Short summary
Short summary
Our study is the first study to conduct transient simulations over MIS 7, using a 3-D coupled climate–ice sheet model with interactive ice sheets in both hemispheres. We find glacial inceptions to be more sensitive to orbital variations, whereas glacial terminations need the concerted action of both orbital and CO2 forcings. We highlight the issue of multiple equilibria and an instability due to stationary-wave–topography feedback that can trigger unrealistic North American ice sheet growth.
Stephen L. Cornford, Helene Seroussi, Xylar S. Asay-Davis, G. Hilmar Gudmundsson, Rob Arthern, Chris Borstad, Julia Christmann, Thiago Dias dos Santos, Johannes Feldmann, Daniel Goldberg, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, Gunter Leguy, William H. Lipscomb, Nacho Merino, Gaël Durand, Mathieu Morlighem, David Pollard, Martin Rückamp, C. Rosie Williams, and Hongju Yu
The Cryosphere, 14, 2283–2301, https://doi.org/10.5194/tc-14-2283-2020, https://doi.org/10.5194/tc-14-2283-2020, 2020
Short summary
Short summary
We present the results of the third Marine Ice Sheet Intercomparison Project (MISMIP+). MISMIP+ is one in a series of exercises that test numerical models of ice sheet flow in simple situations. This particular exercise concentrates on the response of ice sheet models to the thinning of their floating ice shelves, which is of interest because numerical models are currently used to model the response to contemporary and near-future thinning in Antarctic ice shelves.
Anders Levermann, Ricarda Winkelmann, Torsten Albrecht, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, Philippe Huybrechts, Jim Jordan, Gunter Leguy, Daniel Martin, Mathieu Morlighem, Frank Pattyn, David Pollard, Aurelien Quiquet, Christian Rodehacke, Helene Seroussi, Johannes Sutter, Tong Zhang, Jonas Van Breedam, Reinhard Calov, Robert DeConto, Christophe Dumas, Julius Garbe, G. Hilmar Gudmundsson, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, William H. Lipscomb, Malte Meinshausen, Esmond Ng, Sophie M. J. Nowicki, Mauro Perego, Stephen F. Price, Fuyuki Saito, Nicole-Jeanne Schlegel, Sainan Sun, and Roderik S. W. van de Wal
Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020, https://doi.org/10.5194/esd-11-35-2020, 2020
Short summary
Short summary
We provide an estimate of the future sea level contribution of Antarctica from basal ice shelf melting up to the year 2100. The full uncertainty range in the warming-related forcing of basal melt is estimated and applied to 16 state-of-the-art ice sheet models using a linear response theory approach. The sea level contribution we obtain is very likely below 61 cm under unmitigated climate change until 2100 (RCP8.5) and very likely below 40 cm if the Paris Climate Agreement is kept.
Hélène Seroussi, Sophie Nowicki, Erika Simon, Ayako Abe-Ouchi, Torsten Albrecht, Julien Brondex, Stephen Cornford, Christophe Dumas, Fabien Gillet-Chaulet, Heiko Goelzer, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Thomas Kleiner, Eric Larour, Gunter Leguy, William H. Lipscomb, Daniel Lowry, Matthias Mengel, Mathieu Morlighem, Frank Pattyn, Anthony J. Payne, David Pollard, Stephen F. Price, Aurélien Quiquet, Thomas J. Reerink, Ronja Reese, Christian B. Rodehacke, Nicole-Jeanne Schlegel, Andrew Shepherd, Sainan Sun, Johannes Sutter, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, and Tong Zhang
The Cryosphere, 13, 1441–1471, https://doi.org/10.5194/tc-13-1441-2019, https://doi.org/10.5194/tc-13-1441-2019, 2019
Short summary
Short summary
We compare a wide range of Antarctic ice sheet simulations with varying initialization techniques and model parameters to understand the role they play on the projected evolution of this ice sheet under simple scenarios. Results are improved compared to previous assessments and show that continued improvements in the representation of the floating ice around Antarctica are critical to reduce the uncertainty in the future ice sheet contribution to sea level rise.
Malte Heinemann, Joachim Segschneider, and Birgit Schneider
Geosci. Model Dev., 12, 1869–1883, https://doi.org/10.5194/gmd-12-1869-2019, https://doi.org/10.5194/gmd-12-1869-2019, 2019
Short summary
Short summary
Ocean CO2 uptake played a crucial role for the global cooling during ice ages. Dust formation, e.g. by ice scraping over bedrock, potentially contributed to this CO2 uptake because (1) the iron in the dust is a fertilizer and (2) the heavy dust particles can accelerate sinking organic matter (ballasting hypothesis). This study tests the glacial dust ballasting hypothesis for the first time, using an ocean model. It turns out, however, that the ballasting effect probably played a minor role.
Dale Partridge, Tobias Friedrich, and Brian S. Powell
Geosci. Model Dev., 12, 195–213, https://doi.org/10.5194/gmd-12-195-2019, https://doi.org/10.5194/gmd-12-195-2019, 2019
Short summary
Short summary
This paper demonstrates the improvements made to an operational ocean forecast model around the Hawaiian Islands by performing a reanalysis of the model over a 10-year period. Using a number of different measurements we show the role a variety of observations play in producing the forecast, in particular the contribution of high-frequency radar.
David Pollard, Robert M. DeConto, and Richard B. Alley
Geosci. Model Dev., 11, 5149–5172, https://doi.org/10.5194/gmd-11-5149-2018, https://doi.org/10.5194/gmd-11-5149-2018, 2018
Short summary
Short summary
Around the margins of ice sheets in contact with the ocean, calving of icebergs can generate large amounts of floating ice debris called "mélange". In major Greenland fjords, mélange significantly slows down ice flow from upstream. Our study applies numerical models to past and possible future episodes of rapid Antarctic Ice Sheet retreat. We find that, due to larger spatial scales, Antarctic mélange does not significantly impede flow or slow ice retreat and associated sea level rise.
M. Angeles Gallego, Axel Timmermann, Tobias Friedrich, and Richard E. Zeebe
Biogeosciences, 15, 5315–5327, https://doi.org/10.5194/bg-15-5315-2018, https://doi.org/10.5194/bg-15-5315-2018, 2018
Short summary
Short summary
It is projected that the summer–winter difference in pCO2 levels will be larger in the future. In this paper, we study the causes of this seasonal amplification of pCO2. We found that anthropogenic CO2 enhances the effect of seasonal changes in temperature (T) and dissolved inorganic carbon (DIC) on pCO2 seasonality. This is because the oceanic pCO2 becomes more sensitive to seasonal T and DIC changes when the CO2 concentration is higher.
Perry Spector, John Stone, David Pollard, Trevor Hillebrand, Cameron Lewis, and Joel Gombiner
The Cryosphere, 12, 2741–2757, https://doi.org/10.5194/tc-12-2741-2018, https://doi.org/10.5194/tc-12-2741-2018, 2018
Short summary
Short summary
Cosmogenic-nuclide analyses in bedrock recovered from below the West Antarctic Ice Sheet have the potential to establish whether and when large-scale deglaciation occurred in the past. Here we (i) discuss the criteria and considerations for subglacial drill sites, (ii) evaluate candidate sites in West Antarctica, and (iii) describe reconnaissance at three West Antarctic sites, focusing on the Pirrit Hills, which we present as a case study of site selection on the scale of an individual nunatak.
Clemens Schannwell, Stephen Cornford, David Pollard, and Nicholas E. Barrand
The Cryosphere, 12, 2307–2326, https://doi.org/10.5194/tc-12-2307-2018, https://doi.org/10.5194/tc-12-2307-2018, 2018
Short summary
Short summary
Despite the speculation on the state and fate of Larsen C Ice Shelf, a key unknown factor remains: what would be the effects of ice-shelf collapse on upstream drainage basins and thus global sea levels? In our paper three state-of-the-art numerical ice-sheet models were used to simulate the volume evolution of the inland ice sheet to ice-shelf collapse at Larsen C and George VI ice shelves. Our results suggest sea-level rise of up to ~ 4 mm for Larsen C ice shelf and ~ 22 for George VI ice shelf.
David Pollard, Won Chang, Murali Haran, Patrick Applegate, and Robert DeConto
Geosci. Model Dev., 9, 1697–1723, https://doi.org/10.5194/gmd-9-1697-2016, https://doi.org/10.5194/gmd-9-1697-2016, 2016
Short summary
Short summary
Computer modeling of variations of the Antarctic Ice Sheet help to
understand the ice sheet's sensitivity to climate change. We apply
a numerical model to its retreat over the last 20 000 years, from its
maximum glacial extent to modern. An ensemble of 625 simulations is performed
with systematic combinations of uncertain model parameter values. Results are
analyzed using (1) simple averaging, and (2) advanced statistical techniques,
and reasonable agreement is found between the two.
Matthew J. Carmichael, Daniel J. Lunt, Matthew Huber, Malte Heinemann, Jeffrey Kiehl, Allegra LeGrande, Claire A. Loptson, Chris D. Roberts, Navjit Sagoo, Christine Shields, Paul J. Valdes, Arne Winguth, Cornelia Winguth, and Richard D. Pancost
Clim. Past, 12, 455–481, https://doi.org/10.5194/cp-12-455-2016, https://doi.org/10.5194/cp-12-455-2016, 2016
Short summary
Short summary
In this paper, we assess how well model-simulated precipitation rates compare to those indicated by geological data for the early Eocene, a warm interval 56–49 million years ago. Our results show that a number of models struggle to produce sufficient precipitation at high latitudes, which likely relates to cool simulated temperatures in these regions. However, calculating precipitation rates from plant fossils is highly uncertain, and further data are now required.
S. J. Koenig, A. M. Dolan, B. de Boer, E. J. Stone, D. J. Hill, R. M. DeConto, A. Abe-Ouchi, D. J. Lunt, D. Pollard, A. Quiquet, F. Saito, J. Savage, and R. van de Wal
Clim. Past, 11, 369–381, https://doi.org/10.5194/cp-11-369-2015, https://doi.org/10.5194/cp-11-369-2015, 2015
Short summary
Short summary
The paper assess the Greenland Ice Sheet’s sensitivity to a warm period in the past, a time when atmospheric CO2 concentrations were comparable to current levels. We quantify ice sheet volume and locations in Greenland and find that the ice sheets are less sensitive to differences in ice sheet model configurations than to changes in imposed climate forcing. We conclude that Pliocene ice was most likely to be limited to highest elevations in eastern and southern Greenland.
M. Heinemann, A. Timmermann, O. Elison Timm, F. Saito, and A. Abe-Ouchi
Clim. Past, 10, 1567–1579, https://doi.org/10.5194/cp-10-1567-2014, https://doi.org/10.5194/cp-10-1567-2014, 2014
A. Levermann, R. Winkelmann, S. Nowicki, J. L. Fastook, K. Frieler, R. Greve, H. H. Hellmer, M. A. Martin, M. Meinshausen, M. Mengel, A. J. Payne, D. Pollard, T. Sato, R. Timmermann, W. L. Wang, and R. A. Bindschadler
Earth Syst. Dynam., 5, 271–293, https://doi.org/10.5194/esd-5-271-2014, https://doi.org/10.5194/esd-5-271-2014, 2014
E. Gasson, D. J. Lunt, R. DeConto, A. Goldner, M. Heinemann, M. Huber, A. N. LeGrande, D. Pollard, N. Sagoo, M. Siddall, A. Winguth, and P. J. Valdes
Clim. Past, 10, 451–466, https://doi.org/10.5194/cp-10-451-2014, https://doi.org/10.5194/cp-10-451-2014, 2014
G. A. Schmidt, J. D. Annan, P. J. Bartlein, B. I. Cook, E. Guilyardi, J. C. Hargreaves, S. P. Harrison, M. Kageyama, A. N. LeGrande, B. Konecky, S. Lovejoy, M. E. Mann, V. Masson-Delmotte, C. Risi, D. Thompson, A. Timmermann, L.-B. Tremblay, and P. Yiou
Clim. Past, 10, 221–250, https://doi.org/10.5194/cp-10-221-2014, https://doi.org/10.5194/cp-10-221-2014, 2014
L. Menviel, A. Timmermann, T. Friedrich, and M. H. England
Clim. Past, 10, 63–77, https://doi.org/10.5194/cp-10-63-2014, https://doi.org/10.5194/cp-10-63-2014, 2014
C. R. Tabor, C. J. Poulsen, and D. Pollard
Clim. Past, 10, 41–50, https://doi.org/10.5194/cp-10-41-2014, https://doi.org/10.5194/cp-10-41-2014, 2014
R. Briggs, D. Pollard, and L. Tarasov
The Cryosphere, 7, 1949–1970, https://doi.org/10.5194/tc-7-1949-2013, https://doi.org/10.5194/tc-7-1949-2013, 2013
S. McGregor, A. Timmermann, M. H. England, O. Elison Timm, and A. T. Wittenberg
Clim. Past, 9, 2269–2284, https://doi.org/10.5194/cp-9-2269-2013, https://doi.org/10.5194/cp-9-2269-2013, 2013
K. Tachikawa, A. Timmermann, L. Vidal, C. Sonzogni, and O. E. Timm
Clim. Past Discuss., https://doi.org/10.5194/cpd-9-1869-2013, https://doi.org/10.5194/cpd-9-1869-2013, 2013
Revised manuscript has not been submitted
F. Joos, R. Roth, J. S. Fuglestvedt, G. P. Peters, I. G. Enting, W. von Bloh, V. Brovkin, E. J. Burke, M. Eby, N. R. Edwards, T. Friedrich, T. L. Frölicher, P. R. Halloran, P. B. Holden, C. Jones, T. Kleinen, F. T. Mackenzie, K. Matsumoto, M. Meinshausen, G.-K. Plattner, A. Reisinger, J. Segschneider, G. Shaffer, M. Steinacher, K. Strassmann, K. Tanaka, A. Timmermann, and A. J. Weaver
Atmos. Chem. Phys., 13, 2793–2825, https://doi.org/10.5194/acp-13-2793-2013, https://doi.org/10.5194/acp-13-2793-2013, 2013
Y. Goddéris, S. L. Brantley, L. M. François, J. Schott, D. Pollard, M. Déqué, and M. Dury
Biogeosciences, 10, 135–148, https://doi.org/10.5194/bg-10-135-2013, https://doi.org/10.5194/bg-10-135-2013, 2013
Related subject area
Discipline: Ice sheets | Subject: Paleo-Glaciology (including Former Ice Reconstructions)
Millennial-scale fluctuations of palaeo-ice margin at the southern fringe of the last Fennoscandian Ice Sheet
The influence of glacial landscape evolution on Scandinavian ice-sheet dynamics and dimensions
Antarctic permafrost processes and antiphase dynamics of cold-based glaciers in the McMurdo Dry Valleys inferred from 10Be and 26Al cosmogenic nuclides
Simulating the Laurentide Ice Sheet of the Last Glacial Maximum
Reversible ice sheet thinning in the Amundsen Sea Embayment during the Late Holocene
The collapse of the Cordilleran–Laurentide ice saddle and early opening of the Mackenzie Valley, Northwest Territories, Canada, constrained by 10Be exposure dating
A model for interaction between conduits and surrounding hydraulically connected distributed drainage based on geomorphological evidence from Keewatin, Canada
Repeated ice streaming on the northwest Greenland continental shelf since the onset of the Middle Pleistocene Transition
Eemian Greenland ice sheet simulated with a higher-order model shows strong sensitivity to surface mass balance forcing
The impact of model resolution on the simulated Holocene retreat of the southwestern Greenland ice sheet using the Ice Sheet System Model (ISSM)
Marine ice sheet instability and ice shelf buttressing of the Minch Ice Stream, northwest Scotland
Persistent tracers of historic ice flow in glacial stratigraphy near Kamb Ice Stream, West Antarctica
West Antarctic sites for subglacial drilling to test for past ice-sheet collapse
Karol Tylmann, Wojciech Wysota, Vincent Rinterknecht, Piotr Moska, Aleksandra Bielicka-Giełdoń, and ASTER Team
The Cryosphere, 18, 1889–1909, https://doi.org/10.5194/tc-18-1889-2024, https://doi.org/10.5194/tc-18-1889-2024, 2024
Short summary
Short summary
Our results indicate millennial-scale oscillations of the last Fennoscandian Ice Sheet (FIS) in northern Poland between ~19000 and ~17000 years ago. Combined luminescence (OSL) and 10Be dating show the last FIS left basal tills of three ice re-advances at a millennial-scale cycle: 19.2 ± 1.1 ka, 17.8 ± 0.5 ka and 16.9 ± 0.5 ka. This is the first terrestrial record of millennial-scale palaeo-ice margin oscillations at the southern fringe of the FIS during the last glacial cycle.
Gustav Jungdal-Olesen, Jane Lund Andersen, Andreas Born, and Vivi Kathrine Pedersen
The Cryosphere, 18, 1517–1532, https://doi.org/10.5194/tc-18-1517-2024, https://doi.org/10.5194/tc-18-1517-2024, 2024
Short summary
Short summary
We explore how the shape of the land and underwater features in Scandinavia affected the former Scandinavian ice sheet over time. Using a computer model, we simulate how the ice sheet evolved during different stages of landscape development. We discovered that early glaciations were limited in size by underwater landforms, but as these changed, the ice sheet expanded more rapidly. Our findings highlight the importance of considering landscape changes when studying ice-sheet history.
Jacob T. H. Anderson, Toshiyuki Fujioka, David Fink, Alan J. Hidy, Gary S. Wilson, Klaus Wilcken, Andrey Abramov, and Nikita Demidov
The Cryosphere, 17, 4917–4936, https://doi.org/10.5194/tc-17-4917-2023, https://doi.org/10.5194/tc-17-4917-2023, 2023
Short summary
Short summary
Antarctic permafrost processes are not widely studied or understood in the McMurdo Dry Valleys. Our data show that near-surface permafrost sediments were deposited ~180 000 years ago in Pearse Valley, while in lower Wright Valley sediments are either vertically mixed after deposition or were deposited < 25 000 years ago. Our data also record Taylor Glacier retreat from Pearse Valley ~65 000–74 000 years ago and support antiphase dynamics between alpine glaciers and sea ice in the Ross Sea.
Daniel Moreno-Parada, Jorge Alvarez-Solas, Javier Blasco, Marisa Montoya, and Alexander Robinson
The Cryosphere, 17, 2139–2156, https://doi.org/10.5194/tc-17-2139-2023, https://doi.org/10.5194/tc-17-2139-2023, 2023
Short summary
Short summary
We have reconstructed the Laurentide Ice Sheet, located in North America during the Last Glacial Maximum (21 000 years ago). The absence of direct measurements raises a number of uncertainties. Here we study the impact of different physical laws that describe the friction as the ice slides over its base. We found that the Laurentide Ice Sheet is closest to prior reconstructions when the basal friction takes into account whether the base is frozen or thawed during its motion.
Greg Balco, Nathan Brown, Keir Nichols, Ryan A. Venturelli, Jonathan Adams, Scott Braddock, Seth Campbell, Brent Goehring, Joanne S. Johnson, Dylan H. Rood, Klaus Wilcken, Brenda Hall, and John Woodward
The Cryosphere, 17, 1787–1801, https://doi.org/10.5194/tc-17-1787-2023, https://doi.org/10.5194/tc-17-1787-2023, 2023
Short summary
Short summary
Samples of bedrock recovered from below the West Antarctic Ice Sheet show that part of the ice sheet was thinner several thousand years ago than it is now and subsequently thickened. This is important because of concern that present ice thinning in this region may lead to rapid, irreversible sea level rise. The past episode of thinning at this site that took place in a similar, although not identical, climate was not irreversible; however, reversal required at least 3000 years to complete.
Benjamin J. Stoker, Martin Margold, John C. Gosse, Alan J. Hidy, Alistair J. Monteath, Joseph M. Young, Niall Gandy, Lauren J. Gregoire, Sophie L. Norris, and Duane Froese
The Cryosphere, 16, 4865–4886, https://doi.org/10.5194/tc-16-4865-2022, https://doi.org/10.5194/tc-16-4865-2022, 2022
Short summary
Short summary
The Laurentide Ice Sheet was the largest ice sheet to grow and disappear in the Northern Hemisphere during the last glaciation. In northwestern Canada, it covered the Mackenzie Valley, blocking the migration of fauna and early humans between North America and Beringia and altering the drainage systems. We reconstruct the timing of ice sheet retreat in this region and the implications for the migration of early humans into North America, the drainage of glacial lakes, and past sea level rise.
Emma L. M. Lewington, Stephen J. Livingstone, Chris D. Clark, Andrew J. Sole, and Robert D. Storrar
The Cryosphere, 14, 2949–2976, https://doi.org/10.5194/tc-14-2949-2020, https://doi.org/10.5194/tc-14-2949-2020, 2020
Short summary
Short summary
We map visible traces of subglacial meltwater flow across Keewatin, Canada. Eskers are commonly observed to form within meltwater corridors up to a few kilometres wide, and we interpret different traces to have formed as part of the same integrated drainage system. In our proposed model, we suggest that eskers record the imprint of a central conduit while meltwater corridors represent the interaction with the surrounding distributed drainage system.
Andrew M. W. Newton, Mads Huuse, Paul C. Knutz, and David R. Cox
The Cryosphere, 14, 2303–2312, https://doi.org/10.5194/tc-14-2303-2020, https://doi.org/10.5194/tc-14-2303-2020, 2020
Short summary
Short summary
Seismic reflection data offshore northwest Greenland reveal buried landforms that have been interpreted as mega-scale glacial lineations (MSGLs). These have been formed by ancient ice streams that advanced hundreds of kilometres across the continental shelf. The stratigraphy and available chronology show that the MSGLs are confined to separate stratigraphic units and were most likely formed during several glacial maxima after the onset of the Middle Pleistocene Transition at ~ 1.3 Ma.
Andreas Plach, Kerim H. Nisancioglu, Petra M. Langebroek, Andreas Born, and Sébastien Le clec'h
The Cryosphere, 13, 2133–2148, https://doi.org/10.5194/tc-13-2133-2019, https://doi.org/10.5194/tc-13-2133-2019, 2019
Short summary
Short summary
Meltwater from the Greenland ice sheet (GrIS) rises sea level and knowing how the GrIS behaved in the past will help to become better in predicting its future. Here, the evolution of the past GrIS is shown to be dominated by how much ice melts (a result of the prevailing climate) rather than how ice flow is represented in the simulations. Therefore, it is very important to know past climates accurately, in order to be able to simulate the evolution of the GrIS and its contribution to sea level.
Joshua K. Cuzzone, Nicole-Jeanne Schlegel, Mathieu Morlighem, Eric Larour, Jason P. Briner, Helene Seroussi, and Lambert Caron
The Cryosphere, 13, 879–893, https://doi.org/10.5194/tc-13-879-2019, https://doi.org/10.5194/tc-13-879-2019, 2019
Short summary
Short summary
We present ice sheet modeling results of ice retreat over southwestern Greenland during the last 12 000 years, and we also test the impact that model horizontal resolution has on differences in the simulated spatial retreat and its associated rate. Results indicate that model resolution plays a minor role in simulated retreat in areas where bed topography is not complex but plays an important role in areas where bed topography is complex (such as fjords).
Niall Gandy, Lauren J. Gregoire, Jeremy C. Ely, Christopher D. Clark, David M. Hodgson, Victoria Lee, Tom Bradwell, and Ruza F. Ivanovic
The Cryosphere, 12, 3635–3651, https://doi.org/10.5194/tc-12-3635-2018, https://doi.org/10.5194/tc-12-3635-2018, 2018
Short summary
Short summary
We use the deglaciation of the last British–Irish Ice Sheet as a valuable case to examine the processes of contemporary ice sheet change, using an ice sheet model to simulate the Minch Ice Stream. We find that ice shelves were a control on retreat and that the Minch Ice Stream was vulnerable to the same marine mechanisms which threaten the future of the West Antarctic Ice Sheet. This demonstrates the importance of marine processes when projecting the future of our contemporary ice sheets.
Nicholas Holschuh, Knut Christianson, Howard Conway, Robert W. Jacobel, and Brian C. Welch
The Cryosphere, 12, 2821–2829, https://doi.org/10.5194/tc-12-2821-2018, https://doi.org/10.5194/tc-12-2821-2018, 2018
Short summary
Short summary
Models of the Antarctic Sheet are tuned using observations of historic ice-sheet behavior, but we have few observations that tell us how inland ice behaved over the last few millennia. A 2 km tall volcano sitting under the ice sheet has left a record in the ice as it flows by, and that feature provides unique insight into the regional ice-flow history. It indicates that observed, rapid changes in West Antarctica flow dynamics have not affected the continental interior over the last 5700 years.
Perry Spector, John Stone, David Pollard, Trevor Hillebrand, Cameron Lewis, and Joel Gombiner
The Cryosphere, 12, 2741–2757, https://doi.org/10.5194/tc-12-2741-2018, https://doi.org/10.5194/tc-12-2741-2018, 2018
Short summary
Short summary
Cosmogenic-nuclide analyses in bedrock recovered from below the West Antarctic Ice Sheet have the potential to establish whether and when large-scale deglaciation occurred in the past. Here we (i) discuss the criteria and considerations for subglacial drill sites, (ii) evaluate candidate sites in West Antarctica, and (iii) describe reconnaissance at three West Antarctic sites, focusing on the Pirrit Hills, which we present as a case study of site selection on the scale of an individual nunatak.
Cited articles
Bassis, J. N. and Walker, C. C.: Upper and lower limits on the stability of
calving glaciers from the yield strength envelope of ice, P.
Roy. Soc. A, 468, 913–931, 2012. a
Bazin, L., Landais, A., Lemieux-Dudon, B., Toyé Mahamadou Kele, H., Veres, D., Parrenin, F., Martinerie, P., Ritz, C., Capron, E., Lipenkov, V., Loutre, M.-F., Raynaud, D., Vinther, B., Svensson, A., Rasmussen, S. O., Severi, M., Blunier, T., Leuenberger, M., Fischer, H., Masson-Delmotte, V., Chappellaz, J., and Wolff, E.: An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka, Clim. Past, 9, 1715–1731, https://doi.org/10.5194/cp-9-1715-2013, 2013. a, b, c
Beckmann, A. and Goosse, H.: A parameterization of ice shelf-ocean interaction
for climate models, Ocean Model., 5, 157–170, 2003. a
Bell, R. E., Banwell, A. F., Trusel, L. D., and Kingslake, J.: Antarctic
surface hydrology and impacts on ice-sheet mass balance, Nat. Clim. Change,
8, 1044–1052, 2018. a
Berger, A. L.: Long-term variations of daily insolation and Quaternary climatic
changes, J. Atmos. Sci., 35, 2362–2367, 1978. a
Briggs, R. D. and Tarasov, L.: How to evaluate model-derived deglaciation
chronologies: A case study using Antarctica, Quaternary Sci. Rev., 63, 109–127,
2013. a
Briggs, R., Pollard, D., and Tarasov, L.: A glacial systems model configured for large ensemble analysis of Antarctic deglaciation, The Cryosphere, 7, 1949–1970, https://doi.org/10.5194/tc-7-1949-2013, 2013. a
Bromwich, D. H.: Snowfall in High Southern Latitudes, Rev. Geophys., 26,
149–168, 1988. a
Brovkin, V., Ganopolski, A., and Svirezhev, Y.: A continuous climate-vegetation
classification for use in climate-biosphere studies, Ecol. Modell., 101,
251–261, 1997. a
Carlson, A. E. and Clark, P. U.: Ice sheet sources of sea level rise and
freshwater discharge during the last deglaciation, Rev. Geophys., 50, RG4007, https://doi.org/10.1029/2011RG000371,
2012. a
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S.,
Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D.,
Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea level
change, in: Climate Change 2013: The Physical Science Basis, Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K.,
Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and
Midgley, P. M., 1137–1216, Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, 2013. a
Comiso, J. C.: Variability and trends in Antarctic surface temperatures from In
Situ and satellite infrared measurements, J. Climate, 13, 1674–1696, 2000. a
Cortese, G., Abelmann, A., and Gersonde, R.: The last five glacial-interglacial
transitions: A high-resolution 450,000-year record from the subantarctic
Atlantic, Paleoceanography, 22, 1–14, 2007. a
de Boer, B., van de Wal, R. S. W., Lourens, L. J., Bintanja, R., and Reerink,
T. J.: A continuous simulation of global ice volume over the past 1 million
years with 3-D ice-sheet models, Clim. Dynam., 41, 1365–1384, 2013. a
Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T. M., Ligtenberg,
S. R. M., van den Broeke, M. R., and Moholdt, G.: Calving fluxes and basal
melt rates of Antarctic ice shelves, Nature, 502, 89–92, 2013. a
De Rydt, J., Holland, P. R., Dutrieux, P., and Jenkins, A.: Geometric and
oceanographic controls on melting beneath Pine Island Glacier, J. Geophys.
Res.-Oceans, 119, 2420–2438, 2014. a
Dutton, A., Carlson, A. E., Long, A. J., Milne, G. A., Clark, P. U., DeConto,
R. M., Horton, B. P., Rahmstorf, S., and Raymo, M. E.: Sea-level rise due to
polar ice-sheet mass loss during past warm periods, Science, 349, 153–162,
2015. a
Edwards, T. L., Brandon, M. A., Durand, G., Edwards, N. R., Golledge, N. R.,
Holden, P. B., Nias, I. J., Payne, A. J., Ritz, C., and Wernecke, A.:
Revisiting Antarctic ice loss due to marine ice-cliff instability, Nature,
566, 58–64, 2019. a
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013. a
Friedrich, T., Timmermann, A., Menviel, L., Elison Timm, O., Mouchet, A., and Roche, D. M.: The mechanism behind internally generated centennial-to-millennial scale climate variability in an earth system model of intermediate complexity, Geosci. Model Dev., 3, 377–389, https://doi.org/10.5194/gmd-3-377-2010, 2010. a
Friedrich, T., Timmermann, A., Tigchelaar, M., Timm, O. E., and Ganopolski, A.:
Nonlinear climate sensitivity and its implications for future greenhouse
warming, Sci. Adv., 2, e1501923, https://doi.org/10.1126/sciadv.1501923, 2016. a, b
Frieler, K., Clark, P. U., He, F., Buizert, C., Reese, R., Ligtenberg, S.
R. M., van den Broeke, M. R., Winkelmann, R., and Levermann, A.: Consistent
evidence of increasing Antarctic accumulation with warming, Nat. Clim.
Change, 5, 348–352, 2015. a
Ganopolski, A. and Calov, R.: The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles, Clim. Past, 7, 1415–1425, https://doi.org/10.5194/cp-7-1415-2011, 2011. a
Gersonde, R., Crosta, X., Abelmann, A., and Armand, L.: Sea-surface temperature
and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial
Maximum – a circum-Antarctic view based on siliceous microfossil records,
Quaternary Sci. Rev., 24, 869–896, 2005. a
Golledge, N. R., Fogwill, C. J., Mackintosh, A. N., and Buckley, K. M.:
Dynamics of the last glacial maximum Antarctic ice-sheet and its response to
ocean forcing, P. Natl. Acad. Sci. USA, 109,
16052–16056, 2012. a
Golledge, N. R., Menviel, L., Carter, L., Fogwill, C. J., England, M. H.,
Cortese, G., and Levy, R. H.: Antarctic contribution to meltwater pulse 1A
from reduced Southern Ocean overturning, Nat. Commun., 5, 5107, 2014. a
Golledge, N. R., Kowalewski, D. E., Naish, T. R., Levy, R. H., Fogwill, C. J.,
and Gasson, E. G. W.: The multi-millennial Antarctic commitment to future
sea-level rise, Nature, 526, 421–425, 2015. a
Golledge, N. R., Keller, E. D., Gomez, N., Naughten, K. A., Bernales, J.,
Trusel, L. D., and Edwards, T. L.: Global environmental consequences of
twenty-first-century ice-sheet melt, Nature, 566, 65–72, 2019. a
Gomez, N., Pollard, D., and Mitrovica, J. X.: A 3-D coupled ice sheet-sea
level model applied to Antarctica through the last 40 ky, Earth Planet. Sci.
Lett., 384, 88–99, 2013. a
Goosse, H. and Fichefet, T.: Importance of ice-ocean interactions for the
global ocean circulation: A model study, J. Geophys. Res., 104,
23337–23355, 1999. a
Goosse, H., Brovkin, V., Fichefet, T., Haarsma, R., Huybrechts, P., Jongma, J., Mouchet, A., Selten, F., Barriat, P.-Y., Campin, J.-M., Deleersnijder, E., Driesschaert, E., Goelzer, H., Janssens, I., Loutre, M.-F., Morales Maqueda, M. A., Opsteegh, T., Mathieu, P.-P., Munhoven, G., Pettersson, E. J., Renssen, H., Roche, D. M., Schaeffer, M., Tartinville, B., Timmermann, A., and Weber, S. L.: Description of the Earth system model of intermediate complexity LOVECLIM version 1.2, Geosci. Model Dev., 3, 603–633, https://doi.org/10.5194/gmd-3-603-2010, 2010. a
He, F., Shakun, J. D., Clark, P. U., Carlson, A. E., Liu, Z., Otto-Bliesner,
B. L., and Kutzbach, J. E.: Northern Hemisphere forcing of Southern
Hemisphere climate during the last deglaciation, Nature, 494, 81–85, 2013. a
Hellmer, H. H., Kauker, F., Timmermann, R., Determann, J., and Rae, J.:
Twenty-first-century warming of a large Antarctic ice-shelf cavity by a
redirected coastal current, Nature, 485, 225–228, 2012. a
Hillenbrand, C.-D., Bentley, M. J., Stolldorf, T. D., Hein, A. S., Kuhn, G.,
Graham, A. G. C., Fogwill, C. J., Kristoffersen, Y., Smith, J. A., Anderson,
J. B., Larter, R. D., Melles, M., Hodgson, D. A., Mulvaney, R., and Sugden,
D. E.: Reconstruction of changes in the Weddell Sea sector of the Antarctic
Ice Sheet since the Last Glacial Maximum, Quaternary Sci. Rev., 100, 111–136,
2014. a, b
Ho, S. L., Mollenhauer, G., Lamy, F., Martínez-Garcia, A., Mohtadi, M.,
Gersonde, R., Hebbeln, D., Nunez-Ricardo, S., Rosell-Melé, A., and
Tiedemann, R.: Sea surface temperature variability in the Pacific sector of
the Southern Ocean over the past 700 kyr, Paleoceanography, 27, 1–15, 2012. a, b, c, d
Holland, P. R., Jenkins, A., and Holland, D. M.: The Response of Ice Shelf
Basal Melting to Variations in Ocean Temperature, J. Climate, 21, 2558–2572,
2008. a
Huybers, P.: Antarctica's Orbital Beat, Science, 325, 1085–1086, 2009. a
Huybrechts, P., Gregory, J., Janssens, I., and Wild, M.: Modelling Antarctic
and Greenland volume changes during the 20th and 21st centuries forced by
GCM time slice integrations, Global Planet. Change, 42, 83–105, 2004. a
Jacobs, S. S., Helmer, H. H., Doake, C. S. M., Jenkins, A., and Frolich, R. M.:
Melting of ice shelves and the mass balance of Antarctica, J. Glaciol., 38,
375–387, 1992. a
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S.,
Hoffmann, G., Minster, B., Nouet, J., Barnola, J.-M., Chappellaz, J.,
Fischer, H., Gallet, J. C., Johnsen, S. J., Leuenberger, M., Loulergue, L.,
Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A.,
Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen,
J. P., Stenni, B., Stocker, T. F., Tison, J.-L., Werner, M., and Wolff,
E. W.: Orbital and millennial Antarctic climate variability over the past
800,000 years, Science, 317, 793–796, 2007. a
Kusahara, K., Sato, T., Oka, A., Obase, T., Greve, R., Abe-Ouchi, A., and
Hasumi, H.: Modelling the Antarctic marine cryosphere at the Last Glacial
Maximum, Ann. Glaciol., 56, 425–435, 2015. a
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally
distributed benthic δ18O records, Paleoceanography, 20, 1–17,
2005. a
Lowry, D. P., Golledge, N. R., Menviel, L., and Bertler, N. A. N.: Deglacial evolution of regional Antarctic climate and Southern Ocean conditions in transient climate simulations, Clim. Past, 15, 189–215, https://doi.org/10.5194/cp-15-189-2019, 2019. a, b
Mackintosh, A., Golledge, N., Domack, E., Dunbar, R., Leventer, A., White, D.,
Pollard, D., DeConto, R., Fink, D., Zwartz, D., Gore, D., and Lavoie, C.:
Retreat of the East Antarctic ice sheet during the last glacial termination,
Nat. Geosci., 4, 195–202, 2011. a
Maris, M. N. A., de Boer, B., and Oerlemans, J.: A climate model intercomparison for the Antarctic region: present and past, Clim. Past, 8, 803–814, https://doi.org/10.5194/cp-8-803-2012, 2012. a
Maris, M. N. A., de Boer, B., Ligtenberg, S. R. M., Crucifix, M., van de Berg, W. J., and Oerlemans, J.: Modelling the evolution of the Antarctic ice sheet since the last interglacial, The Cryosphere, 8, 1347–1360, https://doi.org/10.5194/tc-8-1347-2014, 2014. a
Maris, M. N. A., van Wessem, J. M., van de Berg, W. J., de Boer, B., and
Oerlemans, J.: A model study of the effect of climate and sea-level change on
the evolution of the Antarctic Ice Sheet from the Last Glacial Maximum to
2100, Clim. Dynam., 45, 837–851, 2015. a
Martin, M. A., Winkelmann, R., Haseloff, M., Albrecht, T., Bueler, E., Khroulev, C., and Levermann, A.: The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet, The Cryosphere, 5, 727–740, https://doi.org/10.5194/tc-5-727-2011, 2011. a
Medley, B. and Thomas, E. R.: Increased snowfall over the Antarctic Ice Sheet
mitigated twentieth-century sea-level rise, Nat. Clim. Change, 9, 34–39,
2019. a
Menviel, L., Timmermann, A., Mouchet, A., and Timm, O. E.: Climate and marine
carbon cycle response to changes in the strength of the Southern Hemispheric
westerlies, Paleoceanography, 23, 1–10, 2008. a
Menviel, L., Timmermann, A., Timm, O. E., and Mouchet, A.: Climate and
biogeochemical response to a rapid melting of the West Antarctic Ice Sheet
during interglacials and implications for future climate, Paleoceanography,
25, 1–12, 2010. a
Milankovitch, M.: Kanon der Erdbestrahlung und seine Anwendung auf das
Eiszeitenproblem, in: Royal Serbian Academy Special Publication 132, vol. 33,
p. 633, Royal Serbian Academy, Belgrade, 1941. a
Opsteegh, J. D., Haarsma, R. J., Selten, F. M., and Kattenberg, A.: ECBILT: A
dynamic alternative to mixed boundary conditions in ocean models, Tell'Us,
50A, 348–367, 1998. a
Petit, J.-R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile,
I., Benders, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M.,
Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L.,
Ritz, C., Saltzman, E., and Stievenard, M.: Climate and atmospheric history
of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429–436, 1999. a
Pollard, D. and DeConto, R. M.: A simple inverse method for the distribution of basal sliding coefficients under ice sheets, applied to Antarctica, The Cryosphere, 6, 953–971, https://doi.org/10.5194/tc-6-953-2012, 2012b. a, b, c
Pollard, D., Chang, W., Haran, M., Applegate, P., and DeConto, R.: Large ensemble modeling of the last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques, Geosci. Model Dev., 9, 1697–1723, https://doi.org/10.5194/gmd-9-1697-2016, 2016. a, b, c, d
RAISED Consortium, Ó Cofaigh, C., Anderson, J. B., Conway, H., Davies,
B., Graham, A. G. C., Hillenbrand, C.-D., Hodgson, D. A., Jamieson, S. S. R.,
Larter, R. D., Mackintosh, A., Smith, J. a., Verleyen, E., Ackert, R. P.,
Bart, P. J., Berg, S., Brunstein, D., Canals, M., Colhoun, E. A., Crosta, X.,
Dickens, W. A., Domack, E., Dowdeswell, J. A., Dunbar, R., Ehrmann, W.,
Evans, J., Favier, V., Fink, D., Fogwill, C. J., Glasser, N. F., Gohl, K.,
Golledge, N. R., Goodwin, I., Gore, D. B., Greenwood, S. L., Hall, B. L.,
Hall, K., Hedding, D. W., Hein, A. S., Hocking, E. P., Jakobsson, M.,
Johnson, J. S., Jomelli, V., Jones, R. S., Klages, J. P., Kristoffersen, Y.,
Kuhn, G., Leventer, A., Licht, K., Lilly, K., Lindow, J., Livingstone, S. J.,
Massé, G., McGlone, M. S., McKay, R. M., Melles, M., Miura, H., Mulvaney,
R., Nel, W., Nitsche, F. O., O'Brien, P. E., Post, A. L., Roberts, S. J.,
Saunders, K. M., Selkirk, P. M., Simms, A. R., Spiegel, C., Stolldorf, T. D.,
Sugden, D. E., van der Putten, N., van Ommen, T., Verfaillie, D., Vyverman,
W., Wagner, B., White, D. A., Witus, A. E., and Zwartz, D.: A community-based
geological reconstruction of Antarctic Ice Sheet deglaciation since the Last
Glacial Maximum, Quaternary Sci. Rev., 100, 1–9, 2014. a, b, c, d
Raymo, M. E., Lisiecki, L. E., and Nisancioglu, K. H.: Plio-Pleistocene ice
volume, Antarctic climate, and the global delta18O record, Science, 313,
492–495, 2006. a
Reeh, N.: Parameterization of melt rate and surface temperature on the
Greenland ice sheet, Polarforschung, 59, 113–128, 1991. a
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.: Ice-shelf melting
around Antarctica, Science, 341, 266–270, 2013. a
Roche, D. M., Dokken, T. M., Goosse, H., Renssen, H., and Weber, S. L.: Climate of the Last Glacial Maximum: sensitivity studies and model-data comparison with the LOVECLIM coupled model, Clim. Past, 3, 205–224, https://doi.org/10.5194/cp-3-205-2007, 2007. a
Roche, D. M., Crosta, X., and Renssen, H.: Evaluating Southern Ocean sea-ice
for the Last Glacial Maximum and pre-industrial climates: PMIP-2 models and
data evidence, Quaternary Sci. Rev., 56, 99–106, 2012. a
Scambos, T. A., Bell, R. E., Alley, R. B., Anandakrishnan, S., Bromwich, D. H.,
Brunt, K., Christianson, K., Creyts, T., Das, S. B., DeConto, R., Dutrieux,
P., Fricker, H. A., Holland, D., MacGregor, J., Medley, B., Nicolas, J. P.,
Pollard, D., Siegfried, M. R., Smith, A. M., Steig, E. J., Trusel, L. D.,
Vaughan, D. G., and Yager, P. L.: How much, how fast?: A science review and
outlook for research on the instability of Antarctica's Thwaites Glacier in
the 21st century, Global Planet. Change, 153, 16–34, 2017. a
Shackleton, N. J.: The 100,000-year ice-age cycle identified and found to lag
temperature, carbon dioxide and orbital eccentricity, Science, 289,
1897–1902, 2000. a
Snow, K., Hogg, A. M., Downes, S. M., Sloyan, B. M., Bates, M. L., and
Griffies, S. M.: Sensitivity of abyssal water masses to overflow
parameterisations, Ocean Model., 89, 84–103, 2015. a
Stap, L. B., van de Wal, R. S. W., de Boer, B., Bintanja, R., and Lourens, L. J.: Interaction of ice sheets and climate during the past 800 000 years, Clim. Past, 10, 2135–2152, https://doi.org/10.5194/cp-10-2135-2014, 2014. a
Steig, E. J., Ding, Q., Battisti, D. S., and Jenkins, A.: Tropical forcing of
Circumpolar Deep Water Inflow and outlet glacier thinning in the Amundsen Sea
Embayment, West Antarctica, Ann. Glaciol., 53, 19–28, 2012. a
Steig, E. J., Huybers, K., Singh, H. A., Steiger, N. J., Ding, Q., Frierson, D.
M. W., Popp, T., and White, J. W. C.: Influence of West Antarctic Ice Sheet
collapse on Antarctic surface climate, Geophys. Res. Lett., 42,
2015GL063861, https://doi.org/10.1002/2015GL063861, 2015. a
Sutter, J., Gierz, P., Grosfeld, K., Thoma, M., and Lohmann, G.: Ocean
temperature thresholds for Last Interglacial West Antarctic Ice Sheet
collapse, Geophys. Res. Lett., 43, 2016GL067818, https://doi.org/10.1002/2016GL067818, 2016. a, b, c
Thoma, M., Jenkins, A., Holland, D. M., and Jacobs, S. S.: Modelling
Circumpolar Deep Water intrusions on the Amundsen Sea continental shelf,
Antarctica, Geophys. Res. Lett., 35, L18602, https://doi.org/10.1029/2008GL034939, 2008. a
Tigchelaar, M., Timmermann, A., Pollard, D., Friedrich, T., and Heinemann, M.:
Local insolation changes enhance Antarctic interglacials: Insights from an
800,000-year ice sheet simulation with transient climate forcing, Earth
Planet. Sci. Lett., 495, 69–78, 2018a. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Tigchelaar, M., Timmermann, A., Pollard, D., Friedrich, T., and Heinemann, M.: Antarctic ice sheet 784k and 408k experiments, electronic dataset, ICCP Climate Data Server, https://doi.org/10.22741/iccp.20180014, 2018b. a
Timmermann, A., Timm, O. E., Stott, L., and Menviel, L.: The roles of CO2
and orbital forcing in driving Southern Hemispheric temperature variations
during the last 21000 yr, J. Climate, 22, 1626–1640, 2009. a
Vallelonga, P., Barbante, C., Cozzi, G., Gabrieli, J., Schüpbach, S., Spolaor, A., and Turetta, C.: Iron fluxes to Talos Dome, Antarctica, over the past 200 kyr, Clim. Past, 9, 597–604, https://doi.org/10.5194/cp-9-597-2013, 2013.
a, b
van de Berg, W. J., van den Broeke, M. R., Reijmer, C. H., and van Meijgaard,
E.: Reassessment of the Antarctic surface mass balance using calibrated
output of a regional atmospheric climate model, J. Geophys. Res.-Atmos.,
111, 1–15, 2006. a
van den Broeke, M.: Strong surface melting preceded collapse of Antarctic
Peninsula ice shelf, Geophys. Res. Lett., 32, 1–4, 2005. a
Weber, M. E., Clark, P. U., Kuhn, G., Timmermann, A., Sprenk, D., Gladstone,
R., Zhang, X., Lohmann, G., Menviel, L., Chikamoto, M. O., Friedrich, T., and
Ohlwein, C.: Millennial-scale variability in Antarctic ice-sheet discharge
during the last deglaciation, Nature, 510, 134–138, 2014. a
Short summary
The Antarctic Ice Sheet has expanded and retracted often in the past, but, so far, studies have not identified which environmental driver is most important: air temperature, snowfall, ocean conditions or global sea level. In a modeling study of 400 000 years of Antarctic Ice Sheet variability we isolated different drivers and found that no single driver dominates. Air temperature and sea level are most important and combine in a synergistic way, with important implications for future change.
The Antarctic Ice Sheet has expanded and retracted often in the past, but, so far, studies have...