Articles | Volume 13, issue 9
The Cryosphere, 13, 2259–2280, 2019
https://doi.org/10.5194/tc-13-2259-2019
The Cryosphere, 13, 2259–2280, 2019
https://doi.org/10.5194/tc-13-2259-2019
Research article
03 Sep 2019
Research article | 03 Sep 2019

A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018)

Ward van Pelt et al.

Related authors

Long-term firn and mass balance modelling for Abramov glacier, Pamir Alay
Marlene Kronenberg, Ward van Pelt, Horst Machguth, Joel Fiddes, Martin Hoelzle, and Felix Pertziger
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-380,https://doi.org/10.5194/tc-2021-380, 2022
Preprint under review for TC
Short summary
Firn changes at Colle Gnifetti revealed with a high-resolution process-based physical model approach
Enrico Mattea, Horst Machguth, Marlene Kronenberg, Ward van Pelt, Manuela Bassi, and Martin Hoelzle
The Cryosphere, 15, 3181–3205, https://doi.org/10.5194/tc-15-3181-2021,https://doi.org/10.5194/tc-15-3181-2021, 2021
Short summary
Elemental and water-insoluble organic carbon in Svalbard snow: a synthesis of observations during 2007–2018
Christian Zdanowicz, Jean-Charles Gallet, Mats P. Björkman, Catherine Larose, Thomas Schuler, Bartłomiej Luks, Krystyna Koziol, Andrea Spolaor, Elena Barbaro, Tõnu Martma, Ward van Pelt, Ulla Wideqvist, and Johan Ström
Atmos. Chem. Phys., 21, 3035–3057, https://doi.org/10.5194/acp-21-3035-2021,https://doi.org/10.5194/acp-21-3035-2021, 2021
Short summary
The firn meltwater Retention Model Intercomparison Project (RetMIP): evaluation of nine firn models at four weather station sites on the Greenland ice sheet
Baptiste Vandecrux, Ruth Mottram, Peter L. Langen, Robert S. Fausto, Martin Olesen, C. Max Stevens, Vincent Verjans, Amber Leeson, Stefan Ligtenberg, Peter Kuipers Munneke, Sergey Marchenko, Ward van Pelt, Colin R. Meyer, Sebastian B. Simonsen, Achim Heilig, Samira Samimi, Shawn Marshall, Horst Machguth, Michael MacFerrin, Masashi Niwano, Olivia Miller, Clifford I. Voss, and Jason E. Box
The Cryosphere, 14, 3785–3810, https://doi.org/10.5194/tc-14-3785-2020,https://doi.org/10.5194/tc-14-3785-2020, 2020
Short summary
Hydrology and runoff routing of glacierized drainage basins in the Kongsfjord area, northwest Svalbard
Ankit Pramanik, Jack Kohler, Katrin Lindbäck, Penelope How, Ward Van Pelt, Glen Liston, and Thomas V. Schuler
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-197,https://doi.org/10.5194/tc-2020-197, 2020
Revised manuscript not accepted
Short summary

Related subject area

Discipline: Glaciers | Subject: Climate Interactions
On the attribution of industrial-era glacier mass loss to anthropogenic climate change
Gerard H. Roe, John Erich Christian, and Ben Marzeion
The Cryosphere, 15, 1889–1905, https://doi.org/10.5194/tc-15-1889-2021,https://doi.org/10.5194/tc-15-1889-2021, 2021
Short summary
Distributed summer air temperatures across mountain glaciers in the south-east Tibetan Plateau: temperature sensitivity and comparison with existing glacier datasets
Thomas E. Shaw, Wei Yang, Álvaro Ayala, Claudio Bravo, Chuanxi Zhao, and Francesca Pellicciotti
The Cryosphere, 15, 595–614, https://doi.org/10.5194/tc-15-595-2021,https://doi.org/10.5194/tc-15-595-2021, 2021
Short summary
Glacier runoff variations since 1955 in the Maipo River basin, in the semiarid Andes of central Chile
Álvaro Ayala, David Farías-Barahona, Matthias Huss, Francesca Pellicciotti, James McPhee, and Daniel Farinotti
The Cryosphere, 14, 2005–2027, https://doi.org/10.5194/tc-14-2005-2020,https://doi.org/10.5194/tc-14-2005-2020, 2020
Short summary
Impact of warming shelf waters on ice mélange and terminus retreat at a large SE Greenland glacier
Suzanne L. Bevan, Adrian J. Luckman, Douglas I. Benn, Tom Cowton, and Joe Todd
The Cryosphere, 13, 2303–2315, https://doi.org/10.5194/tc-13-2303-2019,https://doi.org/10.5194/tc-13-2303-2019, 2019
Short summary

Cited articles

Aas, K. S., Dunse, T., Collier, E., Schuler, T. V., Berntsen, T. K., Kohler, J., and Luks, B.: The climatic mass balance of Svalbard glaciers: a 10-year simulation with a coupled atmosphere–glacier mass balance model, The Cryosphere, 10, 1089–1104, https://doi.org/10.5194/tc-10-1089-2016, 2016. a, b, c
AMAP: Snow, water, ice and permafrost in the Arctic (SWIPA), Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 2017. a
Beaudon, E., Moore, J. C., Martma, T., Pohjola, V. A., Van de Wal, R. S., Kohler, J., and Isaksson, E.: Lomonosovfonna and Holtedahlfonna ice cores reveal east–west disparities of the Spitsbergen environment since AD 1700, J. Glaciol., 59, 1069–1083, https://doi.org/10.3189/2013JoG12J203, 2013. a
Bevan, S. L., Luckman, A., Hubbard, B., Kulessa, B., Ashmore, D., Kuipers Munneke, P., O'Leary, M., Booth, A., Sevestre, H., and McGrath, D.: Centuries of intense surface melt on Larsen C Ice Shelf, The Cryosphere, 11, 2743–2753, https://doi.org/10.5194/tc-11-2743-2017, 2017. a
Bezeau, P., Sharp, M., Burgess, D., and Gascon, G.: Firn profile changes in response to extreme 21st-century melting at Devon Ice Cap, Nunavut, Canada, J. Glaciol., 59, 981–991, https://doi.org/10.3189/2013JoG12J208, 2013. a
Download
Short summary
The climate in Svalbard is undergoing amplified change compared to the global mean, which has a strong impact on the climatic mass balance of glaciers and the state of seasonal snow in land areas. In this study we analyze a coupled energy balance–subsurface model dataset, which provides detailed information on distributed climatic mass balance, snow conditions, and runoff across Svalbard between 1957 and 2018.