Articles | Volume 12, issue 3
https://doi.org/10.5194/tc-12-907-2018
https://doi.org/10.5194/tc-12-907-2018
Research article
 | 
14 Mar 2018
Research article |  | 14 Mar 2018

Near-surface temperature inversion during summer at Summit, Greenland, and its relation to MODIS-derived surface temperatures

Alden C. Adolph, Mary R. Albert, and Dorothy K. Hall

Related authors

Characterization of in situ cosmogenic 14CO production, retention and loss in firn and shallow ice at Summit, Greenland
Benjamin Hmiel, Vasilii V. Petrenko, Christo Buizert, Andrew M. Smith, Michael N. Dyonisius, Philip Place, Bin Yang, Quan Hua, Ross Beaudette, Jeffrey P. Severinghaus, Christina Harth, Ray F. Weiss, Lindsey Davidge, Melisa Diaz, Matthew Pacicco, James A. Menking, Michael Kalk, Xavier Faïn, Alden Adolph, Isaac Vimont, and Lee T. Murray
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-121,https://doi.org/10.5194/tc-2023-121, 2023
Preprint under review for TC
Short summary
Monitoring of snow surface near-infrared bidirectional reflectance factors with added light-absorbing particles
Adam Schneider, Mark Flanner, Roger De Roo, and Alden Adolph
The Cryosphere, 13, 1753–1766, https://doi.org/10.5194/tc-13-1753-2019,https://doi.org/10.5194/tc-13-1753-2019, 2019
Short summary

Related subject area

Remote Sensing
Bayesian physical–statistical retrieval of snow water equivalent and snow depth from X- and Ku-band synthetic aperture radar – demonstration using airborne SnowSAr in SnowEx'17
Siddharth Singh, Michael Durand, Edward Kim, and Ana P. Barros
The Cryosphere, 18, 747–773, https://doi.org/10.5194/tc-18-747-2024,https://doi.org/10.5194/tc-18-747-2024, 2024
Short summary
A low-cost and open-source approach for supraglacial debris thickness mapping using UAV-based infrared thermography
Jérôme Messmer and Alexander Raphael Groos
The Cryosphere, 18, 719–746, https://doi.org/10.5194/tc-18-719-2024,https://doi.org/10.5194/tc-18-719-2024, 2024
Short summary
Snow water equivalent retrieval over Idaho – Part 1: Using Sentinel-1 repeat-pass interferometry
Shadi Oveisgharan, Robert Zinke, Zachary Hoppinen, and Hans Peter Marshall
The Cryosphere, 18, 559–574, https://doi.org/10.5194/tc-18-559-2024,https://doi.org/10.5194/tc-18-559-2024, 2024
Short summary
Passive microwave remote-sensing-based high-resolution snow depth mapping for Western Himalayan zones using multifactor modeling approach
Dhiraj Kumar Singh, Srinivasarao Tanniru, Kamal Kant Singh, Harendra Singh Negi, and RAAJ Ramsankaran
The Cryosphere, 18, 451–474, https://doi.org/10.5194/tc-18-451-2024,https://doi.org/10.5194/tc-18-451-2024, 2024
Short summary
Refined glacial lake extraction in a high-Asia region by deep neural network and superpixel-based conditional random field methods
Yungang Cao, Rumeng Pan, Meng Pan, Ruodan Lei, Puying Du, and Xueqin Bai
The Cryosphere, 18, 153–168, https://doi.org/10.5194/tc-18-153-2024,https://doi.org/10.5194/tc-18-153-2024, 2024
Short summary

Cited articles

Adolph, A., Albert, M., and Hall, D.: Infrared Surface Temperature near Summit, Greenland in June and July of 2015, Arctic Data Center, https://doi.org/10.18739/A2W27K, 2018. 
Ahlstrøm, A. P. and PROMICE project team: A new programme for monitoring the mass loss of the Greenland ice sheet, in: Review of survey activities 2007, edited by: Bennike, O. and Higgins, A. K., GEUS, Copenhagen (Geological Survey of Denmark and Greenland Bulletin 15), 2008. 
ARM Climate Research Facility: Millimeter Wavelength Cloud Radar (MMCRMOM), updated hourly, 1 June 2015–30 July 2018, Summit Station, Greenland (SMT) External Data (satellites and others) (X1), compiled by: Johnson, K. and Bharadwaj, N., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive, Oak Ridge, Tennessee, USA, https://doi.org/10.5439/1025228 (last access: 7 March 2018), 2010. 
Berkelhammer, M., Noone, D. C., Steen-Larsen, H. C., Bailey, A., Cox, C. J., O'Neill, M. S., Schneider, D., Steffen, K., and White, J. W. C.: Surface-atmosphere decoupling limits accumulation at Summit, Greenland, Sci. Adv., 2, e1501704, https://doi.org/10.1126/sciadv.1501704, 2016. 
Box, J. E.: Greenland ice sheet surface mass balance reconstruction. Part II: surface mass balance (1840–2010), J. Climate, 26, 6974–6989, https://doi.org/10.1175/JCLI-D-12-00518.1, 2013. 
Download
Short summary
In our studies of surface temperature in Greenland, we found that there can be differences between the temperature of the snow surface and the air directly above, depending on wind speed and incoming solar radiation. We also found that temperature measurements of the snow surface from remote sensing instruments may be more accurate than previously thought. Our results are relevant to studies of climate change in the remote sensing community and in studies of the atmospheric boundary layer.