Research article
14 Mar 2018
Research article
| 14 Mar 2018
Near-surface temperature inversion during summer at Summit, Greenland, and its relation to MODIS-derived surface temperatures
Alden C. Adolph et al.
Related authors
Adam Schneider, Mark Flanner, Roger De Roo, and Alden Adolph
The Cryosphere, 13, 1753–1766, https://doi.org/10.5194/tc-13-1753-2019, https://doi.org/10.5194/tc-13-1753-2019, 2019
Short summary
Short summary
To study the process of snow aging, we engineered a prototype instrument called the Near-Infrared Emitting and Reflectance-Monitoring Dome (NERD). Using the NERD, we observed rapid snow aging in experiments with added light absorbing particles (LAPs). Particulate matter deposited on the snow increased absorption of solar energy and enhanced snow melt. These results indicate the role of LAPs' indirect effect on snow aging through a positive feedback mechanism related to the snow grain size.
Jason P. Briner, Caleb K. Walcott, Joerg M. Schaefer, Nicolás Young, Joseph A. MacGregor, Kristin Poinar, Benjamin A. Keisling, Sridhar Anandakrishnan, Mary R. Albert, Tanner Kuhl, and Grant Boeckmann
EGUsphere, https://doi.org/10.5194/egusphere-2022-264, https://doi.org/10.5194/egusphere-2022-264, 2022
Short summary
Short summary
The 7.4 meters of sea-level-equivalent stored as Greenland ice is getting smaller every year. The uncertain trajectory of ice loss could be better understood with knowledge of the ice sheet's response to past climate change. Within the bedrock below the present-day ice sheet is an archive of past ice sheet history. We analyze all available data from Greenland to create maps showing where on the ice sheet scientists can drill, using currently available drills, to obtain sub-ice materials.
Dorothy K. Hall, George A. Riggs, Nicolo E. DiGirolamo, and Miguel O. Román
Hydrol. Earth Syst. Sci., 23, 5227–5241, https://doi.org/10.5194/hess-23-5227-2019, https://doi.org/10.5194/hess-23-5227-2019, 2019
Short summary
Short summary
Global snow cover maps have been available since 2000 from the MODerate resolution Imaging Spectroradiometer (MODIS), and since 2000 and 2011 from the Suomi National Polar-orbiting Partnership (S-NPP) and the Visible Infrared Imaging Radiometer Suite (VIIRS), respectively. These products are used extensively in hydrological modeling and climate studies. New, daily cloud-gap-filled snow products are available from both MODIS and VIIRS, and are being used to develop an Earth science data record.
Adam Schneider, Mark Flanner, Roger De Roo, and Alden Adolph
The Cryosphere, 13, 1753–1766, https://doi.org/10.5194/tc-13-1753-2019, https://doi.org/10.5194/tc-13-1753-2019, 2019
Short summary
Short summary
To study the process of snow aging, we engineered a prototype instrument called the Near-Infrared Emitting and Reflectance-Monitoring Dome (NERD). Using the NERD, we observed rapid snow aging in experiments with added light absorbing particles (LAPs). Particulate matter deposited on the snow increased absorption of solar energy and enhanced snow melt. These results indicate the role of LAPs' indirect effect on snow aging through a positive feedback mechanism related to the snow grain size.
George A. Riggs, Dorothy K. Hall, and Miguel O. Román
Earth Syst. Sci. Data, 9, 765–777, https://doi.org/10.5194/essd-9-765-2017, https://doi.org/10.5194/essd-9-765-2017, 2017
Short summary
Short summary
The current collections of the NASA snow-cover data products generated from the MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) satellite instruments are described. Revisions in the MODIS snow cover algorithm increased accuracy, and the data content of products is increased from previous collection. The VIIRS algorithm and data product are very similar to those of MODIS. The objective of generating similar products is to enable the creation of a snow-cover extent climate-data record.
K. Keegan, M. R. Albert, and I. Baker
The Cryosphere, 8, 1801–1806, https://doi.org/10.5194/tc-8-1801-2014, https://doi.org/10.5194/tc-8-1801-2014, 2014
A. C. Adolph and M. R. Albert
The Cryosphere, 8, 319–328, https://doi.org/10.5194/tc-8-319-2014, https://doi.org/10.5194/tc-8-319-2014, 2014
S. A. Gregory, M. R. Albert, and I. Baker
The Cryosphere, 8, 91–105, https://doi.org/10.5194/tc-8-91-2014, https://doi.org/10.5194/tc-8-91-2014, 2014
K. Kawamura, J. P. Severinghaus, M. R. Albert, Z. R. Courville, M. A. Fahnestock, T. Scambos, E. Shields, and C. A. Shuman
Atmos. Chem. Phys., 13, 11141–11155, https://doi.org/10.5194/acp-13-11141-2013, https://doi.org/10.5194/acp-13-11141-2013, 2013
H. Fischer, J. Severinghaus, E. Brook, E. Wolff, M. Albert, O. Alemany, R. Arthern, C. Bentley, D. Blankenship, J. Chappellaz, T. Creyts, D. Dahl-Jensen, M. Dinn, M. Frezzotti, S. Fujita, H. Gallee, R. Hindmarsh, D. Hudspeth, G. Jugie, K. Kawamura, V. Lipenkov, H. Miller, R. Mulvaney, F. Parrenin, F. Pattyn, C. Ritz, J. Schwander, D. Steinhage, T. van Ommen, and F. Wilhelms
Clim. Past, 9, 2489–2505, https://doi.org/10.5194/cp-9-2489-2013, https://doi.org/10.5194/cp-9-2489-2013, 2013
Related subject area
Remote Sensing
Empirical correction of systematic orthorectification error in Sentinel-2 velocity fields for Greenlandic outlet glaciers
Three different glacier surges at a spot: what satellites observe and what not
Correlation dispersion as a measure to better estimate uncertainty in remotely sensed glacier displacements
A leading-edge-based method for correction of slope-induced errors in ice-sheet heights derived from radar altimetry
Potential of X-band polarimetric synthetic aperture radar co-polar phase difference for arctic snow depth estimation
Characterizing the sea-ice floe size distribution in the Canada Basin from high-resolution optical satellite imagery
Snow water equivalent change mapping from slope-correlated synthetic aperture radar interferometry (InSAR) phase variations
Generating large-scale sea ice motion from Sentinel-1 and the RADARSAT Constellation Mission using the Environment and Climate Change Canada automated sea ice tracking system
Rotational drift in Antarctic sea ice: pronounced cyclonic features and differences between data products
Glacier and rock glacier changes since the 1950s in the La Laguna catchment, Chile
Sentinel-1 time series for mapping snow cover depletion and timing of snowmelt in Arctic periglacial environments: case study from Zackenberg and Kobbefjord, Greenland
Satellite passive microwave sea-ice concentration data set intercomparison using Landsat data
Cross-platform classification of level and deformed sea ice considering per-class incident angle dependency of backscatter intensity
Sentinel-1 snow depth retrieval at sub-kilometer resolution over the European Alps
Incorporating kinematic attributes into rock glacier inventories exploiting InSAR data: preliminary results in eleven regions worldwide
An empirical algorithm to map perennial firn aquifers and ice slabs within the Greenland Ice Sheet using satellite L-band microwave radiometry
Brief communication: Increased glacier mass loss in the Russian High Arctic (2010–2017)
Characterizing tundra snow sub-pixel variability to improve brightness temperature estimation in satellite SWE retrievals
Mapping liquid water content in snow at the millimeter scale: an intercomparison of mixed-phase optical property models using hyperspectral imaging and in situ measurements
Assessing volumetric change distributions and scaling relations of retrogressive thaw slumps across the Arctic
Contrasting surface velocities between lake- and land-terminating glaciers in the Himalayan region
Advances in altimetric snow depth estimates using bi-frequency SARAL and CryoSat-2 Ka–Ku measurements
Aerodynamic roughness length of crevassed tidewater glaciers from UAV mapping
Antarctic snow-covered sea ice topography derivation from TanDEM-X using polarimetric SAR interferometry
Contribution of ground ice melting to the expansion of Serling Co lake on the Tibetan Plateau
Supraglacial lake bathymetry automatically derived from ICESat-2 constraining lake depth estimates from multi-source satellite imagery
Image classification of marine-terminating outlet glaciers in Greenland using deep learning methods
Brief communication: Evaluation of the snow cover detection in the Copernicus High Resolution Snow & Ice Monitoring Service
Brief communication: Detection of glacier surge activity using cloud computing of Sentinel-1 radar data
Impacts of snow data and processing methods on the interpretation of long-term changes in Baffin Bay early spring sea ice thickness
InSAR-based characterization of rock glacier movement in the Uinta Mountains, Utah, USA
Semi-automated tracking of iceberg B43 using Sentinel-1 SAR images via Google Earth Engine
Review Article: Global Monitoring of Snow Water Equivalent using High Frequency Radar Remote Sensing
Surface composition of debris-covered glaciers across the Himalaya using linear spectral unmixing of Landsat 8 OLI imagery
A lead-width distribution for Antarctic sea ice: a case study for the Weddell Sea with high-resolution Sentinel-2 images
Mapping seasonal glacier melt across the Hindu Kush Himalaya with time series synthetic aperture radar (SAR)
Estimating surface mass balance patterns from unoccupied aerial vehicle measurements in the ablation area of the Morteratsch–Pers glacier complex (Switzerland)
High-resolution topography of the Antarctic Peninsula combining the TanDEM-X DEM and Reference Elevation Model of Antarctica (REMA) mosaic
Penetration of interferometric radar signals in Antarctic snow
Evaluation of snow extent time series derived from Advanced Very High Resolution Radiometer global area coverage data (1982–2018) in the Hindu Kush Himalayas
Measuring the state and temporal evolution of glaciers in Alaska and Yukon using synthetic-aperture-radar-derived (SAR-derived) 3D time series of glacier surface flow
Satellite altimetry detection of ice-shelf-influenced fast ice
MOSAiC drift expedition from October 2019 to July 2020: sea ice conditions from space and comparison with previous years
Tracking changes in the area, thickness, and volume of the Thwaites tabular iceberg “B30” using satellite altimetry and imagery
Analyzing glacier retreat and mass balances using aerial and UAV photogrammetry in the Ötztal Alps, Austria
Towards a swath-to-swath sea-ice drift product for the Copernicus Imaging Microwave Radiometer mission
Spaceborne infrared imagery for early detection of Weddell Polynya opening
Surges of Harald Moltke Bræ, north-western Greenland: seasonal modulation and initiation at the terminus
Brief communication: Ice sheet elevation measurements from the Sentinel-3A and Sentinel-3B tandem phase
Estimating instantaneous sea-ice dynamics from space using the bi-static radar measurements of Earth Explorer 10 candidate Harmony
Thomas R. Chudley, Ian M. Howat, Bidhyananda Yadav, and Myoung-Jong Noh
The Cryosphere, 16, 2629–2642, https://doi.org/10.5194/tc-16-2629-2022, https://doi.org/10.5194/tc-16-2629-2022, 2022
Short summary
Short summary
Sentinel-2 images are subject to distortion due to orthorectification error, which makes it difficult to extract reliable glacier velocity fields from images from different orbits. Here, we use a complete record of velocity fields at four Greenlandic outlet glaciers to empirically estimate the systematic error, allowing us to correct cross-track glacier velocity fields to a comparable accuracy to other medium-resolution satellite datasets.
Frank Paul, Livia Piermattei, Désirée Treichler, Lin Gilbert, Luc Girod, Andreas Kääb, Ludivine Libert, Thomas Nagler, Tazio Strozzi, and Jan Wuite
The Cryosphere, 16, 2505–2526, https://doi.org/10.5194/tc-16-2505-2022, https://doi.org/10.5194/tc-16-2505-2022, 2022
Short summary
Short summary
Glacier surges are widespread in the Karakoram and have been intensely studied using satellite data and DEMs. We use time series of such datasets to study three glacier surges in the same region of the Karakoram. We found strongly contrasting advance rates and flow velocities, maximum velocities of 30 m d−1, and a change in the surge mechanism during a surge. A sensor comparison revealed good agreement, but steep terrain and the two smaller glaciers caused limitations for some of them.
Bas Altena, Andreas Kääb, and Bert Wouters
The Cryosphere, 16, 2285–2300, https://doi.org/10.5194/tc-16-2285-2022, https://doi.org/10.5194/tc-16-2285-2022, 2022
Short summary
Short summary
Repeat overflights of satellites are used to estimate surface displacements. However, such products lack a simple error description for individual measurements, but variation in precision occurs, since the calculation is based on the similarity of texture. Fortunately, variation in precision manifests itself in the correlation peak, which is used for the displacement calculation. This spread is used to make a connection to measurement precision, which can be of great use for model inversion.
Weiran Li, Cornelis Slobbe, and Stef Lhermitte
The Cryosphere, 16, 2225–2243, https://doi.org/10.5194/tc-16-2225-2022, https://doi.org/10.5194/tc-16-2225-2022, 2022
Short summary
Short summary
This study proposes a new method for correcting the slope-induced errors in satellite radar altimetry. The slope-induced errors can significantly affect the height estimations of ice sheets if left uncorrected. This study applies the method to radar altimetry data (CryoSat-2) and compares the performance with two existing methods. The performance is assessed by comparison with independent height measurements from ICESat-2. The assessment shows that the method performs promisingly.
Joëlle Voglimacci-Stephanopoli, Anna Wendleder, Hugues Lantuit, Alexandre Langlois, Samuel Stettner, Andreas Schmitt, Jean-Pierre Dedieu, Achim Roth, and Alain Royer
The Cryosphere, 16, 2163–2181, https://doi.org/10.5194/tc-16-2163-2022, https://doi.org/10.5194/tc-16-2163-2022, 2022
Short summary
Short summary
Changes in the state of the snowpack in the context of observed global warming must be considered to improve our understanding of the processes within the cryosphere. This study aims to characterize an arctic snowpack using the TerraSAR-X satellite. Using a high-spatial-resolution vegetation classification, we were able to quantify the variability in snow depth, as well as the topographic soil wetness index, which provided a better understanding of the electromagnetic wave–ground interaction.
Alexis Anne Denton and Mary-Louise Timmermans
The Cryosphere, 16, 1563–1578, https://doi.org/10.5194/tc-16-1563-2022, https://doi.org/10.5194/tc-16-1563-2022, 2022
Short summary
Short summary
Arctic sea ice has a distribution of ice sizes that provides insight into the physics of the ice. We examine this distribution from satellite imagery from 1999 to 2014 in the Canada Basin. We find that it appears as a power law whose power becomes less negative with increasing ice concentrations and has a seasonality tied to that of ice concentration. Results suggest ice concentration be considered in models of this distribution and are important for understanding sea ice in a warming Arctic.
Jayson Eppler, Bernhard Rabus, and Peter Morse
The Cryosphere, 16, 1497–1521, https://doi.org/10.5194/tc-16-1497-2022, https://doi.org/10.5194/tc-16-1497-2022, 2022
Short summary
Short summary
We introduce a new method for mapping changes in the snow water equivalent (SWE) of dry snow based on differences between time-repeated synthetic aperture radar (SAR) images. It correlates phase differences with variations in the topographic slope which allows the method to work without any "reference" targets within the imaged area and without having to numerically unwrap the spatial phase maps. This overcomes the key challenges faced in using SAR interferometry for SWE change mapping.
Stephen E. L. Howell, Mike Brady, and Alexander S. Komarov
The Cryosphere, 16, 1125–1139, https://doi.org/10.5194/tc-16-1125-2022, https://doi.org/10.5194/tc-16-1125-2022, 2022
Short summary
Short summary
We describe, apply, and validate the Environment and Climate Change Canada automated sea ice tracking system (ECCC-ASITS) that routinely generates large-scale sea ice motion (SIM) over the pan-Arctic domain using synthetic aperture radar (SAR) images. The ECCC-ASITS was applied to the incoming image streams of Sentinel-1AB and the RADARSAT Constellation Mission from March 2020 to October 2021 using a total of 135 471 SAR images and generated new SIM datasets (i.e., 7 d 25 km and 3 d 6.25 km).
Wayne de Jager and Marcello Vichi
The Cryosphere, 16, 925–940, https://doi.org/10.5194/tc-16-925-2022, https://doi.org/10.5194/tc-16-925-2022, 2022
Short summary
Short summary
Ice motion can be used to better understand how weather and climate change affect the ice. Antarctic sea ice extent has shown large variability over the observed period, and dynamical features may also have changed. Our method allows for the quantification of rotational motion caused by wind and how this may have changed with time. Cyclonic motion dominates the Atlantic sector, particularly from 2015 onwards, while anticyclonic motion has remained comparatively small and unchanged.
Benjamin Aubrey Robson, Shelley MacDonell, Álvaro Ayala, Tobias Bolch, Pål Ringkjøb Nielsen, and Sebastián Vivero
The Cryosphere, 16, 647–665, https://doi.org/10.5194/tc-16-647-2022, https://doi.org/10.5194/tc-16-647-2022, 2022
Short summary
Short summary
This work uses satellite and aerial data to study glaciers and rock glacier changes in La Laguna catchment within the semi-arid Andes of Chile, where ice melt is an important factor in river flow. The results show the rate of ice loss of Tapado Glacier has been increasing since the 1950s, which possibly relates to a dryer, warmer climate over the previous decades. Several rock glaciers show high surface velocities and elevation changes between 2012 and 2020, indicating they may be ice-rich.
Sebastian Buchelt, Kirstine Skov, Kerstin Krøier Rasmussen, and Tobias Ullmann
The Cryosphere, 16, 625–646, https://doi.org/10.5194/tc-16-625-2022, https://doi.org/10.5194/tc-16-625-2022, 2022
Short summary
Short summary
In this paper, we present a threshold and a derivative approach using Sentinel-1 synthetic aperture radar time series to capture the small-scale heterogeneity of snow cover (SC) and snowmelt. Thereby, we can identify start of runoff and end of SC as well as perennial snow and SC extent during melt with high spatiotemporal resolution. Hence, our approach could support monitoring of distribution patterns and hydrological cascading effects of SC from the catchment scale to pan-Arctic observations.
Stefan Kern, Thomas Lavergne, Leif Toudal Pedersen, Rasmus Tage Tonboe, Louisa Bell, Maybritt Meyer, and Luise Zeigermann
The Cryosphere, 16, 349–378, https://doi.org/10.5194/tc-16-349-2022, https://doi.org/10.5194/tc-16-349-2022, 2022
Short summary
Short summary
High-resolution clear-sky optical satellite imagery has rarely been used to evaluate satellite passive microwave sea-ice concentration products beyond case-study level. By comparing 10 such products with sea-ice concentration estimated from > 350 such optical images in both hemispheres, we expand results of earlier evaluation studies for these products. Results stress the need to look beyond precision and accuracy and to discuss the evaluation data’s quality and filters applied in the products.
Wenkai Guo, Polona Itkin, Johannes Lohse, Malin Johansson, and Anthony Paul Doulgeris
The Cryosphere, 16, 237–257, https://doi.org/10.5194/tc-16-237-2022, https://doi.org/10.5194/tc-16-237-2022, 2022
Short summary
Short summary
This study uses radar satellite data categorized into different sea ice types to detect ice deformation, which is significant for climate science and ship navigation. For this, we examine radar signal differences of sea ice between two similar satellite sensors and show an optimal way to apply categorization methods across sensors, so more data can be used for this purpose. This study provides a basis for future reliable and constant detection of ice deformation remotely through satellite data.
Hans Lievens, Isis Brangers, Hans-Peter Marshall, Tobias Jonas, Marc Olefs, and Gabriëlle De Lannoy
The Cryosphere, 16, 159–177, https://doi.org/10.5194/tc-16-159-2022, https://doi.org/10.5194/tc-16-159-2022, 2022
Short summary
Short summary
Snow depth observations at high spatial resolution from the Sentinel-1 satellite mission are presented over the European Alps. The novel observations can improve our knowledge of seasonal snow mass in areas with complex topography, where satellite-based estimates are currently lacking, and benefit a number of applications including water resource management, flood forecasting, and numerical weather prediction.
Aldo Bertone, Chloé Barboux, Xavier Bodin, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Hanne Hvidtfeldt Christiansen, Margaret Darrow, Reynald Delaloye, Bernd Etzelmüller, Ole Humlum, Christophe Lambiel, Karianne Staalesen Lilleøren, Volkmar Mair, Gabriel Pellegrinon, Line Rouyet, Lucas Ruiz, and Tazio Strozzi
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-342, https://doi.org/10.5194/tc-2021-342, 2022
Revised manuscript accepted for TC
Short summary
Short summary
We present the guidelines developed by the IPA Action Group (within the ESA Permafrost CCI project) to include InSAR-based kinematic information in rock glacier inventories. Nine operators applied these guidelines to eleven regions worldwide; more than 3,600 rock glaciers are classified according to their kinematics. We test and demonstrate the feasibility of applying common rules to produce homogeneous kinematic inventories at global scale, useful for hydrological and climate change purposes.
Julie Z. Miller, Riley Culberg, David G. Long, Christopher A. Shuman, Dustin M. Schroeder, and Mary J. Brodzik
The Cryosphere, 16, 103–125, https://doi.org/10.5194/tc-16-103-2022, https://doi.org/10.5194/tc-16-103-2022, 2022
Short summary
Short summary
We use L-band brightness temperature imagery from NASA's Soil Moisture Active Passive (SMAP) satellite to map the extent of perennial firn aquifer and ice slab areas within the Greenland Ice Sheet. As Greenland's climate continues to warm and seasonal surface melting increases in extent, intensity, and duration, quantifying the possible rapid expansion of perennial firn aquifers and ice slab areas has significant implications for understanding the stability of the Greenland Ice Sheet.
Christian Sommer, Thorsten Seehaus, Andrey Glazovsky, and Matthias H. Braun
The Cryosphere, 16, 35–42, https://doi.org/10.5194/tc-16-35-2022, https://doi.org/10.5194/tc-16-35-2022, 2022
Short summary
Short summary
Arctic glaciers have been subject to extensive warming due to global climate change, yet their contribution to sea level rise has been relatively small in the past. In this study we provide mass changes of most glaciers of the Russian High Arctic (Franz Josef Land, Severnaya Zemlya, Novaya Zemlya). We use TanDEM-X satellite measurements to derive glacier surface elevation changes. Our results show an increase in glacier mass loss and a sea level rise contribution of 0.06 mm/a (2010–2017).
Julien Meloche, Alexandre Langlois, Nick Rutter, Alain Royer, Josh King, Branden Walker, Philip Marsh, and Evan J. Wilcox
The Cryosphere, 16, 87–101, https://doi.org/10.5194/tc-16-87-2022, https://doi.org/10.5194/tc-16-87-2022, 2022
Short summary
Short summary
To estimate snow water equivalent from space, model predictions of the satellite measurement (brightness temperature in our case) have to be used. These models allow us to estimate snow properties from the brightness temperature by inverting the model. To improve SWE estimate, we proposed incorporating the variability of snow in these model as it has not been taken into account yet. A new parameter (coefficient of variation) is proposed because it improved simulation of brightness temperature.
Christopher Donahue, S. McKenzie Skiles, and Kevin Hammonds
The Cryosphere, 16, 43–59, https://doi.org/10.5194/tc-16-43-2022, https://doi.org/10.5194/tc-16-43-2022, 2022
Short summary
Short summary
The amount of water within a snowpack is important information for predicting snowmelt and wet-snow avalanches. From within a controlled laboratory, the optimal method for measuring liquid water content (LWC) at the snow surface or along a snow pit profile using near-infrared imagery was determined. As snow samples melted, multiple models to represent wet-snow reflectance were assessed against a more established LWC instrument. The best model represents snow as separate spheres of ice and water.
Philipp Bernhard, Simon Zwieback, Nora Bergner, and Irena Hajnsek
The Cryosphere, 16, 1–15, https://doi.org/10.5194/tc-16-1-2022, https://doi.org/10.5194/tc-16-1-2022, 2022
Short summary
Short summary
We present an investigation of retrogressive thaw slumps in 10 study sites across the Arctic. These slumps have major impacts on hydrology and ecosystems and can also reinforce climate change by the mobilization of carbon. Using time series of digital elevation models, we found that thaw slump change rates follow a specific type of distribution that is known from landslides in more temperate landscapes and that the 2D area change is strongly related to the 3D volumetric change.
Jan Bouke Pronk, Tobias Bolch, Owen King, Bert Wouters, and Douglas I. Benn
The Cryosphere, 15, 5577–5599, https://doi.org/10.5194/tc-15-5577-2021, https://doi.org/10.5194/tc-15-5577-2021, 2021
Short summary
Short summary
About 10 % of Himalayan glaciers flow directly into lakes. This study finds, using satellite imagery, that such glaciers show higher flow velocities than glaciers without ice–lake contact. In particular near the glacier tongue the impact of a lake on the glacier flow can be dramatic. The development of current and new meltwater bodies will influence the flow of an increasing number of Himalayan glaciers in the future, a scenario not currently considered in regional ice loss projections.
Florent Garnier, Sara Fleury, Gilles Garric, Jérôme Bouffard, Michel Tsamados, Antoine Laforge, Marion Bocquet, Renée Mie Fredensborg Hansen, and Frédérique Remy
The Cryosphere, 15, 5483–5512, https://doi.org/10.5194/tc-15-5483-2021, https://doi.org/10.5194/tc-15-5483-2021, 2021
Short summary
Short summary
Snow depth data are essential to monitor the impacts of climate change on sea ice volume variations and their impacts on the climate system. For that purpose, we present and assess the altimetric snow depth product, computed in both hemispheres from CryoSat-2 and SARAL satellite data. The use of these data instead of the common climatology reduces the sea ice thickness by about 30 cm over the 2013–2019 period. These data are also crucial to argue for the launch of the CRISTAL satellite mission.
Armin Dachauer, Richard Hann, and Andrew J. Hodson
The Cryosphere, 15, 5513–5528, https://doi.org/10.5194/tc-15-5513-2021, https://doi.org/10.5194/tc-15-5513-2021, 2021
Short summary
Short summary
This study investigated the aerodynamic roughness length (z0) – an important parameter to determine the surface roughness – of crevassed tidewater glaciers on Svalbard using drone data. The results point out that the range of z0 values across a crevassed glacier is large but in general significantly higher compared to non-crevassed glacier surfaces. The UAV approach proved to be an ideal tool to provide distributed z0 estimates of crevassed glaciers which can be used to model turbulent fluxes.
Lanqing Huang, Georg Fischer, and Irena Hajnsek
The Cryosphere, 15, 5323–5344, https://doi.org/10.5194/tc-15-5323-2021, https://doi.org/10.5194/tc-15-5323-2021, 2021
Short summary
Short summary
This study shows an elevation difference between the radar interferometric measurements and the optical measurements from a coordinated campaign over the snow-covered deformed sea ice in the western Weddell Sea, Antarctica. The objective is to correct the penetration bias of microwaves and to generate a precise sea ice topographic map, including the snow depth on top. Excellent performance for sea ice topographic retrieval is achieved with the proposed model and the developed retrieval scheme.
Lingxiao Wang, Lin Zhao, Huayun Zhou, Shibo Liu, Erji Du, Defu Zou, Guangyue Liu, Yao Xiao, Guojie Hu, Chong Wang, Zhe Sun, Zhibin Li, Yongping Qiao, Tonghua Wu, Chengye Li, and Xubing Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-335, https://doi.org/10.5194/tc-2021-335, 2021
Revised manuscript accepted for TC
Short summary
Short summary
Serling Co lake had the greatest increase in water storage recently among all the lakes on the Tibetan Plateau. This study made the first attempt to quantify the water contribution of ground ice melting to the expansion of this lake by evaluating the ground surface deformation since terrain surface settlement provides a “window” to detect the subsurface ground ice melting. Results show that the water contribution ratio could reach 10 % during 2017–2020.
Rajashree Tri Datta and Bert Wouters
The Cryosphere, 15, 5115–5132, https://doi.org/10.5194/tc-15-5115-2021, https://doi.org/10.5194/tc-15-5115-2021, 2021
Short summary
Short summary
The ICESat-2 laser altimeter can detect the surface and bottom of a supraglacial lake. We introduce the Watta algorithm, automatically calculating lake surface, corrected bottom, and (sub-)surface ice at high resolution adapting to signal strength. ICESat-2 depths constrain full lake depths of 46 lakes over Jakobshavn glacier using multiple sources of imagery, including very high-resolution Planet imagery, used for the first time to extract supraglacial lake depths empirically using ICESat-2.
Melanie Marochov, Chris R. Stokes, and Patrice E. Carbonneau
The Cryosphere, 15, 5041–5059, https://doi.org/10.5194/tc-15-5041-2021, https://doi.org/10.5194/tc-15-5041-2021, 2021
Short summary
Short summary
Research into the use of deep learning for pixel-level classification of landscapes containing marine-terminating glaciers is lacking. We adapt a novel and transferable deep learning workflow to classify satellite imagery containing marine-terminating outlet glaciers in Greenland. Our workflow achieves high accuracy and mimics human visual performance, potentially providing a useful tool to monitor glacier change and further understand the impacts of climate change in complex glacial settings.
Zacharie Barrou Dumont, Simon Gascoin, Olivier Hagolle, Michaël Ablain, Rémi Jugier, Germain Salgues, Florence Marti, Aurore Dupuis, Marie Dumont, and Samuel Morin
The Cryosphere, 15, 4975–4980, https://doi.org/10.5194/tc-15-4975-2021, https://doi.org/10.5194/tc-15-4975-2021, 2021
Short summary
Short summary
Since 2020, the Copernicus High Resolution Snow & Ice Monitoring Service has distributed snow cover maps at 20 m resolution over Europe in near-real time. These products are derived from the Sentinel-2 Earth observation mission, with a revisit time of 5 d or less (cloud-permitting). Here we show the good accuracy of the snow detection over a wide range of regions in Europe, except in dense forest regions where the snow cover is hidden by the trees.
Paul Willem Leclercq, Andreas Kääb, and Bas Altena
The Cryosphere, 15, 4901–4907, https://doi.org/10.5194/tc-15-4901-2021, https://doi.org/10.5194/tc-15-4901-2021, 2021
Short summary
Short summary
In this study we present a novel method to detect glacier surge activity. Surges are relevant as they disturb the link between glacier change and climate, and studying surges can also increase understanding of glacier flow. We use variations in Sentinel-1 radar backscatter strength, calculated with the use of Google Earth Engine, to detect surge activity. In our case study for the year 2018–2019 we find 69 cases of surging glaciers globally. Many of these were not previously known to be surging.
Isolde A. Glissenaar, Jack C. Landy, Alek A. Petty, Nathan T. Kurtz, and Julienne C. Stroeve
The Cryosphere, 15, 4909–4927, https://doi.org/10.5194/tc-15-4909-2021, https://doi.org/10.5194/tc-15-4909-2021, 2021
Short summary
Short summary
Scientists can estimate sea ice thickness using satellites that measure surface height. To determine the sea ice thickness, we also need to know the snow depth and density. This paper shows that the chosen snow depth product has a considerable impact on the findings of sea ice thickness state and trends in Baffin Bay, showing mean thinning with some snow depth products and mean thickening with others. This shows that it is important to better understand and monitor snow depth on sea ice.
George Brencher, Alexander L. Handwerger, and Jeffrey S. Munroe
The Cryosphere, 15, 4823–4844, https://doi.org/10.5194/tc-15-4823-2021, https://doi.org/10.5194/tc-15-4823-2021, 2021
Short summary
Short summary
We use satellite InSAR to inventory and monitor rock glaciers, frozen bodies of ice and rock debris that are an important water resource in the Uinta Mountains, Utah, USA. Our inventory contains 205 rock glaciers, which occur within a narrow elevation band and deform at 1.94 cm yr-1 on average. Uinta rock glacier movement changes seasonally and appears to be driven by spring snowmelt. The role of rock glaciers as a perennial water resource is threatened by ice loss due to climate change.
YoungHyun Koo, Hongjie Xie, Stephen F. Ackley, Alberto M. Mestas-Nuñez, Grant J. Macdonald, and Chang-Uk Hyun
The Cryosphere, 15, 4727–4744, https://doi.org/10.5194/tc-15-4727-2021, https://doi.org/10.5194/tc-15-4727-2021, 2021
Short summary
Short summary
This study demonstrates for the first time the potential of Google Earth Engine (GEE) cloud-computing platform and Sentinel-1 synthetic aperture radar (SAR) images for semi-automated tracking of area changes and movements of iceberg B43. Our novel GEE-based iceberg tracking can be used to construct a large iceberg database for a better understanding of the behavior of icebergs and their interactions with surrounding environments.
Leung Tsang, Michael Durand, Chris Derksen, Ana P. Barros, Do-Hyuk Kang, Hans Lievens, Hans-Peter Marshall, Jiyue Zhu, Joel Johnson, Joshua King, Juha Lemmetyinen, Melody Sandells, Nick Rutter, Paul Siqueira, Anne Nolin, Batu Osmanoglu, Carrie Vuyovich, Edward J. Kim, Drew Taylor, Ioanna Merkouriadi, Ludovic Brucker, Mahdi Navari, Marie Dumont, Richard Kelly, Rhae Sung Kim, Tien-Hao Liao, and Xiaolan Xu
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-295, https://doi.org/10.5194/tc-2021-295, 2021
Revised manuscript accepted for TC
Short summary
Short summary
Snow water equivalent (SWE) is of fundamental importance to water, energy, and geochemical cycles, but is poorly observed globally. Synthetic aperture radar (SAR) measurements at X and Ku-band can address this gap. This review will serve to inform the broad snow research, monitoring, and applications communities on the progress made in recent decades to move towards a new satellite mission capable of addressing the needs of the geoscience researchers and users.
Adina E. Racoviteanu, Lindsey Nicholson, and Neil F. Glasser
The Cryosphere, 15, 4557–4588, https://doi.org/10.5194/tc-15-4557-2021, https://doi.org/10.5194/tc-15-4557-2021, 2021
Short summary
Short summary
Supraglacial debris cover comprises ponds, exposed ice cliffs, debris material and vegetation. Understanding these features is important for glacier hydrology and related hazards. We use linear spectral unmixing of satellite data to assess the composition of map supraglacial debris across the Himalaya range in 2015. One of the highlights of this study is the automated mapping of supraglacial ponds, which complements and expands the existing supraglacial debris and lake databases.
Marek Muchow, Amelie U. Schmitt, and Lars Kaleschke
The Cryosphere, 15, 4527–4537, https://doi.org/10.5194/tc-15-4527-2021, https://doi.org/10.5194/tc-15-4527-2021, 2021
Short summary
Short summary
Linear-like openings in sea ice, also called leads, occur with widths from meters to kilometers. We use satellite images from Sentinel-2 with a resolution of 10 m to identify leads and measure their widths. With that we investigate the frequency of lead widths using two different statistical methods, since other studies have shown a dependency of heat exchange on the lead width. We are the first to address the sea-ice lead-width distribution in the Weddell Sea, Antarctica.
Corey Scher, Nicholas C. Steiner, and Kyle C. McDonald
The Cryosphere, 15, 4465–4482, https://doi.org/10.5194/tc-15-4465-2021, https://doi.org/10.5194/tc-15-4465-2021, 2021
Short summary
Short summary
Time series synthetic aperture radar enables detection of seasonal reach-scale glacier surface melting across continents, a key component of surface energy balance for mountain glaciers. We observe melting across all areas of the Hindu Kush Himalaya (HKH) cryosphere. Surface melting for the HKH lasts for close to 5 months per year on average and for just below 2 months at elevations exceeding 7000 m a.s.l. Further, there are indications that melting is more than superficial at high elevations.
Lander Van Tricht, Philippe Huybrechts, Jonas Van Breedam, Alexander Vanhulle, Kristof Van Oost, and Harry Zekollari
The Cryosphere, 15, 4445–4464, https://doi.org/10.5194/tc-15-4445-2021, https://doi.org/10.5194/tc-15-4445-2021, 2021
Short summary
Short summary
We conducted innovative research on the use of drones to determine the surface mass balance (SMB) of two glaciers. Considering appropriate spatial scales, we succeeded in determining the SMB in the ablation area with large accuracy. Consequently, we are convinced that our method and the use of drones to monitor the mass balance of a glacier’s ablation area can be an add-on to stake measurements in order to obtain a broader picture of the heterogeneity of the SMB of glaciers.
Yuting Dong, Ji Zhao, Dana Floricioiu, Lukas Krieger, Thomas Fritz, and Michael Eineder
The Cryosphere, 15, 4421–4443, https://doi.org/10.5194/tc-15-4421-2021, https://doi.org/10.5194/tc-15-4421-2021, 2021
Short summary
Short summary
We generated a consistent, gapless and high-resolution (12 m) topography product of the Antarctic Peninsula by combining the complementary advantages of the two most recent high-resolution digital elevation model (DEM) products: the TanDEM-X DEM and the Reference Elevation Model of Antarctica. The generated DEM maintains the characteristics of the TanDEM-X DEM, has a better quality due to the correction of the residual height errors in the non-edited TanDEM-X DEM and will be freely available.
Helmut Rott, Stefan Scheiblauer, Jan Wuite, Lukas Krieger, Dana Floricioiu, Paola Rizzoli, Ludivine Libert, and Thomas Nagler
The Cryosphere, 15, 4399–4419, https://doi.org/10.5194/tc-15-4399-2021, https://doi.org/10.5194/tc-15-4399-2021, 2021
Short summary
Short summary
We studied relations between interferometric synthetic aperture radar (InSAR) signals and snow–firn properties and tested procedures for correcting the penetration bias of InSAR digital elevation models at Union Glacier, Antarctica. The work is based on SAR data of the TanDEM-X mission, topographic data from optical sensors and field measurements. We provide new insights on radar signal interactions with polar snow and show the performance of penetration bias retrievals using InSAR coherence.
Xiaodan Wu, Kathrin Naegeli, Valentina Premier, Carlo Marin, Dujuan Ma, Jingping Wang, and Stefan Wunderle
The Cryosphere, 15, 4261–4279, https://doi.org/10.5194/tc-15-4261-2021, https://doi.org/10.5194/tc-15-4261-2021, 2021
Short summary
Short summary
We performed a comprehensive accuracy assessment of an Advanced Very High Resolution Radiometer global area coverage snow-cover extent time series dataset for the Hindu Kush Himalayan (HKH) region. The sensor-to-sensor consistency, the accuracy related to snow depth, elevations, land-cover types, slope, and aspects, and topographical variability were also explored. Our analysis shows an overall accuracy of 94 % in comparison with in situ station data, which is the same with MOD10A1 V006.
Sergey Samsonov, Kristy Tiampo, and Ryan Cassotto
The Cryosphere, 15, 4221–4239, https://doi.org/10.5194/tc-15-4221-2021, https://doi.org/10.5194/tc-15-4221-2021, 2021
Short summary
Short summary
The direction and intensity of glacier surface flow adjust in response to a warming climate, causing sea level rise, seasonal flooding and droughts, and changing landscapes and habitats. We developed a technique that measures the evolution of surface flow for a glaciated region in three dimensions with high temporal and spatial resolution and used it to map the temporal evolution of glaciers in southeastern Alaska (Agassiz, Seward, Malaspina, Klutlan, Walsh, and Kluane) during 2016–2021.
Gemma M. Brett, Daniel Price, Wolfgang Rack, and Patricia J. Langhorne
The Cryosphere, 15, 4099–4115, https://doi.org/10.5194/tc-15-4099-2021, https://doi.org/10.5194/tc-15-4099-2021, 2021
Short summary
Short summary
Ice shelf meltwater in the surface ocean affects sea ice formation, causing it to be thicker and, in particular conditions, to have a loose mass of platelet ice crystals called a sub‐ice platelet layer beneath. This causes the sea ice freeboard to stand higher above sea level. In this study, we demonstrate for the first time that the signature of ice shelf meltwater in the surface ocean manifesting as higher sea ice freeboard in McMurdo Sound is detectable from space using satellite technology.
Thomas Krumpen, Luisa von Albedyll, Helge F. Goessling, Stefan Hendricks, Bennet Juhls, Gunnar Spreen, Sascha Willmes, H. Jakob Belter, Klaus Dethloff, Christian Haas, Lars Kaleschke, Christian Katlein, Xiangshan Tian-Kunze, Robert Ricker, Philip Rostosky, Janna Rückert, Suman Singha, and Julia Sokolova
The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021, https://doi.org/10.5194/tc-15-3897-2021, 2021
Short summary
Short summary
We use satellite data records collected along the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) drift to categorize ice conditions that shaped and characterized the floe and surroundings during the expedition. A comparison with previous years is made whenever possible. The aim of this analysis is to provide a basis and reference for subsequent research in the six main research areas of atmosphere, ocean, sea ice, biogeochemistry, remote sensing and ecology.
Anne Braakmann-Folgmann, Andrew Shepherd, and Andy Ridout
The Cryosphere, 15, 3861–3876, https://doi.org/10.5194/tc-15-3861-2021, https://doi.org/10.5194/tc-15-3861-2021, 2021
Short summary
Short summary
We investigate the disintegration of the B30 iceberg using satellite remote sensing and find that the iceberg lost 378 km3 of ice in 6.5 years, corresponding to 80 % of its initial volume. About two thirds are due to fragmentation at the sides, and one third is due to melting at the iceberg’s base. The release of fresh water and nutrients impacts ocean circulation, sea ice formation, and biological production. We show that adding a snow layer is important when deriving iceberg thickness.
Joschka Geissler, Christoph Mayer, Juilson Jubanski, Ulrich Münzer, and Florian Siegert
The Cryosphere, 15, 3699–3717, https://doi.org/10.5194/tc-15-3699-2021, https://doi.org/10.5194/tc-15-3699-2021, 2021
Short summary
Short summary
The study demonstrates the potential of photogrammetry for analyzing glacier retreat with high spatial resolution. Twenty-three glaciers within the Ötztal Alps are analyzed. We compare photogrammetric and glaciologic mass balances of the Vernagtferner by using the ELA for our density assumption and an UAV survey for a temporal correction of the geodetic mass balances. The results reveal regions of anomalous mass balance and allow estimates of the imbalance between mass balances and ice dynamics.
Thomas Lavergne, Montserrat Piñol Solé, Emily Down, and Craig Donlon
The Cryosphere, 15, 3681–3698, https://doi.org/10.5194/tc-15-3681-2021, https://doi.org/10.5194/tc-15-3681-2021, 2021
Short summary
Short summary
Pushed by winds and ocean currents, polar sea ice is on the move. We use passive microwave satellites to observe this motion. The images from their orbits are often put together into daily images before motion is measured. In our study, we measure motion from the individual orbits directly and not from the daily images. We obtain many more motion vectors, and they are more accurate. This can be used for current and future satellites, e.g. the Copernicus Imaging Microwave Radiometer (CIMR).
Céline Heuzé, Lu Zhou, Martin Mohrmann, and Adriano Lemos
The Cryosphere, 15, 3401–3421, https://doi.org/10.5194/tc-15-3401-2021, https://doi.org/10.5194/tc-15-3401-2021, 2021
Short summary
Short summary
For navigation or science planning, knowing when sea ice will open in advance is a prerequisite. Yet, to date, routine spaceborne microwave observations of sea ice are unable to do so. We present the first method based on spaceborne infrared that can forecast an opening several days ahead. We develop it specifically for the Weddell Polynya, a large hole in the Antarctic winter ice cover that unexpectedly re-opened for the first time in 40 years in 2016, and determine why the polynya opened.
Lukas Müller, Martin Horwath, Mirko Scheinert, Christoph Mayer, Benjamin Ebermann, Dana Floricioiu, Lukas Krieger, Ralf Rosenau, and Saurabh Vijay
The Cryosphere, 15, 3355–3375, https://doi.org/10.5194/tc-15-3355-2021, https://doi.org/10.5194/tc-15-3355-2021, 2021
Short summary
Short summary
Harald Moltke Bræ, a marine-terminating glacier in north-western Greenland, undergoes remarkable surges of episodic character. Our data show that a recent surge from 2013 to 2019 was initiated at the glacier front and exhibits a pronounced seasonality with flow velocities varying by 1 order of magnitude, which has not been observed at Harald Moltke Bræ in this way before. These findings are crucial for understanding surge mechanisms at Harald Moltke Bræ and other marine-terminating glaciers.
Malcolm McMillan, Alan Muir, and Craig Donlon
The Cryosphere, 15, 3129–3134, https://doi.org/10.5194/tc-15-3129-2021, https://doi.org/10.5194/tc-15-3129-2021, 2021
Short summary
Short summary
We evaluate the consistency of ice sheet elevation measurements made by two satellites: Sentinel-3A and Sentinel-3B. We analysed data from the unique
tandemphase of the mission, where the two satellites flew 30 s apart to provide near-instantaneous measurements of Earth's surface. Analysing these data over Antarctica, we find no significant difference between the satellites, which is important for demonstrating that they can be used interchangeably for long-term ice sheet monitoring.
Marcel Kleinherenbrink, Anton Korosov, Thomas Newman, Andreas Theodosiou, Alexander S. Komarov, Yuanhao Li, Gert Mulder, Pierre Rampal, Julienne Stroeve, and Paco Lopez-Dekker
The Cryosphere, 15, 3101–3118, https://doi.org/10.5194/tc-15-3101-2021, https://doi.org/10.5194/tc-15-3101-2021, 2021
Short summary
Short summary
Harmony is one of the Earth Explorer 10 candidates that has the chance of being selected for launch in 2028. The mission consists of two satellites that fly in formation with Sentinel-1D, which carries a side-looking radar system. By receiving Sentinel-1's signals reflected from the surface, Harmony is able to observe instantaneous elevation and two-dimensional velocity at the surface. As such, Harmony's data allow the retrieval of sea-ice drift and wave spectra in sea-ice-covered regions.
Cited articles
Adolph, A., Albert, M., and Hall, D.: Infrared Surface Temperature near
Summit, Greenland in June and July of 2015, Arctic Data Center,
https://doi.org/10.18739/A2W27K, 2018.
Ahlstrøm, A. P. and PROMICE project team: A new programme for monitoring
the mass loss of the Greenland ice sheet, in: Review of survey activities 2007,
edited by: Bennike, O. and Higgins, A. K., GEUS, Copenhagen (Geological Survey of
Denmark and Greenland Bulletin 15), 2008.
ARM Climate Research Facility: Millimeter Wavelength Cloud Radar (MMCRMOM),
updated hourly, 1 June 2015–30 July 2018, Summit Station, Greenland (SMT)
External Data (satellites and others) (X1), compiled by: Johnson, K. and
Bharadwaj, N., Atmospheric Radiation Measurement (ARM) Climate Research
Facility Data Archive, Oak Ridge, Tennessee, USA, https://doi.org/10.5439/1025228 (last
access: 7 March 2018), 2010.
Berkelhammer, M., Noone, D. C., Steen-Larsen, H. C., Bailey, A., Cox, C. J.,
O'Neill, M. S., Schneider, D., Steffen, K., and White, J. W. C.:
Surface-atmosphere decoupling limits accumulation at Summit, Greenland, Sci.
Adv., 2, e1501704, https://doi.org/10.1126/sciadv.1501704, 2016.
Box, J. E.: Greenland ice sheet surface mass balance reconstruction. Part
II: surface mass balance (1840–2010), J. Climate, 26, 6974–6989,
https://doi.org/10.1175/JCLI-D-12-00518.1, 2013.
Casey, K. A., Polashenski, C. M., Chen, J., and Tedesco, M.: Impact of MODIS
sensor calibration updates on Greenland Ice Sheet surface reflectance and
albedo trends, The Cryosphere, 11, 1781–1795,
https://doi.org/10.5194/tc-11-1781-2017, 2017.
Comiso, J. C.: Warming trends in the Arctic from clear sky satellite
observations, J. Climate, 16, 3498–3510,
https://doi.org/10.1175/1520-0442(2003)016<3498:WTITAF>2.0.CO;2, 2003.
Fausto, R., van As, D., and Ahlstrøm, A.: Assessing the accuracy of
Greenland ice sheet ice ablation measurements by pressure transducer, J.
Glaciol., 58, 1144–1150, https://doi.org/10.3189/2012JoG12J075, 2012.
Fréville, H., Brun, E., Picard, G., Tatarinova, N., Arnaud, L., Lanconelli,
C., Reijmer, C., and van den Broeke, M.: Using MODIS land surface
temperatures and the Crocus snow model to understand the warm bias of
ERA-Interim reanalyses at the surface in Antarctica, The Cryosphere, 8,
1361–1373, https://doi.org/10.5194/tc-8-1361-2014, 2014.
Good, E. J.: An in situ-based analysis of the relationship between land
surface “skin” and screen-level air temperatures, J. Geophys. Res.-Atmos.,
121, 8801–8819, https://doi.org/10.1002/2016JD025318, 2016.
Guillevic, P., Göttsche, F., Nickeson, J., Hulley, G., Ghent, D., Yu, Y.,
Trigo, I., Hook, S., Sobrino, J. A., Remedios, J., Román, M., and
Camacho, F.: Land Surface Temperature Product Validation Best Practice
Protocol. Version 1.0, edited by: Guillevic, P., Göttsche, F., Nickeson,
J., and Román, M., Best Practice for Satellite-Derived Land Product
Validation (p. 60): Land Product Validation Subgroup (WGCV/CEOS),
https://doi.org/10.5067/doc/ceoswgcv/lpv/lst.001, 2018.
Hachem, S., Duguay, C. R., and Allard, M.: Comparison of MODIS-derived land
surface temperatures with ground surface and air temperature measurements in
continuous permafrost terrain, The Cryosphere, 6, 51–69,
https://doi.org/10.5194/tc-6-51-2012, 2012.
Hall, D. K., Key, J. R., Casey, K. A., Riggs, G. A., and Cavalieri, D. J.:
Sea ice surface temperature product from MODIS, IEEE T. Geosci. Remote, 42,
1076–1087, https://doi.org/10.1109/TGRS.2004.825587, 2004.
Hall, D. K., Box, J. E., Casey, K. A., Hook, S. J., Shuman, C. A., and
Steffen, K.: Comparison of satellite-derived and in situ observations of ice
and snow surface temperatures over Greenland, Remote Sens. Environ., 112,
3739–3749, https://doi.org/10.1016/j.rse.2008.05.007, 2008.
Hall, D. K., Comiso, J. C., DiGirolamo, N. E., Shuman, C. A., Key, J. R., and
Koenig, L. S.: A satellite-derived climate-quality data record of the
clear-sky surface temperature of the Greenland ice sheet, J. Climate, 25,
4785–4798, https://doi.org/10.1175/JCLI-D-11-00365.1, 2012.
Hall, D. K., Comiso, J. C., DiGirolamo, N. E., Shuman, C. A., Box, J. E., and
Koenig, L. S.: Variability in the surface temperature and melt extent of the
Greenland ice sheet from MODIS, Geophys. Res. Lett., 40, 2114–2120,
https://doi.org/10.1002/grl.50240, 2013.
Hall, D. K., Nghiem, S. V., Rigor, I. G., and Miller, J. A.: Uncertainties of
temperature measurements on snow-covered land and sea ice from in situ and
MODIS data during BROMEX, J. Appl. Meteorol. Climatol., 54, 966–978,
https://doi.org/10.1175/JAMC-D-14-0175.1, 2015.
Hook, S. J., Vaughan, R. G., Tonooka, H., and Schladow, S. G.: Absolute
Radiometric In-Flight Validation of Mid Infrared and Thermal Infrared Data
From ASTER and MODIS on the Terra Spacecraft Using the Lake Tahoe, CA/NV,
USA, Automated Validation Site, IEEE T. Geosci. Remote, 45, 1798–1807,
https://doi.org/10.1109/TGRS.2007.894564, 2007.
Hudson, S. R. and Brandt, R. E.: A look at the surface-based temperature
inversion on the Antarctic Plateau, J. Climate, 18, 1673–1696,
https://doi.org/10.1175/JCLI3360.1, 2005.
Kahl, J. D.: Characteristics of the low-level temperature inversion along the
Alaskan Arctic coast, Int. J. Climatol., 10, 537–548,
https://doi.org/10.1002/joc.3370100509, 1990.
Koenig, L. S. and Hall, D. K.: Comparison of satellite, thermochron and air
temperatures at Summit, Greenland, during the winter of 2008/09, J. Glaciol.,
56, 735–741, https://doi.org/10.3189/002214310793146269, 2010.
Kuipers Munneke, P., van den Broeke, M. R., King, J. C., Gray, T., and
Reijmer, C. H.: Near-surface climate and surface energy budget of Larsen C
ice shelf, Antarctic Peninsula, The Cryosphere, 6, 353–363,
https://doi.org/10.5194/tc-6-353-2012, 2012.
Lyapustin, A., Wang, Y., Xiong, X., Meister, G., Platnick, S., Levy, R.,
Franz, B., Korkin, S., Hilker, T., Tucker, J., Hall, F., Sellers, P., Wu, A.,
and Angal, A.: Scientific impact of MODIS C5 calibration degradation and C6+
improvements, Atmos. Meas. Tech., 7, 4353–4365,
https://doi.org/10.5194/amt-7-4353-2014, 2014.
Miller, N. B., Turner, D. D., Bennartz, R., Shupe, M. D., Kulie, M. S.,
Cadeddu, M. P., and Walden, V. P.: Surface-based inversions above central
Greenland, J. Geophys. Res.-Atmos., 118, 495–506, https://doi.org/10.1029/2012JD018867,
2013.
Miller, N. B., Shupe, M. D., Cox, C. J., Walden, V. P., Turner, D. D., and
Steffen, K.: Cloud Radiative Forcing at Summit, Greenland, J. Climate, 28,
6267–6280, https://doi.org/10.1175/JCLI-D-15-0076.1, 2015.
Miller, N. B., Shupe, M. D., Cox, C. J., Noone, D., Persson, P. O. G., and
Steffen, K.: Surface energy budget responses to radiative forcing at Summit,
Greenland, The Cryosphere, 11, 497–516,
https://doi.org/10.5194/tc-11-497-2017, 2017.
Moran, K. P., Martner, B. E., Post, M., Kropfli, R. A., Welsh, D. C., and
Widener, K. B.: An unattended cloud-profiling radar for use in climate
research, B. Am. Meteorol. Soc., 79, 443–455,
https://doi.org/10.1175/1520-0477(1998)079<0443:AUCPRF>2.0.CO;2, 1998.
NASA LP DAAC: MODIS/Aqua Land Surface Temperature and Emissivity 5-Minute L2
Swath 1 km V006, NASA EOSDIS Land Processes DAAC, USGS Earth Resources
Observation and Science (EROS) Center, Sioux Falls, South Dakota
(https://lpdaac.usgs.gov), https://doi.org/10.5067/MODIS/MYD11_L2.006 (last
access: 3 February 2017), 2014.
Navari, M., Margulis, S. A., Bateni, S. M., Tedesco, M., Alexander, P., and
Fettweis, X.: Feasibility of improving a priori regional climate model
estimates of Greenland ice sheet surface mass loss through assimilation of
measured ice surface temperatures, The Cryosphere, 10, 103–120,
https://doi.org/10.5194/tc-10-103-2016, 2016.
Østby, T. I., Schuler, T. V., and Westermann, S.: Severe cloud
contamination of MODIS Land Surface Temperatures over an Arctic ice cap,
Svalbard, Remote Sens. Environ., 142, 95–102, https://doi.org/10.1016/j.rse.2013.11.005,
2014.
Overland, J. E. and Guest, P. S.: The Arctic snow and air temperature budget
over sea ice during winter, J. Geophys.Res.-Oceans (1978–2012), 96,
4651–4662, https://doi.org/10.1029/90JC02264, 1991.
Phillpot, H. R. and Zillman, J. W.: The surface temperature inversion over
the Antarctic continent, J. Geophys. Res., 75, 4161–4169,
https://doi.org/10.1029/JC075i021p04161, 1970.
Polashenski, C. M., Dibb, J. E., Flanner, M. G., Chen, J. Y., Courville, Z.
R., Lai, A. M., Schauer, J. J., Shafer, M. M., and Bergin, M.: Neither dust
nor black carbon causing apparent albedo decline in Greenland's dry snow
zone: Implications for MODIS C5 surface reflectance, Geophys. Res. Lett., 42,
9319–9327, https://doi.org/10.1002/2015GL065912, 2015.
Rae, J. G. L., Aðalgeirsdóttir, G., Edwards, T. L., Fettweis, X.,
Gregory, J. M., Hewitt, H. T., Lowe, J. A., Lucas-Picher, P., Mottram, R. H.,
Payne, A. J., Ridley, J. K., Shannon, S. R., van de Berg, W. J., van de Wal,
R. S. W., and van den Broeke, M. R.: Greenland ice sheet surface mass
balance: evaluating simulations and making projections with regional climate
models, The Cryosphere, 6, 1275–1294,
https://doi.org/10.5194/tc-6-1275-2012, 2012.
Reeh, N.: Parameterization of melt rate and surface temperature on the
Greenland ice sheet, Polarforschung, 59, 113–128, 1989.
Reeves Eyre, J. E. J. and Zeng, X.: Evaluation of Greenland near surface air
temperature datasets, The Cryosphere, 11, 1591–1605,
https://doi.org/10.5194/tc-11-1591-2017, 2017.
Riggs, G. A., Hall, D. K., and Román, M. O.: Overview of NASA's MODIS and
Visible Infrared Imaging Radiometer Suite (VIIRS) snow-cover Earth System
Data Records, Earth Syst. Sci. Data, 9, 765–777,
https://doi.org/10.5194/essd-9-765-2017, 2017.
Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A., and Lenaerts,
J. T.: Acceleration of the contribution of the Greenland and Antarctic ice
sheets to sea level rise, Geophys. Res. Lett., 38, L05503,
https://doi.org/10.1029/2011GL046583, 2011.
Shamir, E. and Georgakakos, K. P.: MODIS Land Surface Temperature as an index
of surface air temperature for operational snowpack estimation, Remote Sens.
Environ., 152, 83–98, https://doi.org/10.1016/j.rse.2014.06.001, 2014.
Shuman, C. A., Steffen, K., Box, J. E., and Stearns, C. R.: A dozen years of
temperature observations at the Summit: Central Greenland automatic weather
stations 1987–99, J. Appl. Meteorol., 40, 741–752,
https://doi.org/10.1175/1520-0450(2001)040<0741:ADYOTO>2.0.CO;2, 2001.
Shuman, C. A., Hall, D. K., DiGirolamo, N. E., Mefford, T. K., and
Schnaubelt, M. J.: Comparison of near-surface air temperatures and MODIS
ice-surface temperatures at Summit, Greenland (2008–13), J. Appl. Meteorol.
Climatol., 53, 2171–2180, https://doi.org/10.1175/JAMC-D-14-0023.1, 2014.
Steffen, K. and Box, J.: Surface climatology of the Greenland ice sheet:
Greenland Climate Network 1995–1999, J. Geophys. Res.-Atmos., 106,
33951–33964, https://doi.org/10.1029/2001JD900161, 2001.
Steffen, K., Box, J., and Abdalati, W.: Greenland climate network: GC-Net, US
Army Cold Regions Research and Engineering (CRREL), CRREL Special Report,
98–103, 1996.
Stocker, T. F.: Climate change 2013: the physical science basis: Working
Group I contribution to the Fifth assessment report of the Intergovernmental
Panel on Climate Change, Cambridge University Press, 2014.
Sverdrup, H. U.: Scientific work of the Maud Expedition, 1922–1925, The
Scientific Monthly, 22, 400–410, 1926.
Van As, D., Van Den Broeke, M., and Van De Wal, R., Daily cycle of the
surface layer and energy balance on the high Antarctic Plateau, Antarctic
Science, 17, 121–133, https://doi.org/10.1017/S095410200500252X, 2005.
Van As, D., Fausto, R. S., and PROMICE Project Team: Programme for monitoring
of the Greenland Ice Sheet (PROMICE): first temperature and ablation records,
in: Review of survey activities 2010, edited by: Bennike, O., Garde, A. A.,
and Watt, W. S., GEUS, Copenhagen, 73–76 (Geological Survey of Denmark and
Greenland Bulletin 23), 2011.
Van Den Broeke, M., Reijmer, C., Van As, D., and Boot, W.: Daily cycle of the
surface energy balance in Antarctica and the influence of clouds, Int. J.
Climatol., 26, 1587–1605, https://doi.org/10.1002/joc.1323, 2006.
van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P.,
Noël, B. P. Y., van de Berg, W. J., van Meijgaard, E., and Wouters, B.: On
the recent contribution of the Greenland ice sheet to sea level change, The
Cryosphere, 10, 1933–1946, https://doi.org/10.5194/tc-10-1933-2016, 2016.
Van Lipzig, N. P. M., Van Meijgaard, E., and Oerlemans, J.: The effect of
temporal variations in the surface mass balance and temperature-inversion
strength on the interpretation of ice-core signals, J. Glaciol., 48,
611–621, https://doi.org/10.3189/172756502781831106, 2002.
Vernon, C. L., Bamber, J. L., Box, J. E., van den Broeke, M. R., Fettweis,
X., Hanna, E., and Huybrechts, P.: Surface mass balance model intercomparison
for the Greenland ice sheet, The Cryosphere, 7, 599–614,
https://doi.org/10.5194/tc-7-599-2013, 2013.
Waddington, E. D. and Morse, D. L.: Spatial variations of local climate at
Taylor Dome, Antarctica: Implications for paleoclimate from ice cores, Ann.
Glaciol., 20, 219–225, https://doi.org/10.3189/172756494794587014, 1994.
Wan, Z: MODIS Land-Surface Temperature Algorithm Theoretical Basis Document
(LST ATBD) Version 3.3, available at:
https://modis.gsfc.nasa.gov/data/atbd/atbd_mod11.pdf (last access: 4
March 2018), 1999.
Wan, Z.: New refinements and validation of the MODIS land-surface
temperature/emissivity products, Remote Sens. Environ., 112, 59–74,
https://doi.org/10.1016/j.rse.2006.06.026, 2008.
Wan, Z.: New refinements and validation of the collection-6 MODIS
land-surface temperature/emissivity product, Remote Sens. Environ., 140,
36–45, https://doi.org/10.1016/j.rse.2013.08.027, 2014.
Wan, Z. and Dozier, J.: A generalized split-window algorithm for retrieving
land-surface temperature from space, IEEE T. Geosci. Remote, 34, 892–905,
https://doi.org/10.1109/36.508406, 1996.
Warren, S. G. and Brandt, R. E.: Optical constants of ice from the
ultraviolet to the microwave: A revised compilation, J. Geophys. Res., 113,
D14220 https://doi.org/10.1029/2007jd009744, 2008.
Wenny, B., Xiong, X., and Madhavan, S.: Evaluation of Terra and Aqua MODIS
thermal emissive band calibration consistency, in: SPIE Remote Sensing,
853317–853317, International Society for Optics and Photonics,
https://doi.org/10.1117/12.974230, 2012.
Westermann, S., Langer, M., and Boike, J.: Systematic bias of average
winter-time land surface temperatures inferred from MODIS at a site on
Svalbard, Norway, Remote Sens. Environ., 118, 162–167,
https://doi.org/10.1016/j.rse.2011.10.025, 2012.
Williamson, S. N., Hik, D. S., Gamon, J. A., Jarosch, A. H., Anslow, F. S.,
Clarke, G. K., and Rupp, T. S.: Spring and summer monthly MODIS LST is
inherently biased compared to air temperature in snow covered sub-Arctic
mountains, Remote Sens. Environ., 189, 14–24, https://doi.org/10.1016/j.rse.2016.11.009,
2017.
Yu, Y., Rothrock, D. A., and Lindsay, R. W.: Accuracy of sea ice temperature
derived from the advanced very high resolution radiometer, J. Geophys.
Res.-Oceans (1978–2012), 100, 4525–4532, https://doi.org/10.1029/94JC02244, 1995.
Xiong, X., Wu, A.,Wenny, B. N., Madhavan, S., Wang, Z., Li, Y., Chen, N.,
Barnes, W. L., and Salomonson, V. V.: Terra and Aqua MODIS Thermal Emissive
Bands On-Orbit Calibration and Performance, IEEE T. Geosci. Remote, 53,
5709–5721, https://doi.org/10.1109/TGRS.2015.2428198, 2015.
Short summary
In our studies of surface temperature in Greenland, we found that there can be differences between the temperature of the snow surface and the air directly above, depending on wind speed and incoming solar radiation. We also found that temperature measurements of the snow surface from remote sensing instruments may be more accurate than previously thought. Our results are relevant to studies of climate change in the remote sensing community and in studies of the atmospheric boundary layer.
In our studies of surface temperature in Greenland, we found that there can be differences...