Articles | Volume 12, issue 7
https://doi.org/10.5194/tc-12-2501-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-12-2501-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Brief communication: Understanding solar geoengineering's potential to limit sea level rise requires attention from cryosphere experts
Peter J. Irvine
CORRESPONDING AUTHOR
Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, USA
David W. Keith
Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, USA
John Moore
Joint Center for Global Change Studies, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
Arctic Centre, University of Lapland, Rovaniemi 96101, Finland
Related authors
No articles found.
Yiliang Ma, Liyun Zhao, Rupert Gladstone, Thomas Zwinger, Michael Wolovick, and John C. Moore
EGUsphere, https://doi.org/10.5194/egusphere-2024-1102, https://doi.org/10.5194/egusphere-2024-1102, 2024
Short summary
Short summary
Totten Glacier in Antarctica holds a sea level potential of 3.85 m. Basal sliding and sub-shelf melt rate have important impact on ice sheet dynamics. We simulate the evolution of Totten Glacier using an ice flow model with different basal sliding parameterizations as well as sub-shelf melt rates to quantify their effect on the projections. We found the modelled glacier retreat and mass loss is sensitive to the choice of basal sliding parameterizations and maximal sub-shelf melt rate.
Daniele Visioni, Alan Robock, Jim Haywood, Matthew Henry, Simone Tilmes, Douglas G. MacMartin, Ben Kravitz, Sarah J. Doherty, John Moore, Chris Lennard, Shingo Watanabe, Helene Muri, Ulrike Niemeier, Olivier Boucher, Abu Syed, Temitope S. Egbebiyi, Roland Séférian, and Ilaria Quaglia
Geosci. Model Dev., 17, 2583–2596, https://doi.org/10.5194/gmd-17-2583-2024, https://doi.org/10.5194/gmd-17-2583-2024, 2024
Short summary
Short summary
This paper describes a new experimental protocol for the Geoengineering Model Intercomparison Project (GeoMIP). In it, we describe the details of a new simulation of sunlight reflection using the stratospheric aerosols that climate models are supposed to run, and we explain the reasons behind each choice we made when defining the protocol.
Abolfazl Rezaei, Khalil Karami, Simone Tilmes, and John C. Moore
Earth Syst. Dynam., 15, 91–108, https://doi.org/10.5194/esd-15-91-2024, https://doi.org/10.5194/esd-15-91-2024, 2024
Short summary
Short summary
Water storage (WS) plays a profound role in the lives of people in the Middle East and North Africa as well as Mediterranean climate "hot spots". WS change by greenhouse gas (GHG) warming is simulated with and without stratospheric aerosol intervention (SAI). WS significantly increases in the Arabian Peninsula and decreases around the Mediterranean under GHG. While SAI partially ameliorates GHG impacts, projected WS increases in dry regions and decreases in wet areas relative to present climate.
Yan Huang, Liyun Zhao, Michael Wolovick, Yiliang Ma, and John C. Moore
The Cryosphere, 18, 103–119, https://doi.org/10.5194/tc-18-103-2024, https://doi.org/10.5194/tc-18-103-2024, 2024
Short summary
Short summary
Geothermal heat flux (GHF) is an important factor affecting the basal thermal environment of an ice sheet and crucial for its dynamics. But it is poorly defined for the Antarctic ice sheet. We simulate the basal temperature and basal melting rate with eight different GHF datasets. We use specularity content as a two-sided constraint to discriminate between local wet or dry basal conditions. Two medium-magnitude GHF distribution maps rank well, showing that most of the inland bed area is frozen.
Chencheng Shen, John C. Moore, Heri Kuswanto, and Liyun Zhao
Earth Syst. Dynam., 14, 1317–1332, https://doi.org/10.5194/esd-14-1317-2023, https://doi.org/10.5194/esd-14-1317-2023, 2023
Short summary
Short summary
The Indonesia Throughflow is an important pathway connecting the Pacific and Indian oceans and is part of a wind-driven circulation that is expected to reduce under greenhouse gas forcing. Solar dimming and sulfate aerosol injection geoengineering may reverse this effect. But stratospheric sulfate aerosols affect winds more than simply ``shading the sun''; they cause a reduction in water transport similar to that we simulate for a scenario with unabated greenhouse gas emissions.
Jun Wang, John C. Moore, and Liyun Zhao
Earth Syst. Dynam., 14, 989–1013, https://doi.org/10.5194/esd-14-989-2023, https://doi.org/10.5194/esd-14-989-2023, 2023
Short summary
Short summary
Apparent temperatures and PM2.5 pollution depend on humidity and wind speed in addition to surface temperature and impact human health and comfort. Apparent temperatures will reach dangerous levels more commonly in the future because of water vapor pressure rises and lower expected wind speeds, but these will also drive changes in PM2.5. Solar geoengineering can significantly reduce the frequency of extreme events relative to modest and especially
business-as-usualgreenhouse scenarios.
Abolfazl Rezaei, Khalil Karami, Simone Tilmes, and John C. Moore
Atmos. Chem. Phys., 23, 5835–5850, https://doi.org/10.5194/acp-23-5835-2023, https://doi.org/10.5194/acp-23-5835-2023, 2023
Short summary
Short summary
Teleconnection patterns are important characteristics of the climate system; well-known examples include the El Niño and La Niña events driven from the tropical Pacific. We examined how spatiotemporal patterns that arise in the Pacific and Atlantic oceans behave under stratospheric aerosol geoengineering and greenhouse gas (GHG)-induced warming. In general, geoengineering reverses trends; however, the changes in decadal oscillation for the AMO, NAO, and PDO imposed by GHG are not suppressed.
Daniele Visioni, Ben Kravitz, Alan Robock, Simone Tilmes, Jim Haywood, Olivier Boucher, Mark Lawrence, Peter Irvine, Ulrike Niemeier, Lili Xia, Gabriel Chiodo, Chris Lennard, Shingo Watanabe, John C. Moore, and Helene Muri
Atmos. Chem. Phys., 23, 5149–5176, https://doi.org/10.5194/acp-23-5149-2023, https://doi.org/10.5194/acp-23-5149-2023, 2023
Short summary
Short summary
Geoengineering indicates methods aiming to reduce the temperature of the planet by means of reflecting back a part of the incoming radiation before it reaches the surface or allowing more of the planetary radiation to escape into space. It aims to produce modelling experiments that are easy to reproduce and compare with different climate models, in order to understand the potential impacts of these techniques. Here we assess its past successes and failures and talk about its future.
Yangxin Chen, Duoying Ji, Qian Zhang, John C. Moore, Olivier Boucher, Andy Jones, Thibaut Lurton, Michael J. Mills, Ulrike Niemeier, Roland Séférian, and Simone Tilmes
Earth Syst. Dynam., 14, 55–79, https://doi.org/10.5194/esd-14-55-2023, https://doi.org/10.5194/esd-14-55-2023, 2023
Short summary
Short summary
Solar geoengineering has been proposed as a way of counteracting the warming effects of increasing greenhouse gases by reflecting solar radiation. This work shows that solar geoengineering can slow down the northern-high-latitude permafrost degradation but cannot preserve the permafrost ecosystem as that under a climate of the same warming level without solar geoengineering.
Aobo Liu, John C. Moore, and Yating Chen
Earth Syst. Dynam., 14, 39–53, https://doi.org/10.5194/esd-14-39-2023, https://doi.org/10.5194/esd-14-39-2023, 2023
Short summary
Short summary
Permafrost thaws and releases carbon (C) as the Arctic warms. Most earth system models (ESMs) have poor estimates of C stored now, so their future C losses are much lower than using the permafrost C model with climate inputs from six ESMs. Bias-corrected soil temperatures and plant productivity plus geoengineering lowering global temperatures from a no-mitigation baseline scenario to a moderate emissions level keep C in the soil worth about USD 0–70 (mean 20) trillion in climate damages by 2100.
Jun Wang, John C. Moore, Liyun Zhao, Chao Yue, and Zhenhua Di
Earth Syst. Dynam., 13, 1625–1640, https://doi.org/10.5194/esd-13-1625-2022, https://doi.org/10.5194/esd-13-1625-2022, 2022
Short summary
Short summary
We examine how geoengineering using aerosols in the atmosphere might impact urban climate in the greater Beijing region containing over 50 million people. Climate models have too coarse resolutions to resolve regional variations well, so we compare two workarounds for this – an expensive physical model and a cheaper statistical method. The statistical method generally gives a reasonable representation of climate and has limited resolution and a different seasonality from the physical model.
Haoran Kang, Liyun Zhao, Michael Wolovick, and John C. Moore
The Cryosphere, 16, 3619–3633, https://doi.org/10.5194/tc-16-3619-2022, https://doi.org/10.5194/tc-16-3619-2022, 2022
Short summary
Short summary
Basal thermal conditions are important to ice dynamics and sensitive to geothermal heat flux (GHF). We estimate basal thermal conditions of the Lambert–Amery Glacier system with six GHF maps. Recent GHFs inverted from aerial geomagnetic observations produce a larger warm-based area and match the observed subglacial lakes better than the other GHFs. The modelled basal melt rate is 10 to hundreds of millimetres per year in fast-flowing glaciers feeding the Amery Ice Shelf and smaller inland.
Mengdie Xie, John C. Moore, Liyun Zhao, Michael Wolovick, and Helene Muri
Atmos. Chem. Phys., 22, 4581–4597, https://doi.org/10.5194/acp-22-4581-2022, https://doi.org/10.5194/acp-22-4581-2022, 2022
Short summary
Short summary
We use data from six Earth system models to estimate Atlantic meridional overturning circulation (AMOC) changes and its drivers under four different solar geoengineering methods. Solar dimming seems relatively more effective than marine cloud brightening or stratospheric aerosol injection at reversing greenhouse-gas-driven declines in AMOC. Geoengineering-induced AMOC amelioration is due to better maintenance of air–sea temperature differences and reduced loss of Arctic summer sea ice.
Debra K. Weisenstein, Daniele Visioni, Henning Franke, Ulrike Niemeier, Sandro Vattioni, Gabriel Chiodo, Thomas Peter, and David W. Keith
Atmos. Chem. Phys., 22, 2955–2973, https://doi.org/10.5194/acp-22-2955-2022, https://doi.org/10.5194/acp-22-2955-2022, 2022
Short summary
Short summary
This paper explores a potential method of geoengineering that could be used to slow the rate of change of climate over decadal scales. We use three climate models to explore how injections of accumulation-mode sulfuric acid aerosol change the large-scale stratospheric particle size distribution and radiative forcing response for the chosen scenarios. Radiative forcing per unit sulfur injected and relative to the change in aerosol burden is larger with particulate than with SO2 injections.
Chao Yue, Louise Steffensen Schmidt, Liyun Zhao, Michael Wolovick, and John C. Moore
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-318, https://doi.org/10.5194/tc-2021-318, 2021
Revised manuscript not accepted
Short summary
Short summary
We use the ice sheet model PISM to estimate Vatnajökull mass balance under solar geoengineering. We find that Stratospheric aerosol injection at the rate of 5 Tg yr−1 reduces ice cap mass loss by 4 percentage points relative to the RCP4.5 scenario. Dynamic mass loss is a significant component of mass balance, but insensitive to climate forcing.
Rupert Gladstone, Benjamin Galton-Fenzi, David Gwyther, Qin Zhou, Tore Hattermann, Chen Zhao, Lenneke Jong, Yuwei Xia, Xiaoran Guo, Konstantinos Petrakopoulos, Thomas Zwinger, Daniel Shapero, and John Moore
Geosci. Model Dev., 14, 889–905, https://doi.org/10.5194/gmd-14-889-2021, https://doi.org/10.5194/gmd-14-889-2021, 2021
Short summary
Short summary
Retreat of the Antarctic ice sheet, and hence its contribution to sea level rise, is highly sensitive to melting of its floating ice shelves. This melt is caused by warm ocean currents coming into contact with the ice. Computer models used for future ice sheet projections are not able to realistically evolve these melt rates. We describe a new coupling framework to enable ice sheet and ocean computer models to interact, allowing projection of the evolution of melt and its impact on sea level.
Xiaoran Guo, Liyun Zhao, Rupert M. Gladstone, Sainan Sun, and John C. Moore
The Cryosphere, 13, 3139–3153, https://doi.org/10.5194/tc-13-3139-2019, https://doi.org/10.5194/tc-13-3139-2019, 2019
Sandro Vattioni, Debra Weisenstein, David Keith, Aryeh Feinberg, Thomas Peter, and Andrea Stenke
Atmos. Chem. Phys., 19, 4877–4897, https://doi.org/10.5194/acp-19-4877-2019, https://doi.org/10.5194/acp-19-4877-2019, 2019
Short summary
Short summary
This study is among the first modeling studies on stratospheric sulfate geoengineering that interactively couple a size-resolved sectional aerosol module to well-described stratospheric chemistry and radiation schemes in a global 3-D chemistry–climate model. We found that compared with SO2 injection, the direct emission of aerosols results in more effective radiative forcing and that sensitivities to different injection strategies vary for different forms of injected sulfur.
Rupert M. Gladstone, Yuwei Xia, and John Moore
The Cryosphere, 12, 3605–3615, https://doi.org/10.5194/tc-12-3605-2018, https://doi.org/10.5194/tc-12-3605-2018, 2018
Short summary
Short summary
Computer models for the simulation of marine ice sheets (ice sheets resting on bedrock below sea level) historically show poor numerical convergence for grounding line (the boundary between grounded and floating parts of the ice sheet) movement. We have further characterised the nature of the numerical problems leading to poor convergence and highlighted implications for the design of computer experiments that test grounding line movement.
Liren Wei, Duoying Ji, Chiyuan Miao, Helene Muri, and John C. Moore
Atmos. Chem. Phys., 18, 16033–16050, https://doi.org/10.5194/acp-18-16033-2018, https://doi.org/10.5194/acp-18-16033-2018, 2018
Short summary
Short summary
We analyzed streamflow and flood frequency under the stratospheric aerosol geoengineering scenario simulated by climate models. Stratospheric aerosol geoengineering appears to reduce flood risk in most regions, but the overall effects are largely determined by the large-scale geographic pattern. Over the Amazon, stratospheric aerosol geoengineering ameliorates the drying trend here under a future warming climate.
Michael J. Wolovick and John C. Moore
The Cryosphere, 12, 2955–2967, https://doi.org/10.5194/tc-12-2955-2018, https://doi.org/10.5194/tc-12-2955-2018, 2018
Short summary
Short summary
In this paper, we explore the possibility of using locally targeted geoengineering to slow the rate of an ice sheet collapse. We find that an intervention as big as existing large civil engineering projects could have a 30 % probability of stopping an ice sheet collapse, while larger interventions have better odds of success. With more research to improve upon the simple designs we considered, it may be possible to perfect a design that was both achievable and had good odds of success.
Ben Kravitz, Philip J. Rasch, Hailong Wang, Alan Robock, Corey Gabriel, Olivier Boucher, Jason N. S. Cole, Jim Haywood, Duoying Ji, Andy Jones, Andrew Lenton, John C. Moore, Helene Muri, Ulrike Niemeier, Steven Phipps, Hauke Schmidt, Shingo Watanabe, Shuting Yang, and Jin-Ho Yoon
Atmos. Chem. Phys., 18, 13097–13113, https://doi.org/10.5194/acp-18-13097-2018, https://doi.org/10.5194/acp-18-13097-2018, 2018
Short summary
Short summary
Marine cloud brightening has been proposed as a means of geoengineering/climate intervention, or deliberately altering the climate system to offset anthropogenic climate change. In idealized simulations that highlight contrasts between land and ocean, we find that the globe warms, including the ocean due to transport of heat from land. This study reinforces that no net energy input into the Earth system does not mean that temperature will necessarily remain unchanged.
Duoying Ji, Songsong Fang, Charles L. Curry, Hiroki Kashimura, Shingo Watanabe, Jason N. S. Cole, Andrew Lenton, Helene Muri, Ben Kravitz, and John C. Moore
Atmos. Chem. Phys., 18, 10133–10156, https://doi.org/10.5194/acp-18-10133-2018, https://doi.org/10.5194/acp-18-10133-2018, 2018
Short summary
Short summary
We examine extreme temperature and precipitation under climate-model-simulated solar dimming and stratospheric aerosol injection geoengineering schemes. Both types of geoengineering lead to lower minimum temperatures at higher latitudes and greater cooling of minimum temperatures and maximum temperatures over land compared with oceans. Stratospheric aerosol injection is more effective in reducing tropical extreme precipitation, while solar dimming is more effective over extra-tropical regions.
Qin Wang, John C. Moore, and Duoying Ji
Atmos. Chem. Phys., 18, 9173–9188, https://doi.org/10.5194/acp-18-9173-2018, https://doi.org/10.5194/acp-18-9173-2018, 2018
Short summary
Short summary
(1) Genesis potential and ventilation indices are assessed in 6 ESMs running RCP4.5 and G4, in 6 tropical cyclone genesis basins.
(2) Genesis potential is reasonably well parameterized by simple surface temperature, but other factors are important in different basins and models such as relative humidity and wind shear.
(3) The Northern Hemisphere basins behave rather differently from the southern ones, and these dominate TC statistics. G4 leads to significantly fewer TCs globally than RCP4.5.
Anboyu Guo, John C. Moore, and Duoying Ji
Atmos. Chem. Phys., 18, 8689–8706, https://doi.org/10.5194/acp-18-8689-2018, https://doi.org/10.5194/acp-18-8689-2018, 2018
Short summary
Short summary
This is an examination of both the zonal and meridional tropical circulations under G1 geoengineering using eight ESMs. Drivers of the changes are examined, with meridional temperature gradient being the dominant factor. The Hadley circulation is changed under G1 differently for each hemisphere, but changes are small compared with abrupt4xCO2. Changes in the Walker circulation are subtle but potentially important in some regions, and ENSO impacts circulations only slightly differently under G1.
Liyun Zhao, John C. Moore, Bo Sun, Xueyuan Tang, and Xiaoran Guo
The Cryosphere, 12, 1651–1663, https://doi.org/10.5194/tc-12-1651-2018, https://doi.org/10.5194/tc-12-1651-2018, 2018
Short summary
Short summary
We investigate the age–depth profile to be expected of the ongoing deep ice coring at Kunlun station, Dome A, using the depth-varying anisotropic fabric suggested by the recent polarimetric measurements in a three-dimensional, thermo-mechanically coupled full-Stokes model. The model results suggest that the age of the deep ice at Kunlun is 649–831 ka, and there are large regions where 1-million-year-old ice may be found 200 m above the bedrock within 5–6 km of the Kunlun station.
Yongmei Gong, Thomas Zwinger, Jan Åström, Bas Altena, Thomas Schellenberger, Rupert Gladstone, and John C. Moore
The Cryosphere, 12, 1563–1577, https://doi.org/10.5194/tc-12-1563-2018, https://doi.org/10.5194/tc-12-1563-2018, 2018
Short summary
Short summary
In this study we apply a discrete element model capable of simulating ice fracturing. A microscopic-scale discrete process is applied in addition to a continuum ice dynamics model to investigate the mechanisms facilitated by basal meltwater production, surface meltwater and ice crack opening, for the surge in Basin 3, Austfonna ice cap. The discrete element model is used to locate the ice cracks that can penetrate though the full thickness of the glacier and deliver surface water to the bed.
Camilla W. Stjern, Helene Muri, Lars Ahlm, Olivier Boucher, Jason N. S. Cole, Duoying Ji, Andy Jones, Jim Haywood, Ben Kravitz, Andrew Lenton, John C. Moore, Ulrike Niemeier, Steven J. Phipps, Hauke Schmidt, Shingo Watanabe, and Jón Egill Kristjánsson
Atmos. Chem. Phys., 18, 621–634, https://doi.org/10.5194/acp-18-621-2018, https://doi.org/10.5194/acp-18-621-2018, 2018
Short summary
Short summary
Marine cloud brightening (MCB) has been proposed to help limit global warming. We present here the first multi-model assessment of idealized MCB simulations from the Geoengineering Model Intercomparison Project. While all models predict a global cooling as intended, there is considerable spread between the models both in terms of radiative forcing and the climate response, largely linked to the substantial differences in the models' representation of clouds.
Sainan Sun, Stephen L. Cornford, John C. Moore, Rupert Gladstone, and Liyun Zhao
The Cryosphere, 11, 2543–2554, https://doi.org/10.5194/tc-11-2543-2017, https://doi.org/10.5194/tc-11-2543-2017, 2017
Short summary
Short summary
The buttressing effect of the floating ice shelves is diminished by the fracture process. We developed a continuum damage mechanics model component of the ice sheet model to simulate the process. The model is tested on an ideal marine ice sheet geometry. We find that behavior of the simulated marine ice sheet is sensitive to fracture processes on the ice shelf, and the stiffness of ice around the grounding line is essential to ice sheet evolution.
Liyun Zhao, Yi Yang, Wei Cheng, Duoying Ji, and John C. Moore
Atmos. Chem. Phys., 17, 6547–6564, https://doi.org/10.5194/acp-17-6547-2017, https://doi.org/10.5194/acp-17-6547-2017, 2017
Short summary
Short summary
We find stratospheric sulfate aerosol injection geoengineering, G3, can slow shrinkage of high-mountain Asia glaciers by about 50 % by 2069 relative to losses from RCP8.5. The reduction in mean precipitation expected for solar geoengineering is less important than the temperature-driven shift from solid to liquid precipitation for forcing Himalayan glacier change. The termination of geoengineering in 2069 leads to temperature rise of 1.3 °C and corresponding increase in glacier volume loss rate.
Hiroki Kashimura, Manabu Abe, Shingo Watanabe, Takashi Sekiya, Duoying Ji, John C. Moore, Jason N. S. Cole, and Ben Kravitz
Atmos. Chem. Phys., 17, 3339–3356, https://doi.org/10.5194/acp-17-3339-2017, https://doi.org/10.5194/acp-17-3339-2017, 2017
Short summary
Short summary
This study analyses shortwave radiation (SW) in the G4 experiment of the Geoengineering Model Intercomparison Project. G4 involves stratospheric injection of 5 Tg yr−1 of SO2 against the RCP4.5 scenario. The global mean forcing of the sulphate geoengineering has an inter-model variablity of −3.6 to −1.6 W m−2, implying a high uncertainty in modelled processes of sulfate aerosols. Changes in water vapour and cloud amounts due to the SO2 injection weaken the forcing at the surface by around 50 %.
Wenli Wang, Annette Rinke, John C. Moore, Duoying Ji, Xuefeng Cui, Shushi Peng, David M. Lawrence, A. David McGuire, Eleanor J. Burke, Xiaodong Chen, Bertrand Decharme, Charles Koven, Andrew MacDougall, Kazuyuki Saito, Wenxin Zhang, Ramdane Alkama, Theodore J. Bohn, Philippe Ciais, Christine Delire, Isabelle Gouttevin, Tomohiro Hajima, Gerhard Krinner, Dennis P. Lettenmaier, Paul A. Miller, Benjamin Smith, Tetsuo Sueyoshi, and Artem B. Sherstiukov
The Cryosphere, 10, 1721–1737, https://doi.org/10.5194/tc-10-1721-2016, https://doi.org/10.5194/tc-10-1721-2016, 2016
Short summary
Short summary
The winter snow insulation is a key process for air–soil temperature coupling and is relevant for permafrost simulations. Differences in simulated air–soil temperature relationships and their modulation by climate conditions are found to be related to the snow model physics. Generally, models with better performance apply multilayer snow schemes.
W. Wang, A. Rinke, J. C. Moore, X. Cui, D. Ji, Q. Li, N. Zhang, C. Wang, S. Zhang, D. M. Lawrence, A. D. McGuire, W. Zhang, C. Delire, C. Koven, K. Saito, A. MacDougall, E. Burke, and B. Decharme
The Cryosphere, 10, 287–306, https://doi.org/10.5194/tc-10-287-2016, https://doi.org/10.5194/tc-10-287-2016, 2016
Short summary
Short summary
We use a model-ensemble approach for simulating permafrost on the Tibetan Plateau. We identify the uncertainties across models (state-of-the-art land surface models) and across methods (most commonly used methods to define permafrost).
We differentiate between uncertainties stemming from climatic driving data or from physical process parameterization, and show how these uncertainties vary seasonally and inter-annually, and how estimates are subject to the definition of permafrost used.
We differentiate between uncertainties stemming from climatic driving data or from physical process parameterization, and show how these uncertainties vary seasonally and inter-annually, and how estimates are subject to the definition of permafrost used.
S. Peng, P. Ciais, G. Krinner, T. Wang, I. Gouttevin, A. D. McGuire, D. Lawrence, E. Burke, X. Chen, B. Decharme, C. Koven, A. MacDougall, A. Rinke, K. Saito, W. Zhang, R. Alkama, T. J. Bohn, C. Delire, T. Hajima, D. Ji, D. P. Lettenmaier, P. A. Miller, J. C. Moore, B. Smith, and T. Sueyoshi
The Cryosphere, 10, 179–192, https://doi.org/10.5194/tc-10-179-2016, https://doi.org/10.5194/tc-10-179-2016, 2016
Short summary
Short summary
Soil temperature change is a key indicator of the dynamics of permafrost. Using nine process-based ecosystem models with permafrost processes, a large spread of soil temperature trends across the models. Air temperature and longwave downward radiation are the main drivers of soil temperature trends. Based on an emerging observation constraint method, the total boreal near-surface permafrost area decrease comprised between 39 ± 14 × 103 and 75 ± 14 × 103 km2 yr−1 from 1960 to 2000.
B. Kravitz, A. Robock, S. Tilmes, O. Boucher, J. M. English, P. J. Irvine, A. Jones, M. G. Lawrence, M. MacCracken, H. Muri, J. C. Moore, U. Niemeier, S. J. Phipps, J. Sillmann, T. Storelvmo, H. Wang, and S. Watanabe
Geosci. Model Dev., 8, 3379–3392, https://doi.org/10.5194/gmd-8-3379-2015, https://doi.org/10.5194/gmd-8-3379-2015, 2015
D. K. Weisenstein, D. W. Keith, and J. A. Dykema
Atmos. Chem. Phys., 15, 11835–11859, https://doi.org/10.5194/acp-15-11835-2015, https://doi.org/10.5194/acp-15-11835-2015, 2015
Short summary
Short summary
We investigate stratospheric aerosol geoengineering with solid particle injection by modeling the fractal structure of alumina aerosols and their interaction with background sulfate. We analyze the efficacy (W m^-2 of radiative forcing per megaton of injection) and risks (ozone loss, s) for both alumina and diamond particles as a function of injected monomer radius, finding 240nm alumina and 160nm diamond optimal. We discuss the limitations of our 2-D model study and associated uncertainties.
T. Zwinger, T. Malm, M. Schäfer, R. Stenberg, and J. C. Moore
The Cryosphere, 9, 1415–1426, https://doi.org/10.5194/tc-9-1415-2015, https://doi.org/10.5194/tc-9-1415-2015, 2015
Short summary
Short summary
By deploying a large-scale high-resolution turbulent CFD simulation using the present-day topography of the Scharffenbergbotnen (SBB) valley, we show how the surrounding topography redirects incoming easterly katabatic storm fronts to impact the blue ice areas (BIA) inside the valley, where the snow cover frequently is removed. A further simulation of a reconstructed topography at the Late Glacial Maximum further reveals that the BIA at SBB must have formed after this period.
M. A. Rawlins, A. D. McGuire, J. S. Kimball, P. Dass, D. Lawrence, E. Burke, X. Chen, C. Delire, C. Koven, A. MacDougall, S. Peng, A. Rinke, K. Saito, W. Zhang, R. Alkama, T. J. Bohn, P. Ciais, B. Decharme, I. Gouttevin, T. Hajima, D. Ji, G. Krinner, D. P. Lettenmaier, P. Miller, J. C. Moore, B. Smith, and T. Sueyoshi
Biogeosciences, 12, 4385–4405, https://doi.org/10.5194/bg-12-4385-2015, https://doi.org/10.5194/bg-12-4385-2015, 2015
Short summary
Short summary
We used outputs from nine models to better understand land-atmosphere CO2 exchanges across Northern Eurasia over the period 1960-1990. Model estimates were assessed against independent ground and satellite measurements. We find that the models show a weakening of the CO2 sink over time; the models tend to overestimate respiration, causing an underestimate in NEP; the model range in regional NEP is twice the multimodel mean. Residence time for soil carbon decreased, amid a gain in carbon storage.
D. Ji, L. Wang, J. Feng, Q. Wu, H. Cheng, Q. Zhang, J. Yang, W. Dong, Y. Dai, D. Gong, R.-H. Zhang, X. Wang, J. Liu, J. C. Moore, D. Chen, and M. Zhou
Geosci. Model Dev., 7, 2039–2064, https://doi.org/10.5194/gmd-7-2039-2014, https://doi.org/10.5194/gmd-7-2039-2014, 2014
S. Sun, S. L. Cornford, Y. Liu, and J. C. Moore
The Cryosphere, 8, 1561–1576, https://doi.org/10.5194/tc-8-1561-2014, https://doi.org/10.5194/tc-8-1561-2014, 2014
R. Gladstone, M. Schäfer, T. Zwinger, Y. Gong, T. Strozzi, R. Mottram, F. Boberg, and J. C. Moore
The Cryosphere, 8, 1393–1405, https://doi.org/10.5194/tc-8-1393-2014, https://doi.org/10.5194/tc-8-1393-2014, 2014
B. Sun, J. C. Moore, T. Zwinger, L. Zhao, D. Steinhage, X. Tang, D. Zhang, X. Cui, and C. Martín
The Cryosphere, 8, 1121–1128, https://doi.org/10.5194/tc-8-1121-2014, https://doi.org/10.5194/tc-8-1121-2014, 2014
T. Zwinger, M. Schäfer, C. Martín, and J. C. Moore
The Cryosphere, 8, 607–621, https://doi.org/10.5194/tc-8-607-2014, https://doi.org/10.5194/tc-8-607-2014, 2014
J. A. Åström, T. I. Riikilä, T. Tallinen, T. Zwinger, D. Benn, J. C. Moore, and J. Timonen
The Cryosphere, 7, 1591–1602, https://doi.org/10.5194/tc-7-1591-2013, https://doi.org/10.5194/tc-7-1591-2013, 2013
L. Zhao, L. Tian, T. Zwinger, R. Ding, J. Zong, Q. Ye, and J. C. Moore
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-145-2013, https://doi.org/10.5194/tcd-7-145-2013, 2013
Revised manuscript not accepted
Z. Zhang and J. C. Moore
Ann. Geophys., 30, 1743–1750, https://doi.org/10.5194/angeo-30-1743-2012, https://doi.org/10.5194/angeo-30-1743-2012, 2012
Related subject area
Discipline: Ice sheets | Subject: Climate Interactions
How does a change in climate variability impact the Greenland ice sheet surface mass balance?
A probabilistic framework for quantifying the role of anthropogenic climate change in marine-terminating glacier retreats
Significant additional Antarctic warming in atmospheric bias-corrected ARPEGE projections with respect to control run
CMIP5 model selection for ISMIP6 ice sheet model forcing: Greenland and Antarctica
The influence of atmospheric grid resolution in a climate model-forced ice sheet simulation
Tobias Zolles and Andreas Born
The Cryosphere, 18, 4831–4844, https://doi.org/10.5194/tc-18-4831-2024, https://doi.org/10.5194/tc-18-4831-2024, 2024
Short summary
Short summary
The Greenland ice sheet largely depends on the climate state. The uncertainties associated with the year-to-year variability have only a marginal impact on our simulated surface mass budget; this increases our confidence in projections and reconstructions. Basing the simulations on proxies, e.g., temperature, results in overestimates of the surface mass balance, as climatologies lead to small amounts of snowfall every day. This can be reduced by including sub-monthly precipitation variability.
John Erich Christian, Alexander A. Robel, and Ginny Catania
The Cryosphere, 16, 2725–2743, https://doi.org/10.5194/tc-16-2725-2022, https://doi.org/10.5194/tc-16-2725-2022, 2022
Short summary
Short summary
Marine-terminating glaciers have recently retreated dramatically, but the role of anthropogenic forcing remains uncertain. We use idealized model simulations to develop a framework for assessing the probability of rapid retreat in the context of natural climate variability. Our analyses show that century-scale anthropogenic trends can substantially increase the probability of retreats. This provides a roadmap for future work to formally assess the role of human activity in recent glacier change.
Julien Beaumet, Michel Déqué, Gerhard Krinner, Cécile Agosta, Antoinette Alias, and Vincent Favier
The Cryosphere, 15, 3615–3635, https://doi.org/10.5194/tc-15-3615-2021, https://doi.org/10.5194/tc-15-3615-2021, 2021
Short summary
Short summary
We use empirical run-time bias correction (also called flux correction) to correct the systematic errors of the ARPEGE atmospheric climate model. When applying the method to future climate projections, we found a lesser poleward shift and an intensification of the maximum of westerly winds present in the southern high latitudes. This yields a significant additional warming of +0.6 to +0.9 K of the Antarctic Ice Sheet with respect to non-corrected control projections using the RCP8.5 scenario.
Alice Barthel, Cécile Agosta, Christopher M. Little, Tore Hattermann, Nicolas C. Jourdain, Heiko Goelzer, Sophie Nowicki, Helene Seroussi, Fiammetta Straneo, and Thomas J. Bracegirdle
The Cryosphere, 14, 855–879, https://doi.org/10.5194/tc-14-855-2020, https://doi.org/10.5194/tc-14-855-2020, 2020
Short summary
Short summary
We compare existing coupled climate models to select a total of six models to provide forcing to the Greenland and Antarctic ice sheet simulations of the Ice Sheet Model Intercomparison Project (ISMIP6). We select models based on (i) their representation of current climate near Antarctica and Greenland relative to observations and (ii) their ability to sample a diversity of projected atmosphere and ocean changes over the 21st century.
Marcus Lofverstrom and Johan Liakka
The Cryosphere, 12, 1499–1510, https://doi.org/10.5194/tc-12-1499-2018, https://doi.org/10.5194/tc-12-1499-2018, 2018
Cited articles
Applegate, P. J. and Keller, K.: How effective is albedo modification (solar
radiation management geoengineering) in preventing sea-level rise from the
Greenland Ice Sheet?, Environ. Res. Lett., 10, 084018, https://doi.org/10.1088/1748-9326/10/8/084018, 2015.
Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone,
R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland,
P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental
design for three interrelated marine ice sheet and ocean model intercomparison
projects: MISMIP v.3 (MISMIP+), ISOMIP v.2 (ISOMIP +) and MISOMIP v.1
(MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016.
Bala, G., Duffy, P. B., and Taylor, K. E.: Impact of geoengineering schemes on
the global hydrological cycle, P. Natl. Acad. Sci. USA., 105, 7664–7669,
https://doi.org/10.1073/pnas.0711648105, 2008.
Bamber, J. L. and Aspinall, W. P.: An expert judgement assessment of future sea
level rise from the ice sheets, Nat. Clim. Change, 3, 424–427, https://doi.org/10.1038/nclimate1778, 2013.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P.,
Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K.,
Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols, in: Climate
Change 2013: The Physical Science Basis, Contribution of Working Group I to the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, Cambridge, UK and New York, NY, USA, 2013.
Bouttes, N., Gregory, J. M., and Lowe, J. A.: The Reversibility of Sea Level
Rise, J. Climate, 26, 2502–2513, https://doi.org/10.1175/JCLI-D-12-00285.1, 2012.
Budyko, M. I.: Climatic Changes, Waverly Press, Baltimore, available at:
http://books.google.nl/books?id=WZxn8IhIFf4C (last access: 31 May 2017), 1977.
Clark, P. U., Shakun, J. D., Marcott, S. A., Mix, A. C., Eby, M., Kulp, S.,
Levermann, A., Milne, G. A., Pfister, P. L., Santer, B. D., Schrag, D. P.,
Solomon, S., Stocker, T. F., Strauss, B. H., Weaver, A. J., Winkelmann, R.,
Archer, D., Bard, E., Goldner, A., Lambeck, K., Pierrehumbert, R. T., and
Plattner, G.-K.: Consequences of twenty-first-century policy for multi-millennial
climate and sea-level change, Nat. Clim. Change, 6, 360–369, https://doi.org/10.1038/nclimate2923, 2016.
Dai, Z., Weisenstein, D. K., and Keith, D. W.: Tailoring Meridional and Seasonal
Radiative Forcing by Sulfate Aerosol Solar Geoengineering, Geophys. Res. Lett.,
45, 1030–1039, https://doi.org/10.1002/2017GL076472, 2018.
Dangendorf, S., Calafat, F. M., Arns, A., Wahl, T., Haigh, I. D., and Jensen,
J.: Mean sea level variability in the North Sea: Processes and implications,
J. Geophys. Res.-Oceans, 119, 6820–6841, https://doi.org/10.1002/2014JC009901, 2014.
DeConto, R. M. and Pollard, D.: Contribution of Antarctica to past and future
sea-level rise, Nature, 531, 591–597, https://doi.org/10.1038/nature17145, 2016.
de Fleurian, B., Morlighem, M., Seroussi, H., Rignot, E., van den Broeke, M. R.,
Munneke, P. K., Mouginot, J., Smeets, P. C. J. P., and Tedstone, A. J.: A
modeling study of the effect of runoff variability on the effective pressure
beneath Russell Glacier, West Greenland, J. Geophys. Res.-Ea. Surf., 121,
1834–1848, https://doi.org/10.1002/2016JF003842, 2016.
Dykema, J. A., Keith, D. W., and Keutsch, F. N.: Improved aerosol radiative
properties as a foundation for solar geoengineering risk assessment, Geophys.
Res. Lett., 43, 7758–7766, https://doi.org/10.1002/2016GL069258, 2016.
Favier, L., Durand, G., Cornford, S. L., Gudmundsson, G. H., Gagliardini, O.,
Gillet-Chaulet, F., Zwinger, T., Payne, A. J., and Le Brocq, A. M.: Retreat of
Pine Island Glacier controlled by marine ice-sheet instability, Nat. Clim.
Change, 4, 117–121, https://doi.org/10.1038/nclimate2094, 2014.
Fettweis, X.: Reconstruction of the 1979–2006 Greenland ice sheet surface mass
balance using the regional climate model MAR, The Cryosphere, 1, 21–40,
https://doi.org/10.5194/tc-1-21-2007, 2007.
Fürst, J. J., Durand, G., Gillet-Chaulet, F., Tavard, L., Rankl, M., Braun,
M., and Gagliardini, O.: The safety band of Antarctic ice shelves, Nat. Clim.
Change, 6, 479–482, https://doi.org/10.1038/nclimate2912, 2016.
Giesen, R. H. and Oerlemans, J.: Calibration of a surface mass balance model
for global-scale applications, The Cryosphere, 6, 1463–1481, https://doi.org/10.5194/tc-6-1463-2012, 2012.
Goelzer, H., Nowicki, S., Edwards, T., Beckley, M., Abe-Ouchi, A., Aschwanden,
A., Calov, R., Gagliardini, O., Gillet-Chaulet, F., Golledge, N. R., Gregory,
J., Greve, R., Humbert, A., Huybrechts, P., Kennedy, J. H., Larour, E., Lipscomb,
W. H., Le clec'h, S., Lee, V., Morlighem, M., Pattyn, F., Payne, A. J., Rodehacke,
C., Rückamp, M., Saito, F., Schlegel, N., Seroussi, H., Shepherd, A., Sun,
S., van de Wal, R., and Ziemen, F. A.: Design and results of the ice sheet model
initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison, The
Cryosphere, 12, 1433–1460, https://doi.org/10.5194/tc-12-1433-2018, 2018.
Hanna, E., Huybrechts, P., Steffen, K., Cappelen, J., Huff, R., Shuman, C.,
Irvine-Fynn, T., Wise, S., and Griffiths, M.: Increased Runoff from Melt from
the Greenland Ice Sheet: A Response to Global Warming, J. Climate, 21, 331–341,
https://doi.org/10.1175/2007JCLI1964.1, 2008.
Hinkel, J., Lincke, D., Vafeidis, A. T., Perrette, M., Nicholls, R. J., Tol,
R. S. J., Marzeion, B., Fettweis, X., Ionescu, C., and Levermann, A.: Coastal
flood damage and adaptation costs under 21st century sea-level rise, P. Natl.
Acad. Sci. USA, 111, 3292–3297, https://doi.org/10.1073/pnas.1222469111, 2014.
Hofer, S., Tedstone, A. J., Fettweis, X., and Bamber, J. L.: Decreasing cloud
cover drives the recent mass loss on the Greenland Ice Sheet, Sci. Adv., 3,
e1700584, https://doi.org/10.1126/sciadv.1700584, 2017.
Irvine, P. J., Lunt, D. J., Stone, E. J., and Ridgwell, A. J.: The fate of the
Greenland Ice Sheet in a geoengineered, high CO2 world, Environ. Res.
Lett., 4, 045109, https://doi.org/10.1088/1748-9326/4/4/045109, 2009.
Irvine, P. J., Sriver, R. L., and Keller, K.: Tension between reducing sea-level
rise and global warming through solar-radiation management, Nat. Clim. Change,
2, 97–100, https://doi.org/10.1038/nclimate1351, 2012.
Irvine, P. J., Kravitz, B., Lawrence, M. G., and Muri, H.: An overview of the
Earth system science of solar geoengineering, Wiley Interdiscip. Rev. Clim.
Change, 7, 815–833, https://doi.org/10.1002/wcc.423, 2016.
Irvine, P. J., Keith, D., and Moore, J.: GeoMIP Surface Mass Balance Data,
Harvard Dataverse, https://doi.org/10.7910/DVN/NUCBXU, 2018.
Jevrejeva, S., Jackson, L. P., Riva, R. E. M., Grinsted, A., and Moore, J. C.:
Coastal sea level rise with warming above 2 ∘C, P. Natl. Acad. Sci.
USA, 113, 13342–13347, https://doi.org/10.1073/pnas.1605312113, 2016.
Joughin, I., Tulaczyk, S., Bamber, J. L., Blankenship, D., Holt, J. W., Scambos,
T., and Vaughan, D. G.: Basal conditions for Pine Island and Thwaites Glaciers,
West Antarctica, determined using satellite and airborne data, J. Glaciol., 55,
245–257, https://doi.org/10.3189/002214309788608705, 2009.
Joughin, I., Smith, B. E., and Medley, B.: Marine Ice Sheet Collapse Potentially
Under Way for the Thwaites Glacier Basin, West Antarctica, Science, 344, 735–738,
https://doi.org/10.1126/science.1249055, 2014.
Keith, D. W. and Irvine, P. J.: Solar geoengineering could substantially reduce
climate risks – A research hypothesis for the next decade: Solar Geoengineering
Cloud Reduce Risk, Earths Future, 4, 549–559, https://doi.org/10.1002/2016EF000465, 2016.
Keith, D. W., Weisenstein, D. K., Dykema, J. A., and Keutsch, F. N.:
Stratospheric solar geoengineering without ozone loss, P. Natl. Acad. Sci. USA,
113, 14910–14914, https://doi.org/10.1073/pnas.1615572113, 2016.
Keller, D. P., Lenton, A., Scott, V., Vaughan, N. E., Bauer, N., Ji, D., Jones,
C. D., Kravitz, B., Muri, H., and Zickfeld, K.: The Carbon Dioxide Removal Model
Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6,
Geosci. Model Dev., 11, 1133–1160, https://doi.org/10.5194/gmd-11-1133-2018, 2018.
Kopp, R. E., Horton, R. M., Little, C. M., Mitrovica, J. X., Oppenheimer, M.,
Rasmussen, D. J., Strauss, B. H., and Tebaldi, C.: Probabilistic 21st and
22nd century sea-level projections at a global network of tide-gauge sites,
Earths Future, 2, 383–406, https://doi.org/10.1002/2014EF000239, 2014.
Kravitz, B., Robock, A., Boucher, O., Schmidt, H., Taylor, K. E., Stenchikov,
G., and Schulz, M.: The Geoengineering Model Intercomparison Project (GeoMIP),
Atmos. Sci. Lett., 12, 162–167, https://doi.org/10.1002/asl.316, 2011.
Kravitz, B., MacMartin, D. G., and Caldeira, K.: Geoengineering: Whiter skies?,
Geophys. Res. Lett., 39, L11801, https://doi.org/10.1029/2012gl051652, 2012.
Kravitz, B., Caldeira, K., Boucher, O., Robock, A., Rasch, P. J., Alterskjær,
K., Bou Karam, D., Cole, J. N. S., Curry, C. L., Haywood, J. M., Irvine, P. J.,
Ji, D., Jones, A., Kristjánsson, J. E., Lunt, D. J., Moore, J. C., Niemeier,
U., Schmidt, H., Schulz, M., Singh, B., Tilmes, S., Watanabe, S., Yang, S., and
Yoon, J.-H.: Climate model response from the Geoengineering Model Intercomparison
Project (GeoMIP), J. Geophys. Res.-Atmos., 118, 8320–8332, https://doi.org/10.1002/jgrd.50646, 2013.
Kravitz, B., MacMartin, D. G., Mills, M. J., Richter, J. H., Tilmes, S.,
Lamarque, J.-F., Tribbia, J. J., and Vitt, F.: First Simulations of Designing
Stratospheric Sulfate Aerosol Geoengineering to Meet Multiple Simultaneous
Climate Objectives, J. Geophys. Res.-Atmos., 122, 12616–12634, https://doi.org/10.1002/2017JD026874, 2018.
Lang, C., Fettweis, X., and Erpicum, M.: Stable climate and surface mass balance
in Svalbard over 1979–2013 despite the Arctic warming, The Cryosphere, 9,
83–101, https://doi.org/10.5194/tc-9-83-2015, 2015.
Latham, J.: Control of global warming, Nature, 347, 339–340, 1990.
Lenaerts, J. T. M., Vizcaino, M., Fyke, J., van Kampenhout, L., and van den Broeke,
M. R.: Present-day and future Antarctic ice sheet climate and surface mass
balance in the Community Earth System Model, Clim. Dynam., 47, 1367–1381,
https://doi.org/10.1007/s00382-015-2907-4, 2016.
Ligtenberg, S. R. M., van de Berg, W. J., van den Broeke, M. R., Rae, J. G. L.,
and van Meijgaard, E.: Future surface mass balance of the Antarctic ice sheet
and its influence on sea level change, simulated by a regional atmospheric
climate model, Clim. Dynam., 41, 867–884, https://doi.org/10.1007/s00382-013-1749-1, 2013.
Liu, Y., Moore, J. C., Cheng, X., Gladstone, R. M., Bassis, J. N., Liu, H.,
Wen, J., and Hui, F.: Ocean-driven thinning enhances iceberg calving and retreat
of Antarctic ice shelves, P. Natl. Acad. Sci. USA, 112, 3263–3268,
https://doi.org/10.1073/pnas.1415137112, 2015.
McClellan, J., Keith, D. W., and Apt, J.: Cost analysis of stratospheric albedo
modification delivery systems, Environ. Res. Lett., 7, 034019, https://doi.org/10.1088/1748-9326/7/3/034019, 2012.
McCusker, K. E., Battisti, D. S., and Bitz, C. M.: Inability of stratospheric
sulfate aerosol injections to preserve the West Antarctic Ice Sheet, Geophys.
Res. Lett., 42, 4989–4997, https://doi.org/10.1002/2015GL064314, 2015.
Mercer, J. H.: West Antarctic ice sheet and CO2 greenhouse effect: a
threat of disaster, Nature, 271, 321–325, https://doi.org/10.1038/271321a0, 1978.
Mitchell, D. L. and Finnegan, W.: Modification of cirrus clouds to reduce global
warming, Environ. Res. Lett., 4, 045102, https://doi.org/10.1088/1748-9326/4/4/045102, 2009.
Moore, J. C., Jevrejeva, S., and Grinsted, A.: Efficacy of geoengineering to
limit 21st century sea-level rise, P. Natl. Acad. Sci. USA, 107, 15699–15703,
https://doi.org/10.1073/pnas.1008153107, 2010.
Moore, J. C., Grinsted, A., Guo, X., Yu, X., Jevrejeva, S., Rinke, A., Cui, X.,
Kravitz, B., Lenton, A., Watanabe, S., and Ji, D.: Atlantic hurricane surge
response to geoengineering, P. Natl. Acad. Sci. USA, 112, 13794–13799,
https://doi.org/10.1073/pnas.1510530112, 2015.
Moriyama, R., Sugiyama, M., Kurosawa, A., Masuda, K., Tsuzuki, K., and Ishimoto,
Y.: The cost of stratospheric climate engineering revisited, Mitig. Adapt.
Strateg. Glob. Change, 22, 1207–1228, https://doi.org/10.1007/s11027-016-9723-y, 2016.
Ohmura, A.: Physical Basis for the Temperature-Based Melt-Index Method, J. Appl.
Meteorol., 40, 753–761, https://doi.org/10.1175/1520-0450(2001)040<0753:PBFTTB>2.0.CO;2, 2001.
Oppenheimer, M., Little, C. M., and Cooke, R. M.: Expert judgement and
uncertainty quantification for climate change, Nat. Clim. Change, 6, 445–451,
https://doi.org/10.1038/nclimate2959, 2016.
Pitari, G., Aquila, V., Kravitz, B., Robock, A., Watanabe, S., Cionni, I., Luca,
N. D., Genova, G. D., Mancini, E., and Tilmes, S.: Stratospheric ozone response
to sulfate geoengineering: Results from the Geoengineering Model Intercomparison
Project (GeoMIP), J. Geophys. Res.-Atmos., 119, 2629–2653, https://doi.org/10.1002/2013JD020566, 2014.
Pollard, D., DeConto, R. M., and Alley, R. B.: Potential Antarctic Ice Sheet
retreat driven by hydrofracturing and ice cliff failure, Earth Planet. Sc. Lett.,
412, 112–121, https://doi.org/10.1016/j.epsl.2014.12.035, 2015.
Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van den
Broeke, M. R., and Padman, L.: Antarctic ice-sheet loss driven by basal melting
of ice shelves, Nature, 484, 502–505, https://doi.org/10.1038/nature10968, 2012.
Rintoul, S. R., Silvano, A., Pena-Molino, B., van Wijk, E., Rosenberg, M.,
Greenbaum, J. S., and Blankenship, D. D.: Ocean heat drives rapid basal melt
of the Totten Ice Shelf, Sci. Adv., 2, e1601610, https://doi.org/10.1126/sciadv.1601610, 2016.
Ritz, C., Edwards, T. L., Durand, G., Payne, A. J., Peyaud, V., and Hindmarsh,
R. C. A.: Potential sea-level rise from Antarctic ice-sheet instability
constrained by observations, Nature, 528, 115–118, https://doi.org/10.1038/nature16147, 2015.
Robel, A. A., Schoof, C., and Tziperman, E.: Persistence and variability of
ice-stream grounding lines on retrograde bed slopes, The Cryosphere, 10,
1883–1896, https://doi.org/10.5194/tc-10-1883-2016, 2016.
Robock, A., Oman, L., and Stenchikov, G. L.: Regional climate responses to
geoengineering with tropical and Arctic SO2 injections, J. Geophys.
Res.-Atmos., 113, D16101, https://doi.org/10.1029/2008jd010050, 2008.
Robock, A., Marquardt, A., Kravitz, B., and Stenchikov, G.: Benefits, risks,
and costs of stratospheric geoengineering, Geophys. Res. Lett., 36, L19703,
https://doi.org/10.1029/2009gl039209, 2009.
Ryan, J. C., Hubbard, A., Stibal, M., Irvine-Fynn, T. D., Cook, J., Smith, L.
C., Cameron, K., and Box, J.: Dark zone of the Greenland Ice Sheet controlled
by distributed biologically-active impurities, Nat. Commun., 9, 1065,
https://doi.org/10.1038/s41467-018-03353-2, 2018.
Scambos, T., Hulbe, C., and Fahnestock, M.: Climate-Induced Ice Shelf Disintegration
in the Antarctic Peninsula, in: Antarctic Peninsula Climate Variability:
Historical and Paleoenvironmental Perspectives, edited by: Domack, E.,Levente,
A., Burnet, A., Bindschadler, R., Convey, P., and Kirby, M., https://doi.org/10.1029/AR079p0079, 2013.
Shepherd, J., Caldeira, K., Cox, P., Haigh, J., Keith, D., Launder, B., Mace,
G., MacKerron, G., Pyle, J., Rayner, S., Redgwell, C., Watson, A., Garthwaite,
R., Heap, R., Parker, A., and Wilsdon, J.: Geoengineering the climate: science,
governace and uncertainty, The Royal Society, London, 2009.
Slangen, A. B. A., Adloff, F., Jevrejeva, S., Leclercq, P. W., Marzeion, B.,
Wada, Y., and Winkelmann, R.: A Review of Recent Updates of Sea-Level Projections
at Global and Regional Scales, Surv. Geophys., 38, 385–406, https://doi.org/10.1007/s10712-016-9374-2, 2017.
Tilmes, S., Garcia, R. R., Kinnison, D. E., Gettelman, A., and Rasch, P. J.:
Impact of geoengineered aerosols on the troposphere and stratosphere, J. Geophys.
Res.-Atmos., 114, D12305, https://doi.org/10.1029/2008jd011420, 2009.
Tilmes, S., Kinnison, D. E., Garcia, R. R., Salawitch, R., Canty, T., Lee-Taylor,
J., Madronich, S., and Chance, K.: Impact of very short-lived halogens on
stratospheric ozone abundance and UV radiation in a geo-engineered atmosphere,
Atmos. Chem. Phys., 12, 10945–10955, https://doi.org/10.5194/acp-12-10945-2012, 2012.
Tilmes, S., Fasullo, J., Lamarque, J.-F., Marsh, D. R., Mills, M., Alterskjær,
K., Muri, H., Kristjánsson, J. E., Boucher, O., Schulz, M., Cole, J. N. S.,
Curry, C. L., Jones, A., Haywood, J., Irvine, P. J., Ji, D., Moore, J. C., Karam,
D. B., Kravitz, B., Rasch, P. J., Singh, B., Yoon, J.-H., Niemeier, U., Schmidt,
H., Robock, A., Yang, S., and Watanabe, S.: The hydrological impact of
geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP), J.
Geophys. Res.-Atmos., 118, 11036–11058, https://doi.org/10.1002/jgrd.50868, 2013.
van de Berg, W. J., van den Broeke, M., Ettema, J., van Meijgaard, E., and
Kaspar, F.: Significant contribution of insolation to Eemian melting of the
Greenland ice sheet, Nat. Geosci., 4, 679–683, https://doi.org/10.1038/ngeo1245, 2011.
Victor, D. G.: On the regulation of geoengineering, Oxf. Rev. Econ. Policy,
24, 322–336, https://doi.org/10.1093/oxrep/grn018, 2008.
Weitzman, M. L.: The Geoengineered Planet, in: In 100 Years: Leading Economists
Predict the Future, edited by: Palacios-Huerta, I., MIT Press, Cambridge, USA, 2014.
Wigley, T. M. L.: A combined mitigation/geoengineering approach to climate
stabilization, Science, 314, 452–454, https://doi.org/10.1126/science.1131728, 2006.
Wolovick, M. J. and Moore, J. C.: Stopping the Flood: Could We Use Targeted
Geoengineering to Mitigate Sea Level Rise?, The Cryosphere Discuss.,
https://doi.org/10.5194/tc-2018-95, in review, 2018.
Zhao, L., Yang, Y., Cheng, W., Ji, D., and Moore, J. C.: Glacier evolution in
high-mountain Asia under stratospheric sulfate aerosol injection geoengineering,
Atmos. Chem. Phys., 17, 6547–6564, https://doi.org/10.5194/acp-17-6547-2017, 2017.
Short summary
Stratospheric aerosol geoengineering, a form of solar geoengineering, is a proposal to add a reflective layer of aerosol to the upper atmosphere. This would reduce sea level rise by slowing the melting of ice on land and the thermal expansion of the oceans. However, there is considerable uncertainty about its potential efficacy. This article highlights key uncertainties in the sea level response to solar geoengineering and recommends approaches to address these in future work.
Stratospheric aerosol geoengineering, a form of solar geoengineering, is a proposal to add a...