Articles | Volume 11, issue 5
https://doi.org/10.5194/tc-11-2383-2017
https://doi.org/10.5194/tc-11-2383-2017
Research article
 | 
23 Oct 2017
Research article |  | 23 Oct 2017

Winter sea ice export from the Laptev Sea preconditions the local summer sea ice cover and fast ice decay

Polona Itkin and Thomas Krumpen

Related authors

Arctic sea ice anomalies during the MOSAiC winter 2019/20
Klaus Dethloff, Wieslaw Maslowski, Stefan Hendricks, Younjoo J. Lee, Helge F. Goessling, Thomas Krumpen, Christian Haas, Dörthe Handorf, Robert Ricker, Vladimir Bessonov, John J. Cassano, Jaclyn Clement Kinney, Robert Osinski, Markus Rex, Annette Rinke, Julia Sokolova, and Anja Sommerfeld
The Cryosphere, 16, 981–1005, https://doi.org/10.5194/tc-16-981-2022,https://doi.org/10.5194/tc-16-981-2022, 2022
Short summary
Retrieval and parameterisation of sea-ice bulk density from airborne multi-sensor measurements
Arttu Jutila, Stefan Hendricks, Robert Ricker, Luisa von Albedyll, Thomas Krumpen, and Christian Haas
The Cryosphere, 16, 259–275, https://doi.org/10.5194/tc-16-259-2022,https://doi.org/10.5194/tc-16-259-2022, 2022
Short summary
Recent observations of superimposed ice and snow ice on sea ice in the northwestern Weddell Sea
Stefanie Arndt, Christian Haas, Hanno Meyer, Ilka Peeken, and Thomas Krumpen
The Cryosphere, 15, 4165–4178, https://doi.org/10.5194/tc-15-4165-2021,https://doi.org/10.5194/tc-15-4165-2021, 2021
Short summary
MOSAiC drift expedition from October 2019 to July 2020: sea ice conditions from space and comparison with previous years
Thomas Krumpen, Luisa von Albedyll, Helge F. Goessling, Stefan Hendricks, Bennet Juhls, Gunnar Spreen, Sascha Willmes, H. Jakob Belter, Klaus Dethloff, Christian Haas, Lars Kaleschke, Christian Katlein, Xiangshan Tian-Kunze, Robert Ricker, Philip Rostosky, Janna Rückert, Suman Singha, and Julia Sokolova
The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021,https://doi.org/10.5194/tc-15-3897-2021, 2021
Short summary
Interannual variability in Transpolar Drift summer sea ice thickness and potential impact of Atlantification
H. Jakob Belter, Thomas Krumpen, Luisa von Albedyll, Tatiana A. Alekseeva, Gerit Birnbaum, Sergei V. Frolov, Stefan Hendricks, Andreas Herber, Igor Polyakov, Ian Raphael, Robert Ricker, Sergei S. Serovetnikov, Melinda Webster, and Christian Haas
The Cryosphere, 15, 2575–2591, https://doi.org/10.5194/tc-15-2575-2021,https://doi.org/10.5194/tc-15-2575-2021, 2021
Short summary

Related subject area

Sea Ice
A quasi-objective single-buoy approach for understanding Lagrangian coherent structures and sea ice dynamics
Nikolas O. Aksamit, Randall K. Scharien, Jennifer K. Hutchings, and Jennifer V. Lukovich
The Cryosphere, 17, 1545–1566, https://doi.org/10.5194/tc-17-1545-2023,https://doi.org/10.5194/tc-17-1545-2023, 2023
Short summary
Linking scales of sea ice surface topography: evaluation of ICESat-2 measurements with coincident helicopter laser scanning during MOSAiC
Robert Ricker, Steven Fons, Arttu Jutila, Nils Hutter, Kyle Duncan, Sinead L. Farrell, Nathan T. Kurtz, and Renée Mie Fredensborg Hansen
The Cryosphere, 17, 1411–1429, https://doi.org/10.5194/tc-17-1411-2023,https://doi.org/10.5194/tc-17-1411-2023, 2023
Short summary
Analysis of microseismicity in sea ice with deep learning and Bayesian inference: application to high-resolution thickness monitoring
Ludovic Moreau, Léonard Seydoux, Jérôme Weiss, and Michel Campillo
The Cryosphere, 17, 1327–1341, https://doi.org/10.5194/tc-17-1327-2023,https://doi.org/10.5194/tc-17-1327-2023, 2023
Short summary
A collection of wet beam models for wave–ice interaction
Sasan Tavakoli and Alexander V. Babanin
The Cryosphere, 17, 939–958, https://doi.org/10.5194/tc-17-939-2023,https://doi.org/10.5194/tc-17-939-2023, 2023
Short summary
First results of Antarctic sea ice type retrieval from active and passive microwave remote sensing data
Christian Melsheimer, Gunnar Spreen, Yufang Ye, and Mohammed Shokr
The Cryosphere, 17, 105–126, https://doi.org/10.5194/tc-17-105-2023,https://doi.org/10.5194/tc-17-105-2023, 2023
Short summary

Cited articles

Bareiss, J. and Görgen, K.: Spatial and temporal variability of sea ice in the Laptev Sea: Analyses and review of satellite passive-microwave data and model results, 1979 to 2002, Global Planet. Change, 48, 28–54, https://doi.org/10.1016/j.gloplacha.2004.12.004, 2005.
Bareiss, J., Eicken, H., Helibig, A., and Martin, T.: Impact of river discharge and regional climatology on the decay of sea ice in the Laptev Sea during spring and early summer, Arctic Antarctic Alp. Res., 31, 214–229, https://doi.org/10.2307/1552250, 1999.
Ernsdorf, T., Schröder, D., Adams, S., Heinemann, G., Timmermann, R., and Danilov, S.: Impact of atmospheric forcing data on simulations of the Laptev Sea polynya dynamics using the sea-ice ocean model FESOM, J. Geophys. Res.-Oceans, 116, c12038, https://doi.org/10.1029/2010JC006725, 2011.
Ezraty, R., Girard-Ardhuin, F., Piollé, J. F., Kaleschke, L., and Heygster, G.: Arctic and Antarctic Sea Ice Concentration and Arctic Sea Ice Drift Estimated from Special Sensor Microwave Data, Département d'Océanographie Physique et Spatiale, IFREMER, Brest, France and University of Bremen, Germany, 2.1st Edn., available at: ftp://ftp.ifremer.fr/ifremer/cersat/products/gridded/psi-drift/documentation/ssmi.pdf (last access: 1 August 2014), 2007.
Fofonova, V., Androsov, A., Danilov, S., Janout, M., Sofina, E., and Wiltshire, K.: Semidiurnal tides in the Laptev Sea Shelf zone in the summer season, Cont. Shelf Res., 73, 119–132, https://doi.org/10.1016/j.csr.2013.11.010, 2014.
Download
Short summary
By means of airborne sea ice thickness surveys, remote sensing data and results from a numerical model, we show that winter ice dynamic in the Laptev Sea has a preconditioning effect on local summer ice extent in addition to atmospheric processes acting on the ice cover between May and September. We conclude that the observed tendency towards an increased ice export further accelerates pack ice retreat in summer and fast ice decay.