Articles | Volume 11, issue 5
https://doi.org/10.5194/tc-11-2059-2017
https://doi.org/10.5194/tc-11-2059-2017
Research article
 | 
04 Sep 2017
Research article |  | 04 Sep 2017

Comparison of CryoSat-2 and ENVISAT radar freeboard over Arctic sea ice: toward an improved Envisat freeboard retrieval

Kevin Guerreiro, Sara Fleury, Elena Zakharova, Alexei Kouraev, Frédérique Rémy, and Philippe Maisongrande

Related authors

Review of Radar Altimetry Techniques over the Arctic Ocean: Recent Progress and Future Opportunities for Sea Level and Sea Ice Research
Graham D. Quartly, Eero Rinne, Marcello Passaro, Ole B. Andersen, Salvatore Dinardo, Sara Fleury, Kevin Guerreiro, Amandine Guillot, Stefan Hendricks, Andrey A. Kurekin, Felix L. Müller, Robert Ricker, Henriette Skourup, and Michel Tsamados
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-148,https://doi.org/10.5194/tc-2018-148, 2018
Revised manuscript not accepted
Short summary

Related subject area

Sea Ice
Suitability of the CICE sea ice model for seasonal prediction and positive impact of CryoSat-2 ice thickness initialization
Shan Sun and Amy Solomon
The Cryosphere, 18, 3033–3048, https://doi.org/10.5194/tc-18-3033-2024,https://doi.org/10.5194/tc-18-3033-2024, 2024
Short summary
A large-scale high-resolution numerical model for sea-ice fragmentation dynamics
Jan Åström, Fredrik Robertsen, Jari Haapala, Arttu Polojärvi, Rivo Uiboupin, and Ilja Maljutenko
The Cryosphere, 18, 2429–2442, https://doi.org/10.5194/tc-18-2429-2024,https://doi.org/10.5194/tc-18-2429-2024, 2024
Short summary
Experimental modelling of the growth of tubular ice brinicles from brine flows under sea ice
Sergio Testón-Martínez, Laura M. Barge, Jan Eichler, C. Ignacio Sainz-Díaz, and Julyan H. E. Cartwright
The Cryosphere, 18, 2195–2205, https://doi.org/10.5194/tc-18-2195-2024,https://doi.org/10.5194/tc-18-2195-2024, 2024
Short summary
Why is summertime Arctic sea ice drift speed projected to decrease?
Jamie L. Ward and Neil F. Tandon
The Cryosphere, 18, 995–1012, https://doi.org/10.5194/tc-18-995-2024,https://doi.org/10.5194/tc-18-995-2024, 2024
Short summary
Seasonal Evolution of the Sea Ice Floe Size Distribution from Two Decades of MODIS Data
Ellen Margaret Buckley, Leela Cañuelas, Mary-Louise Timmermans, and Monica Martinez Wilhelmus
EGUsphere, https://doi.org/10.5194/egusphere-2024-89,https://doi.org/10.5194/egusphere-2024-89, 2024
Short summary

Cited articles

Alexandrov, V., Sandven, S., Wahlin, J., and Johannessen, O. M.: The relation between sea ice thickness and freeboard in the Arctic, The Cryosphere, 4, 373–380, https://doi.org/10.5194/tc-4-373-2010, 2010.
Andersen, O. B., Piccioni, G. L. S., and Knudsen, P.: The DTU15 Mean Sea Surface and Mean Dynamic Topography- focusing on Arctic issues and development, in: oral presentation, in the 2015 OSTST Meeting, 19–23 October 2015, Reston, USA, 2015.
Anderson, M., Bliss, A. C., and Tschudi, M.: MEaSUREs Arctic Sea Ice Characterization Daily 25 km EASE-Grid 2.0, Version 1. Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/MEASURES/CRYOSPHERE/nsidc-0532.001, 2014.
Beaven, S. G.: Sea Ice Radar Backscatter Modeling, Measurements, and the Fusion of Active and Passive Microwave Data., Tech. rep., DTIC Document, 1995.
Carrere, L., Lyard, F., Cancet, M., and Guillot, A.: FES 2014, a new tidal model on the global ocean with enhanced accuracy in shallow seas and in the Arctic region, in: EGU General Assembly Conference Abstracts, 12–17 April 2015, Vienna, Austria, vol. 17, p. 5481, 2015.
Download
Short summary
We analyse CryoSat-2 and Envisat freeboard height discrepancy over Arctic sea ice and we study the potential role of ice roughness. Based on our results, we build a CryoSat-2-like version of Envisat freeboard height. The improved Envisat freeboard is converted to sea ice draught and compared to in situ mooring observations to demonstrate the potential of our methodology to produce accurate ice thickness estimates over the 2002–2012 period.