Articles | Volume 11, issue 4
https://doi.org/10.5194/tc-11-1707-2017
https://doi.org/10.5194/tc-11-1707-2017
Research article
 | 
24 Jul 2017
Research article |  | 24 Jul 2017

Method to characterize directional changes in Arctic sea ice drift and associated deformation due to synoptic atmospheric variations using Lagrangian dispersion statistics

Jennifer V. Lukovich, Cathleen A. Geiger, and David G. Barber

Related authors

On the characteristics of sea ice divergence/convergence in the Southern Beaufort Sea
J. V. Lukovich, D. G. Babb, R. J. Galley, R. L. Raddatz, and D. G. Barber
The Cryosphere Discuss., https://doi.org/10.5194/tcd-8-4281-2014,https://doi.org/10.5194/tcd-8-4281-2014, 2014
Revised manuscript not accepted

Related subject area

Sea Ice
Suitability of the CICE sea ice model for seasonal prediction and positive impact of CryoSat-2 ice thickness initialization
Shan Sun and Amy Solomon
The Cryosphere, 18, 3033–3048, https://doi.org/10.5194/tc-18-3033-2024,https://doi.org/10.5194/tc-18-3033-2024, 2024
Short summary
A large-scale high-resolution numerical model for sea-ice fragmentation dynamics
Jan Åström, Fredrik Robertsen, Jari Haapala, Arttu Polojärvi, Rivo Uiboupin, and Ilja Maljutenko
The Cryosphere, 18, 2429–2442, https://doi.org/10.5194/tc-18-2429-2024,https://doi.org/10.5194/tc-18-2429-2024, 2024
Short summary
Experimental modelling of the growth of tubular ice brinicles from brine flows under sea ice
Sergio Testón-Martínez, Laura M. Barge, Jan Eichler, C. Ignacio Sainz-Díaz, and Julyan H. E. Cartwright
The Cryosphere, 18, 2195–2205, https://doi.org/10.5194/tc-18-2195-2024,https://doi.org/10.5194/tc-18-2195-2024, 2024
Short summary
Why is summertime Arctic sea ice drift speed projected to decrease?
Jamie L. Ward and Neil F. Tandon
The Cryosphere, 18, 995–1012, https://doi.org/10.5194/tc-18-995-2024,https://doi.org/10.5194/tc-18-995-2024, 2024
Short summary
Seasonal Evolution of the Sea Ice Floe Size Distribution from Two Decades of MODIS Data
Ellen Margaret Buckley, Leela Cañuelas, Mary-Louise Timmermans, and Monica Martinez Wilhelmus
EGUsphere, https://doi.org/10.5194/egusphere-2024-89,https://doi.org/10.5194/egusphere-2024-89, 2024
Short summary

Cited articles

Barber, D. G., Galley, R., Asplin, M. G., De Abreu, R., Warner, K.-A., Pućko, M., Gupta, M., Prinsenberg, S., and Julien, S.: Perennial pack ice in the southern Beaufort Sea was not as it appeared in the summer of 2009, Geophys. Res. Lett., 36, L24501, https://doi.org/10.1029/2009GL041434, 2009a.
Barber, D., Lukovich, J., Babb, D., Galley, R., and Geiger, C.: ArcticNet ice beacon GPS position and triplet arrays, 2009, Beaufort Sea, Waterloo, Ontario, Canada: Canadian Cryospheric Information Network (CCIN), https://doi.org/10.5884/12709, 2009b.
Bouillon, S. and Rampal, P.: On producing sea ice deformation data sets from SAR-derived sea ice motion, The Cryosphere, 9, 663–673, https://doi.org/10.5194/tc-9-663-2015, 2015.
Carleton, A. M.: Synoptic sea ice-atmosphere interactions in the Chukchi and Beaufort Seas from NIMBUS 5 ESMR data, J. Geophys. Res., 89, 7245–7258, https://doi.org/10.1029/JD089iD05p07245, 1984.
Download
Short summary
In this study we develop a framework to characterize directional changes in sea ice drift and associated deformation in response to atmospheric forcing. Lagrangian dispersion statistics applied to ice beacons deployed in a triangular configuration in the Beaufort Sea capture a shift in ice dynamical regimes and local differences in deformation. This framework contributes to diagnostic development relevant for ice hazard assessments and forecasting required by indigenous communities and industry.