Articles | Volume 10, issue 2
https://doi.org/10.5194/tc-10-913-2016
https://doi.org/10.5194/tc-10-913-2016
Research article
 | 
26 Apr 2016
Research article |  | 26 Apr 2016

Open-source feature-tracking algorithm for sea ice drift retrieval from Sentinel-1 SAR imagery

Stefan Muckenhuber, Anton Andreevich Korosov, and Stein Sandven

Related authors

Sea ice cover in Isfjorden and Hornsund, Svalbard (2000–2014) from remote sensing data
S. Muckenhuber, F. Nilsen, A. Korosov, and S. Sandven
The Cryosphere, 10, 149–158, https://doi.org/10.5194/tc-10-149-2016,https://doi.org/10.5194/tc-10-149-2016, 2016
Short summary

Related subject area

Sea Ice
Atmospheric highs drive asymmetric sea ice drift during lead opening from Point Barrow
MacKenzie E. Jewell, Jennifer K. Hutchings, and Cathleen A. Geiger
The Cryosphere, 17, 3229–3250, https://doi.org/10.5194/tc-17-3229-2023,https://doi.org/10.5194/tc-17-3229-2023, 2023
Short summary
Spatial characteristics of frazil streaks in the Terra Nova Bay Polynya from high-resolution visible satellite imagery
Katarzyna Bradtke and Agnieszka Herman
The Cryosphere, 17, 2073–2094, https://doi.org/10.5194/tc-17-2073-2023,https://doi.org/10.5194/tc-17-2073-2023, 2023
Short summary
Modelling the evolution of Arctic multiyear sea ice over 2000–2018
Heather Regan, Pierre Rampal, Einar Ólason, Guillaume Boutin, and Anton Korosov
The Cryosphere, 17, 1873–1893, https://doi.org/10.5194/tc-17-1873-2023,https://doi.org/10.5194/tc-17-1873-2023, 2023
Short summary
A quasi-objective single-buoy approach for understanding Lagrangian coherent structures and sea ice dynamics
Nikolas O. Aksamit, Randall K. Scharien, Jennifer K. Hutchings, and Jennifer V. Lukovich
The Cryosphere, 17, 1545–1566, https://doi.org/10.5194/tc-17-1545-2023,https://doi.org/10.5194/tc-17-1545-2023, 2023
Short summary
Linking scales of sea ice surface topography: evaluation of ICESat-2 measurements with coincident helicopter laser scanning during MOSAiC
Robert Ricker, Steven Fons, Arttu Jutila, Nils Hutter, Kyle Duncan, Sinead L. Farrell, Nathan T. Kurtz, and Renée Mie Fredensborg Hansen
The Cryosphere, 17, 1411–1429, https://doi.org/10.5194/tc-17-1411-2023,https://doi.org/10.5194/tc-17-1411-2023, 2023
Short summary

Cited articles

Anonymous: https://earth.esa.int/web/sentinel/technical-guides/sentinel-1-sar (last access: 25 April 2016), 2014.
Bay, H., Tuytelaars, T., and Van Gool, L.: Surf: Speeded Up Robust Features, in: Computer Vision – ECCV 2006, 9th European Conference on Computer Vision, Proceedings, Part I, 7–13 May 2006, Graz, Austria, 404–417, https://doi.org/10.1007/11744023_32, 2006.
Calonder, M., Lepetit, V., Strecha, C., and Fua, P.: BRIEF: Binary Robust Independent Elementary Features, CVLab, EPFL, Lausanne, Switzerland, 1281–1298, 2010.
Cressie, N.: Statistics for spatial data: Wiley series in probability and statistics, Wiley-Interscience, New York, 15, 105–209, 1993.
ESA: Sentinel-1 ESA's Radar Observatory Mission for GMES Operational Services, ESA Communications, SP-1322/1, ESA, the Netherlands, 15–21, 2012.
Download
Short summary
Presently, sea ice drift data do not provide sufficient resolution to estimate convergence and divergence fields on a spatial scaling of a few kilometres. Our goal is to exploit recent improvements and developments in computer vision by adopting a state-of-the-art feature-tracking algorithm to derive high-resolution sea ice drift. A computationally efficient algorithm has been considered, tuned and compared with other available feature-tracking algorithms.