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Abstract. A computationally efficient, open-source feature-

tracking algorithm, called ORB, is adopted and tuned for sea

ice drift retrieval from Sentinel-1 SAR (Synthetic Aperture

Radar) images. The most suitable setting and parameter val-

ues have been found using four Sentinel-1 image pairs repre-

sentative of sea ice conditions between Greenland and Sever-

naya Zemlya during winter and spring. The performance of

the algorithm is compared to two other feature-tracking al-

gorithms, namely SIFT (Scale-Invariant Feature Transform)

and SURF (Speeded-Up Robust Features). Having been ap-

plied to 43 test image pairs acquired over Fram Strait and

the north-east of Greenland, the tuned ORB (Oriented FAST

and Rotated BRIEF) algorithm produces the highest num-

ber of vectors (177 513, SIFT: 43 260 and SURF: 25 113),

while being computationally most efficient (66 s, SIFT: 182 s

and SURF: 99 s per image pair using a 2.7 GHz processor

with 8 GB memory). For validation purposes, 314 manually

drawn vectors have been compared with the closest calcu-

lated vectors, and the resulting root mean square error of ice

drift is 563 m. All test image pairs show a significantly better

performance of the HV (horizontal transmit, vertical receive)

channel due to higher informativeness. On average, around

four times as many vectors have been found using HV po-

larization. All software requirements necessary for applying

the presented feature-tracking algorithm are open source to

ensure a free and easy implementation.

1 Introduction

Sea ice motion is an essential variable to observe from re-

mote sensing data, because it strongly influences the distri-

bution of sea ice on different spatial and temporal scales.

Ice drift causes advection of ice from one region to another

and export of ice from the Arctic Ocean to the sub-Arctic

seas. Antarctic sea ice is even more mobile and its strong

seasonality is linked to the ice transport from high to low

latitudes (IPCC, 2013). Furthermore, ice drift generates con-

vergence and divergence zones that cause formation of ridges

and leads. However, there is still a lack of extensive sea ice

drift data sets with sufficient resolution to estimate conver-

gence and divergence on a spatial scaling of less than 5 km.

The regions of interest are the ice-covered seas between

Greenland and Severnaya Zemlya, i.e. the Greenland Sea,

Barents Sea, Kara Sea and the adjacent part of the Arctic

Ocean. This area is characterized by a strong seasonal cycle

of sea ice cover, a large variation of different ice classes (mul-

tiyear ice, first-year ice, marginal ice zone etc.) and a wide

range of drift speeds (e.g. strong ice drift in Fram Strait).

With systematic acquisition of space-borne Synthetic

Aperture Radar (SAR) data over sea ice areas, Kwok et al.

(1990) have demonstrated that high-resolution ice drift fields

can be derived from SAR data. SAR is an active microwave

radar which acquires data independently of solar illumination

and weather conditions. Sea ice motion fields of the Arc-

tic Ocean with a grid spacing of 5 km have been produced

on a weekly basis between 1997–2012 using Radarsat and

ENVISAT (Environmental Satellite) SAR data and the geo-

physical processor system introduced by Kwok et al. (1990).

Thomas et al. (2008a) have used pattern recognition to cal-

culate sea ice drift between successive ERS-1 (European

remote-sensing satellite) SAR images with a resolution of

400 m. This work has been continued by Hollands and Dierk-

ing (2011) using Advanced SAR (ASAR) data from EN-

VISAT. Komarov and Barber (2014) used a similar pattern-
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matching technique to evaluate ice motion results from dual-

polarization Radarsat-2 images.

With the successful launch of Sentinel-1A in April 2014

and the planned launch of Sentinel-1B in early 2016, high-

resolution SAR data will be delivered for the first time with

open and free access for all users and unprecedented revisit

time of less than one day in the Arctic (ESA, 2012). This in-

troduces a new era in SAR Earth observation. Sea ice drift

data with medium resolution (10 km) are provided opera-

tionally via the Copernicus Marine Environment Monitoring

Service (CMEMS, http://marine.copernicus.eu), but no sea

ice drift algorithm using Sentinel-1 data has been published

so far. The objective of this paper is to identify and develop

the most efficient open-source algorithm for high-resolution

sea ice drift retrieval from Sentinel-1 data.

Our goal is to exploit recent improvements and devel-

opments in computer vision by adopting a state-of-the-art

feature-tracking algorithm to derive sea ice drift (i.e. vec-

tors of sea ice displacement). Current pattern-matching al-

gorithms constrain the high-resolution vectors with low-

resolution estimates for practical reasons. Using feature

tracking, drift vectors can be derived independently from

the surrounding motion, which leads to better performance

e.g. along shear zones. For application on large data sets and

for operational use, we considered a computationally effi-

cient algorithm, called ORB (Oriented FAST and Rotated

BRIEF) (Rublee et al., 2011), tuned it for sea ice drift re-

trieval from Sentinel-1 imagery and compared the results

with other available feature-tracking algorithms and existing

sea ice drift products.

The software requirements necessary for deriving ice drift

fields from Sentinel-1 data (Python with OpenCV and the

Python toolbox Nansat) are all open source to ensure a free,

user friendly and easy implementation.

The paper is organized as follows: Sect. 2 introduces the

used Sentinel-1A data product. The ORB algorithm descrip-

tion and the used methods for tuning, comparison and valida-

tion are presented in Sect. 3. The recommended parameter set

including the tuning, comparison and validation results are

provided in Sect. 4. The discussion can be found in Sect. 5.

2 Data

The Sentinel-1 mission, an initiative of the European Union

and operated by the European Space Agency (ESA), is com-

posed of a constellation of two identical satellites sharing

the same near-polar, sun-synchronous orbit: Sentinel-1A,

launched in April 2014, and Sentinel-1B, planned to launch

in early 2016. Sentinel-1 carries a single C-band Synthetic

Aperture Radar (SAR) instrument measuring radar backscat-

ter at a centre frequency of 5.405 GHz and supporting dual

polarization (HH+HV, VV+VH). With both satellites op-

erating, the constellation will have a revisit time of less than

one day in the Arctic. Radar data are delivered to Coperni-

cus services within an hour of acquisition with open and free

access for all users (ESA, 2012).

The Sentinel-1 product used in this paper is called

Extra-wide Swath Mode Ground Range Detected with

Medium Resolution. These images cover an area of

400 km× 400 km with a pixel spacing of 40 m× 40 m (reso-

lution: 93 m range× 87 m azimuth; residual planimetric dis-

tortions: within 10 m; Schubert et al., 2014) and provide both

HH (horizontal transmit, horizontal receive) and HV (hori-

zontal transmit, vertical receive) polarization.

Four image pairs (Table 1) representative of our region of

interest have been chosen for parameter tuning. Furthermore,

43 image pairs acquired over Fram Strait and north-east of

Greenland (Fig. 8) have been used to test the performance of

different feature-tracking algorithms. To ensure an indepen-

dent evaluation, the 43 test image pairs have not been used

for parameter tuning. The two considered sets of image pairs

cover both a range of different sea ice conditions (pack ice,

fast ice, leads, ridges, marginal ice zone, ice edge etc.) and

intervals between the acquisitions. We focused on winter and

spring data, since our area of interest experiences the highest

sea ice cover during this period.

3 Method

Sentinel-1 data sets were opened and processed with the

open-source software Nansat (see Appendix A; Korosov et

al., 2015, 2016). Nansat is a scientist-friendly Python tool-

box for processing 2-D satellite Earth observation data. It is

based on the Geospatial Data Abstraction Library (GDAL)

and provides easy access to geospatial data, a simple and

generic interface to common operations including reading,

geographic transformation and export. Nansat proves to be

efficient both for development and testing of scientific al-

gorithms and for fast operational processing. To extend the

functionality of GDAL, Nansat reads metadata from XML

files accompanying Sentinel-1 data and supplements the

GDAL data model with georeference information stored as

ground control points (GCPs). Originally GCPs are pairs of

latitude/longitude and corresponding pixel/line coordinates.

In order to increase the accuracy of the geographic transfor-

mation, the projection of GCPs is changed from cylindrical

to stereographic, placed at the centre of the scene. The re-

projected GCPs are then used by GDAL to calculate geo-

graphic coordinates of any pixel in the raster using spline

interpolation. Reprojection of GCPs does not require much

additional computational effort, but improves the result sig-

nificantly, particularly at high latitudes.

The normalized radar cross section (σ 0) is calculated from

raw Sentinel 1A data using the following equation:

σ 0
= DN2

i /A
2
i , (1)

where DNi is the digital number provided in the source TIFF

file, Ai is the value of normalization coefficient from the ac-

The Cryosphere, 10, 913–925, 2016 www.the-cryosphere.net/10/913/2016/

http://marine.copernicus.eu


S. Muckenhuber et al.: Open-source feature-tracking algorithm for sea ice drift retrieval 915

Table 1. Sentinel-1 image pairs used for parameter tuning.

Region First image acquisition Second image acquisition Time

time, UTC time, UTC gap

Fram Strait 28 Mar 2015 07:44:33 29 Mar 2015 16:34:52 33 h

Svalbard North 22 Apr 2015 06:46:23 23 Apr 2015 13:59:03 31 h

Franz Josef Land 24 Mar 2015 03:21:13 24 Mar 2015 11:30:06 8 h

Kara Sea 22 Apr 2015 11:37:16 24 Apr 2015 11:20:59 48 h

companying calibration metadata and i is an index of a pixel

(Anonymous, 2014). No additional preprocessing of SAR

data was performed.

Our algorithm for sea ice drift detection includes three

main steps: (a) resampling of raw data to lower resolution,

(b) detection and matching of features and (c) compari-

son/validation.

a. To decrease the influence of speckle noise and increase

the computational efficiency, the resolution is reduced

before applying the ice drift algorithm from 40 to 80 m

pixel spacing using simple averaging.

b. For detection and tracking of features on large data sets

and for operational use, a computationally efficient al-

gorithm, called ORB (Rublee et al., 2011), has been

used. In our numerical experiments we tuned the param-

eters of ORB for optimal SAR sea ice drift application.

The most suitable parameter set (including spatial res-

olution of SAR image, patch size of FAST descriptor,

number of pyramid levels, scale factor, etc.) has been

evaluated for our area and season of interest.

c. The introduced ORB set-up is compared to other avail-

able OpenCV feature-tracking algorithms, CMEMS

data and manually drawn vectors for performance ap-

praisal and validation.

3.1 ORB algorithm

ORB (Oriented FAST and Rotated BRIEF) is a feature-

tracking algorithm introduced by Rublee et al. (2011) as

“a computationally efficient replacement to Scale-Invariant

Feature Transform (SIFT) that has similar matching per-

formance, is less affected by image noise, and is capable

of being used for real-time performance”. ORB builds on

the FAST keypoint detector (Rosten and Drummond, 2006)

and the binary BRIEF descriptor (Calonder et al., 2010)

with many modifications to enhance the performance. It uses

FAST to find multiscale keypoints on several pyramid levels

and applies a Harris corner measure (Harris and Stephens,

1988) to pick the best keypoints. To achieve rotation invari-

ance, the orientation of the keypoint is calculated by using

the intensity-weighted centroid of a circular patch with the

located keypoint at the centre. Rublee et al. (2011) states

that the ORB descriptor performance is equal to SIFT (Lowe,

2004) and higher than Speeded-Up Robust Features (SURF)

(Bay et al., 2006). Like Rublee et al. (2011), we use a brute-

force matcher and Hamming distance for feature matching.

Unlike SIFT and SURF, ORB is an open-source software and

use and distribution are not limited by any licenses.

Before the feature-tracking algorithm can be applied to a

satellite image, the SAR backscatter values σ 0 have to be

transformed into the intensity i range (0≤ i ≤ 255 for i ∈R)

used in OpenCV. This transformation is done by using Eq. (2)

and setting all intensity values below and above the range to 0

and 255.

i = 255 ·
σ 0
− σ 0

min

σ 0
max− σ

0
min

, (2)

Lower and upper brightness boundaries σ 0
min and σ 0

max are

user defined and chosen to be constant in order to limit

the influence of speckle noise and be independent e.g. of

high backscatter values σ 0 over land. Converting the lin-

ear backscatter values before the transformation into deci-

bel units has been tested, but decreased the algorithm perfor-

mance for both channels.

After the transformation into intensity values, keypoints

are detected on both SAR scenes using the FAST-9 keypoint

detector (Rosten and Drummond, 2006). FAST-9 compares

the intensity Ip of a centre pixel to the intensities of pixels on

the surrounding circle with a perimeter of 16 pixels (Fig. 1).

If there exists a set of nine contiguous pixels in the circle

which are all brighter than Ip+ t , or all darker than Ip− t ,

the centre pixel is recognized as a keypoint. The threshold t

is set low enough to get more than the predefined amount N

of keypoints.

To detect features of different scales, the keypoint search is

performed on several pyramid levels. The number of pyramid

levels in combination with the scale factor defines the range

and increment of the keypoint detection scaling. A scale fac-

tor of 2 means that each next pyramid level has four times

fewer pixels, but such a large-scale factor degrades the fea-

ture matching score. On the other hand, a small-scale factor

close to 1 means to cover a certain scale range needs more

pyramid levels and hence, the computational cost increases.

FAST does not produce a measure of cornerness and

Rublee et al. (2011) have found that it has large responses

along edges. Harris corner measure (Harris and Stephens,

1988) is used to order the FAST keypoints according to their
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Figure 1. Subset of the first image from Fram Strait pair (Ta-

ble 1) with centre at 2.31◦W, 81.70◦ N and pixel spacing of 80 m.

The centre pixel (red) is recognized as keypoint since > 9 contigu-

ous pixels (bold blue) of the surrounding blue circle have inten-

sity values smaller than the centre minus threshold t . The orienta-

tion θ of the keypoint is shown with a green arrow. The displayed

area (34× 34 pixels) around the keypoint represents the considered

patch p used for feature description. The yellow 5× 5 pixels sub-

windowsX and Y are an example for a possible binary test sampling

pair with p(X)<p(Y ) and hence, τ(p; X, Y )= 1 (Eq. 7).

cornerness and reject less reliable keypoints. Considering a

window w(x, y) around the keypoint, the intensity deriva-

tives Ix , Iy in x and y direction can be written in a matrix M:

M=
∑
x,y

w(x,y)

[
I 2
x IxIy
IxIy I 2

y

]
. (3)

The eigenvalues λ1 and λ2 of M contain the intensity deriva-

tive in the direction of the fastest and slowest change respec-

tively. Based on λ1 and λ2, a score R can be calculated for

each keypoint:

R = λ1λ2− k(λ1+ λ2)
2, (4)

with k being an empirical constant. A high intensity variation

in both dimensions returns a high R value. The top N key-

points with the highest R values are used and the rest is re-

jected.

FAST does not include orientation, but ORB adds a di-

rection to each keypoint using the intensity-weighted cen-

troid from Rosin (1999). The momentsmpq of a circular area

around the keypoint are used:

mpq =

∑
x,y

xpyqI (x,y). (5)

The intensity-weighted centroid has its location at the fol-

lowing:

C =

(
m01

m00

,
m10

m00

)
. (6)

The orientation θ (e.g. green arrow in Fig. 1) represents

the direction of the vector connecting the keypoint with the

intensity-weighted centroid. The momentsmpq are computed

with x and y remaining within a circular region of radius r ,

where r is chosen to be the size of the patch p used for the

following feature description Rublee et al. (2011).

After locating and adding orientation to the best N key-

points, a patch p around each keypoint is used for feature

description (NB: keypoint refers to 1 pixel, feature refers to

description of p). ORB applies a modified version of the bi-

nary descriptor BRIEF (Calonder et al., 2010). Rublee et al.

(2011) defines a binary test τ for a patch p as follows:

τ(p;X,Y ) :=

{
1 if p(X) < p(Y )

0 if p(X)≥ p(Y ),
(7)

with p(X) and p(Y ) being the intensities at test points X

and Y . ORB uses 5× 5 sub-windows as test points (e.g. in

Fig. 1). Applying n binary tests on a single patch, Rublee et

al. (2011) derive a binary feature vector f :

f n(p) :=
∑

1≤i≤n

2i−1τ (p;Xi,Yi) . (8)

The considered set of n binary tests with test points (Xi , Yi)

can be written in a 2× n matrix (Rublee et al., 2011):

S=

(
X1, . . ., Xn
Y1, . . ., Yn

)
. (9)

To be invariant to in-plane rotation, Rublee et al. (2011)

steers S according to the orientation θ using the correspond-

ing rotation matrix Rθ :

Sθ = RθS. (10)

A good set S of sampling pairs needs to be uncorrelated, so

that each pair adds new information to the descriptor and they

must have high variance to make features more discrimina-

tive. Rublee et al. (2011) applied a greedy search to a large

training data set to obtain a set for ORB with n= 256 rela-

tively uncorrelated tests with high variance.

After the feature description, OpenCV allows different

matching procedures for ORB. Like Rublee et al. (2011), we

use brute-force matching and compare each feature of the

first image to all features in the second image.

As a comparison measure, we use the Hamming distance,

which is equal to the number of positions in which the two

considered feature vectors have a different value.

b1 = 1011101

b2 = 1001001, (11)

For example, comparing the two binary vectors b1 and b2

returns the Hamming distance d = 2, since the third and fifth

position have a different value.

Our setting returns the best two matches and applies the

ratio test from Lowe (2004) to decide whether the best match

The Cryosphere, 10, 913–925, 2016 www.the-cryosphere.net/10/913/2016/
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is accepted or rejected. The match is accepted if ratio of the

distances d1

d2
< is below a given threshold. The ratio test elim-

inates a high number of false matches, while discarding only

few correct matches.

3.2 ORB setting and parameter tuning

Achieving the best possible performance of ORB for sea ice

drift from Sentinel-1 images requires a good setting and tun-

ing of the parameters shown in Table 2.

It is not recommended to reproject one image onto the pro-

jection of the second image before applying the ORB algo-

rithm, since this is computationally very expensive. Instead,

geographic coordinates of the matched start and end point

shall be calculated independently using the georeference in-

formation from GCPs of the first and second image.

Manual interpretation of ice drift results (using the training

data from Table 1) reveals that a good compromise between

amount of vectors and correct results can be achieved with

a Lowe ratio test threshold equal to 0.75. That means that

the Hamming distance of the best match has to be less than

0.75×Hamming distance of the second best match. Tested

on the image pairs from Table 1, the ratio test showed a

clearly better performance and is computationally less ex-

pensive than the alternative cross-check, where features are

matched in both directions (first image to second image and

vice versa) and rejected if the drift vectors are too different.

Unreasonably high sea ice displacements (e.g. above

40 km for a time difference between two scenes of ∼ 30 h)

are removed in a post-processing step from the drift field. In

addition, displacements below 2.5 km are rejected during the

testing to disregard matches over land. This does not influ-

ence the number of correct matches, since the sea ice dis-

placement in all considered test images is above 2.5 km.

Based on our observations we assume that the proportion

of wrong matches does not increase with increasing total

number of matches. Under this assumption the algorithm per-

formance refers to the total number of matches and is used to

tune the algorithm parameters in Table 2. ORB is computa-

tionally more efficient, enabling testing the parameters over

a wide range with high-resolution using both HH and HV

polarization.

As a starting point, the tested parameters were set as

follows: resize factor= 0.5, patch size= 31, pyramid lev-

els= 8, scale factor= 1.2, HH limits= [0,0.12], HV lim-

its= [0, 0.012] and ratio test = 0.8. As a compromise be-

tween performance and computational efficiency, the max-

imum amount of retained keypoints is set to 100 000. Tested

range and parameter meaning are shown in Table 2.

In order to find an optimal value for the tested parameter, it

is varied in a reasonable range, the feature-tracking algorithm

is applied and the total number of matched vectors is found.

Once the most suitable value for a tested parameter is found,

it is applied for further testing.

3.3 Comparison of ORB to SIFT and SURF

The presented ORB algorithm has been compared to other

OpenCV feature-tracking algorithms, namely SIFT (Lowe,

2004) and SURF (Bay et al., 2006), using 43 image pairs ac-

quired over Fram Strait and north-east of Greenland (Fig. 8).

SIFT and SURF were used in standard mode and the frame-

work conditions were set to equal for the comparison. Image

preprocessing has been carried out as described above, brute-

force matching including the Lowe ratio test with thresh-

old 0.75 has been applied for all three algorithms as well

as the removal of unreasonably high sea ice displacements

in a post-processing step. Since SIFT allows for defining the

number of retained keypoints, this parameter has been set

to 100 000 as done for ORB. The further tuning of SIFT and

SURF is not the aim of this paper, since these two algorithms

are not open source and computationally less efficient.

The distribution and reliability of the calculated vector

fields have been assessed for each image pair using two pa-

rameters on a grid with cell size 1◦ longitude× 0.2◦ latitude:

number of derived vectors per grid cell (N ) and root mean

square distance (D) of all vectors in a gird cell computed as

follows:

D =

√∑
i

(ui − ũ)
2
+ (vi − ṽ)

2

N
, (12)

where i is the index of a vector inside the grid cell, ui and

vi are the eastward and northward drift components and ũ,

ṽ the corresponding mean values. To combine the results of

several image pairs, the sum of N and the mean of D is con-

sidered.

3.4 Validation

The ORB algorithm has been validated against drift data

from two independent sources using the image pair Fram

Strait (Table 1). First, 350 features were identified by a

sea ice expert in both images and manually connected us-

ing ArcGIS. Second, sea ice drift vectors were taken from

the Copernicus Marine Environment Monitoring Service

(CMEMS, http://marine.copernicus.eu). The SAR ice drift

product of CMEMS is operated by the Technical University

of Denmark (DTU) and drift data are provided with a reso-

lution of 10 km using pattern-matching techniques (Pederson

et al., 2015, http://www.seaice.dk/).

Since the starting locations of ORB, manual and CMEMS

vectors do not coincide, the corresponding (ORB) reference

vectors were found as nearest neighbours within 5 km radius

from the (CMEMS or manual) validation vectors.

Three parameters were considered for the comparison:

root mean square error (E), slope (S) and offset (O) of the

linear fit between the reference and validation vectors.E was

calculated as follows:

www.the-cryosphere.net/10/913/2016/ The Cryosphere, 10, 913–925, 2016
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Table 2. Recommended set of parameters for retrieval of sea ice drift from Sentinel-1 data using ORB.

Parameter Meaning Tested range Recommended

(increment) setting

Amount keypoints Maximum number of keypoints to retain – 100 000

Resize factor Resolution reduction during pre-processing 0.5–1 (0.5) 0.5

Patch size Size of descriptor patch in pixels 10–60 (1) 34

Pyramid levels Number of pyramid levels 1–15 (1) 7

Scale factor Pyramid decimation ratio 1.1–1.4 (0.1) 1.2

[σ 0
min

, σ 0
max] (HH) Brightness boundaries for HH channel [0–0.04, 0.01–0.2] (0.01) [0, 0.08]

[σ 0
min

, σ 0
max] (HV) Brightness boundaries for HV channel [0–0.007, 0.001–0.02] (0.001) [0, 0.013]

Ratio test Threshold for ratio test 0.5–1 (0.1), 0.7–0.8 (0.01) 0.75

E =

√∑
i

(ui −Ui)
2
+ (vi −Vi)

2

n
, (13)

where i is the index of a vector pair (reference and validation

vector) inside the entire sample, ui and vi are eastward and

northward drift components of the validation vector, Ui and

Vi are eastward and northward components of the reference

vector and n is the number of vector pairs.

In addition, the CMEMS data have been validated against

manual vectors in order to understand the credibility of the

reference data.

4 Results

4.1 ORB parameter tuning

Table 2 shows the recommended parameter set for ORB

Sentinel-1 sea ice drift application for our region and period

of interest. Using these parameters yielded the best compro-

mise between performance and computational efficiency for

the four representative image pairs from Table 1.

4.1.1 Patch size

Figure 2 shows that changing the size (length and width) of

the considered patch p between 10 and 60 pixels can mod-

ify the resulting amount of vectors by an order of magnitude.

To resolve drift gradients with high resolution, the patch size

shall be as small as possible. Taking this into account and the

performance represented by the amount of matches, the most

suitable patch size was chosen to be 34 pixels. For our train-

ing data set (Table 1), this yields on average around 1 and

4 vectors per 10 km2 for HH and HV respectively. The four

image pairs respond similar to a patch size variation. Franz

Josef Land has the highest number of HH matches and the

lowest for HV.
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M
a
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h
e
s 

1
0

 k
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Figure 2. Patch size of descriptor vs. number of matches of the

four test image pairs from Table 1. Solid and dashed lines represent

results for HH and HV polarization respectively. Mean values of the

four image pairs are shown in black and the sum of the mean values

in red. Vertical grey line at 34 pixels represents chosen parameter.

4.1.2 Brightness boundaries

The performance of the algorithm (represented by the

amount of matches) for different backscatter limits σ 0
max

(Eq. 2) for HH and HV polarization is shown in Fig. 3. Within

the chosen backscatter range, the amount of vectors can vary

by an order of magnitude. As a compromise between the dif-

ferent results of the four image pairs, we suggest setting the

upper brightness boundary σ 0
max to 0.08 and 0.013 for HH

and HV. The chosen lower boundary σ 0
min is 0 for both HH

and HV, because the number of matches decreases for in-

creasing values of σ 0
min (not shown). Applying this setting on

the training data set yields on average around 1 and 4 vectors

per 10 km2 for HH and HV.

4.1.3 Pyramid levels and scale factor

We calculated the number of matches using 1 to 14 pyramid

levels and the scale factors 1.1, 1.2, 1.3 and 1.4. As a com-

promise between performance, i.e. number of matches, and

computational efficiency (linked to the number of pyramid
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Figure 3. Upper brightness boundary σ 0
max (Eq. 2) vs. number of

matches of the four test image pairs from Table 1. Solid and dashed

lines represent results for HH and HV respectively. Black lines

are the mean values of the four image pairs. Vertical grey lines at

0.08 (HH) and 0.013 (HV) represent chosen parameters.
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Figure 4. Number of pyramid levels vs. number of matches of the

four test image pairs from Table 1 for a scale factor of 1.2. Solid and

dashed lines represent results for HH and HV polarization. Mean

values are shown in black and the sum of the mean values in red.

Vertical grey line at 7 represents chosen number of pyramid levels.

levels), a scale factor of 1.2 with seven pyramid levels was

chosen. As shown in Fig. 4, the number of matches does not

increase significantly when using more than seven pyramid

levels and even decreases towards 14 pyramid levels.

4.2 HH and HV comparison

Figures 2, 3 and 4 display the HH and HV results with

solid and dashed lines. All image pairs show significantly

better performance of the HV channel. On average, around

four times as many vectors have been found using HV. Even

the image pair Franz Josef Land (Table 1), which has the

best HH and the worst HV performance, shows more than

two times as many vectors using HV channel. However, due

to the different appearance of sea ice in the HH and HV im-

(a)

(b)

Figure 5. Sea ice drift of the Sentinel-1 image pair Fram Strait (Ta-

ble 1). (a) Manually drawn vectors are shown in white and the com-

puted ORB vectors in red. (b) shows ORB vectors in comparison to

the drift vectors from the CMEMS/DTU data (blue).

age, the spatial distribution of the resulting drift vectors is

also slightly different.

Figure 6 shows the spatial distribution of identified key-

points and matched features in a 200× 200 pixels sub-image

from image pair Fram Strait (Table 1). The results for HH

and HV are displayed in two separate panels. The density of

identified keypoints in HH (11 keypoints per 10× 10 pix-

els window) is in the same order of magnitude as in HV

(15 keypoints per 10× 10 pixels window). This is expected,

since the number of retained keypoints for both channels is

set to 100 000 for the entire scene. However, the number of

matched features in HH is significantly lower (0.15 features

per 10× 10 pixels window) than in HV (1.6 features per

10× 10 pixels window). The observed difference in match-

ing success can be explained by looking at the frequency dis-

tribution of the radar backscatter standard deviation in a slid-

ing window with same size as used for feature description

(34× 34 pixels). The comparison in Fig. 7 shows that HH

provides a few windows with very high variability, i.e. high

standard deviation, but the majority have very low backscat-

ter variability (sharp peak with mode 20). On the HV im-

age, however, most of the windows have a medium to high

backscatter variability (wide peak with mode 25) which is

more favourable for keypoint detection.
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Figure 6. Identified keypoints (blue) and matched features (red) on a 200× 200 pixels sub-image from the pack ice area in image pair Fram

Strait (Table 1). Results of HH are shown in the left panel and HV in the right panel.

Figure 7. Frequency distribution of radar backscatter standard de-

viation using a 34× 34 pixels sliding window (step= 1 pixel) on

a 1000× 1000 pixels sub-image from image pair Fram Strait (Ta-

ble 1). The radar backscatter is scaled to range 0–255 using Eq. (2).

The considered sub-image covers pack ice, marginal ice zone and

small parts of open water. Results for HH are shown in blue and HV

in green.

4.3 Comparison with SIFT and SURF

A total of 177 513, 43 260 and 25 113 vectors are found for

the 43 test image pairs (Fig. 8) using ORB, SIFT and SURF

respectively (Fig. 9a). Comparing the vector fields using the

sum of N and the mean of D, as described in Sect. 3, shows

that ORB covers the largest area with close to 1000 vectors

per grid cell and lower root mean square distance values.

Comparing the distributions ofN (Q-Q plot in Fig. 10, left

panel), shows that ORB derives in all cases around five times

as many vectors than SIFT and SURF. The Q-Q plot in the

right panel of Fig. 10 considers the distributions of D. For

D< 500 m, the vectors derived by ORB exhibit a higher

variability within one grid cell (slightly higher D), proba-

bly due to a larger number of vectors N . For the higher root

Figure 8. Overlapping area of 43 Sentinel-1 image pairs used to

compare ORB, SIFT and SURF. The image pairs have been ac-

quired between 2 January and 21 March 2015 with time gaps vary-

ing between 7 and 48 h.

mean square values (D> 500 m), SIFT and SURF vectors

are much less consistent than ORB vectors (higher D).

4.4 Computational efficiency

The OpenCV feature-tracking algorithms ORB, SIFT and

SURF in combination with the Python toolbox, Nansat, are

computationally efficient (total processing time on regular

MacBook Pro: 2–4 min) and allow high-resolution sea ice

drift retrieval from data sets with large temporal and spatial

extent. The processing times shown in Table 3 are based on

testing the algorithms on a MacBook Pro from early 2013

with a 2.7 GHz Intel Core i7 processor and 8 GB 1600 MHz

DDR3 memory. Applying the introduced ORB algorithm
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Figure 9. Sea ice drift derived from 43 Sentinel-1 image pairs (Fig. 8) using both HH and HV channel and ORB (first column, 177 513 vec-
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Figure 10. Q-Q plot of number of vectors N (left panel) and root

mean square distance D (right panel) from results shown in Fig. 9.

Tuned ORB algorithm (x axis) compared to SIFT (y axis, blue dots)

and SURF (y axis, green dots).

needs 36 and 67 % of the processing time to compute drift

fields with SIFT and SURF.

4.5 Validation

Since reference vectors were searched only within a given

radius of the validation vectors, the number of matches de-

creased for the ORB vs. manual comparison from 350 possi-

ble matches to 314, for ORB vs. CMEMS from 560 to 436

and for CMEMS vs. manual from 350 to 201 (Table 4).

The average distances between compared vectors were 1702,

2261 and 3440 m for ORB vs. manual, ORB vs. CMEMS and

CMEMS vs. manual respectively.

The validation of ORB vectors with manually derived vec-

tors (Fig. 5a, Table 4) reveals a high accuracy of our tuned

ORB algorithm with root mean square error E= 563 m,

slope S= 1.02 and offset O =−372 m. Given the displace-

Table 3. Processing times for sea ice drift computation from one

channel.

Process Time [s]

Create two Nansat objects from Sentinel-1 image pair 21.1

Read matrixes from two Nansat objects 48.8

Apply feature-tracking algorithm – ORB 65.8

Apply feature-tracking algorithm – SIFT 181.8

Apply feature-tracking algorithm – SURF 98.5

ment range for the used image pair of 10–35 km, the relative

error of the algorithm (ratio of E to mean drift) is 2.5 %.

The vector distributions of ORB and CMEMS (Fig. 5b)

are similar. ORB covers a larger area in total, but in a few

regions only CMEMS provides drift information. The ORB

vs. CMEMS comparison gives an error E= 1641 m, slope

S= 1.03 and offset O = 265 m (Table 4).

Validating CMEMS using manual data results in the high-

est root mean square error E = 1690 m with slope S= 0.98

and offset O =−415 m (Table 4) .

Decreasing the threshold radius between reference and

validation vectors does not influence the errorE significantly

but reduces the number of found matching vectors, especially

when comparing CMEMS and manual vectors.

5 Discussion and outlook

The open-source feature-tracking algorithm ORB (Oriented

FAST and Rotated BRIEF) has been tuned for sea ice drift

retrieval from Sentinel-1 SAR imagery and used for pro-

cessing winter and spring data in the ice-covered oceans

between Greenland and Severnaya Zemlya. Validating cal-
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Table 4. Comparison of ORB, CMEMS and manually derived sea

ice drift data from image pair Fram Strait (Table 1). The total num-

bers of derived vectors are 6920 (ORB), 560 (CMEMS/DTU) and

350 (manual). The # vector pairs is the number of used vector pairs

for comparison, i.e. vector pairs with maximum 5 km distance. The

average distance refers to the starting locations of the used reference

and validation vectors. E is the root mean square error, S andO are

slope and offset of the linear fit.

Algorithm E S O # vector Average

[m] [m] pairs distance [m]

ORB vs. manual 563 1.02 −372 314 1702± 1325

ORB vs. CMEMS 1641 1.03 265 436 2261± 1247

CMEMS vs. manual 1690 0.98 −415 201 3440± 1105

culated drift results against manually derived vectors, we

found that our algorithm (EORB= 563 m) had a distinctly

higher accuracy than the drift data set provided by CMEMS

(ECMEMS= 1690 m). The given root mean square errors E

represent a combination of three error sources:

– error of manual ice drift identification introduced by the

sea ice expert

– difference between derived and reference vector due

to different geographical location of the starting point

(maximum 5 km)

– actual error of the algorithm.

Hence, the actual error of the tuned ORB algorithm is ex-

pected to be even lower than 563 m.

As expected, the application of the tuned ORB algorithm

is much more efficient than manual ice drift assessment,

e.g. 6920 vectors have been calculated within 3 min, whereas

identifying 350 sea ice drift vectors manually takes several

hours. The number of calculated vectors can be increased

by returning a higher number of keypoints (e.g. 1 000 000).

However, the processing time increases proportional to the

square of the considered keypoints and the algorithm perfor-

mance becomes suboptimal at some point.

The presented ORB algorithm also outperforms other

available feature-tracking algorithms, such as SIFT and

SURF not only in processing time, but also in quantity and

quality of drift vectors, measured by the two introduced in-

dexes N and D. This proves that ORB is the best option for

feature-tracking of sea ice on Sentinel-1 SAR imagery.

The algorithm tuning has been performed using winter and

spring data, since our area of interest experiences the high-

est sea ice cover during this period. During summer and au-

tumn, most considered areas have very little or no ice cover

(e.g. Barents Sea and Kara Sea), making ice drift calculation

during this period less meaningful. Nevertheless, some areas,

like the western Fram Strait, experience sea ice cover during

the entire year. Dependence of the algorithm performance on

the season needs to be evaluated in future work. Computing

sea ice drift from summer and autumn data is expected to be

more demanding, since features might be destroyed by melt-

ing.

Comparing the four considered image pairs, Franz Josef

Land yields the highest number of HH matches, accompa-

nied by the lowest number from HV channel. A distinctly

shorter time difference between the acquisitions (8 h for

Franz Josef Land compared to more than 30 for the other

image pairs) might be one reason for an improved HH per-

formance. That would conclude that HH features are less pre-

served over time and increasing the repeat frequency of the

satellite (as planned with Sentinel-1B) will improve the algo-

rithm performance, in particular for the HH channel. The sea

ice conditions are another important factor when comparing

the algorithm performance for different scenes. The image

pair Fram Strait includes the marginal ice zone in the eastern

part and multiyear ice in the north-west. Not many matches

are expected in the marginal ice zone, but the multiyear ice

includes more stable deformation pattern, like ridges, that

lead to a good feature-tracking performance. The image pair

Svalbard North includes a very small part of the marginal ice

zone and the major part is comparable homogeneous pack

ice with long cracks along a prevailing direction. Franz Josef

Land and Kara Sea are clearly less homogeneous and show

a mixture of ice floes with different scales and newly formed

young ice. This paper has focused on finding the most suit-

able algorithm for a range of ice conditions found in the con-

sidered area and we can give an idea how ice conditions and

acquisition time might affect the ORB feature-tracking per-

formance. Further investigations need to be carried out in or-

der to evaluate the algorithm performance for different ice

conditions and other areas like the Beaufort Sea or Antarc-

tica.

Komarov and Barber (2014) have evaluated sea ice drift

results from dual-polarization Radarsat-2 imagery using a

combination of phase and cross-correlation. Comparing the

polarization channels, HH is more sensitive to small-scale

roughness, whereas the HV channel provides more stable,

large-scale features linked to ice topography. Komarov and

Barber (2014) concludes that the combination of HH and HV

is beneficial, since more reliable vectors are provided and

the vector distributions complement each other. They also

found that noise floor stripes in the HV images do not affect

the motion tracking from pattern matching. We can extent

this discussion for feature based algorithms. Using noise re-

moval for HV and angular correction for HH has been tested,

but did not improve the feature-tracking results, i.e. a lower

number of vectors has been found. Like Komarov and Barber

(2014), we recommend the usage of both channels since the

vector distributions are complementary. However, using fea-

ture tracking, HV provides about four times as many vectors

than HH, making HV the more informative channel. The dif-

ferent performance can be explained by a higher variability

of the HV backscatter intensity, considering a window with

the same size as used for feature description (34× 34 pix).

The Cryosphere, 10, 913–925, 2016 www.the-cryosphere.net/10/913/2016/



S. Muckenhuber et al.: Open-source feature-tracking algorithm for sea ice drift retrieval 923

Figure 11. Sea ice drift anomaly (compared to mean drift of the

scene) detected in a 300× 400 pix (24× 32 km) sub-image from

Fram Strait (Table 1) close to the marginal ice zone.

Contemporary algorithms for calculating sea ice drift vec-

tors from consecutive image pairs are based either on fea-

ture tracking or pattern matching. The feature-tracking ap-

proach detects keypoints on two images based solely on the

backscatter distribution of the images without taking other

keypoints into account. Hence, ORB identifies the keypoints

independently. Based on the keypoint locations, the binary

feature vectors are calculated. During the second step, all

features in the first images are compared to all features in

the second image without taking drift information from sur-

rounding vectors into account, i.e. the matching of features

from one image to the other is also done independently. Al-

though very close keypoints may share some pixels during

the feature description process (i.e. overlap of the considered

patches around the keypoints), the detection of keypoints

and matching of features are done independently. Eventu-

ally, feature-tracking vectors are independent of each other in

terms of position, lengths and direction, allowing very close

drift vectors to point into different directions.

Figure 11 illustrates 430 drift vector anomalies detected

in a 300× 400 pix (24× 32 km) sub-image from Fram Strait

(Table 1) close to the marginal ice zone. The anomalies are

calculated as the difference to the mean drift of the entire

scene. This example shows that very small-scale dynamic

processes, such as the observed rotation, can be detected and

quantified with the feature-tracking approach.

Common pattern-matching techniques limit the indepen-

dence of neighbour vectors for practical reasons. First, pat-

tern matching is usually performed on a regular grid, de-

termining the position and distance between vectors. Sec-

ond, pattern matching often follows a pyramid approach in

order to speed up processing (Thomas et al., 2008a): low-

resolution drift is initially estimated using large subwindows

and large steps. This first guess constrains the following pat-

tern matching to a finer scale. Repeating this procedure in-

creases the resolution of the end product, but length and
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Figure 12. Variogram of drift vectors (black line) on top of 2-D his-

togram of distance between vectors and difference between vectors

estimated from vectors identified on the Sentinel-1 image pair Fram

Strait (Table 1). Colour of the 2-D histogram indicates the number

of vectors.

direction of the high-resolution vectors depend on the low-

resolution estimates, i.e. neighbour vectors depend on each

other. Although pattern matching can be designed to retrieve

independent vectors by varying the extent of the correlation

area and the spacing between vectors, for practical reasons

the overlap between the correlation areas is usually half the

size of the area (Thomas et al., 2008b).

The independence of feature-tracking vectors has positive

and negative implications. On one hand, very close vectors

that are independent in length and direction allow identifi-

cation of ice deformation at very high resolution. The var-

iogram (Fig. 12), which shows how vector differences de-

pendent on the distance between them (Cressie, 1993), in-

dicates that very close vectors may differ significantly, al-

though the difference is generally linearly proportional to the

distance. On the other hand, feature-tracking vectors are not

evenly distributed in space, and large gaps may occur be-

tween clouds of densely located vectors. Spatial irregular-

ity is not optimal for systematic detection of divergence and

shear zones and calculation of deformation.

Therefore, computationally efficient feature tracking

should be complemented by systematic pattern matching

to deliver evenly distributed, high-resolution vector fields.

Combining the two different drift calculation approaches and

making use of the respective advantages is planned as the

next step of our research.
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Appendix A: Open-source distribution

The presented work is entirely based on open-source soft-

ware (Python, OpenCV and Nansat) and satellite images

with open and free access for all users. Sentinel-1 SAR

data can be downloaded at no cost, in near real time under

https://scihub.esa.int/dhus/. The used programming language

is Python, a free and open-source software available under

https://www.python.org. The OpenCV (open-source Com-

puter Vision) programming library includes the ORB algo-

rithm, and a Python-compatible version can be downloaded

under http://opencv.org. To handle and read the satellite data,

Nansat is used, which is a scientist-friendly Python toolbox

for processing 2-D satellite Earth observation data (source

code incl. installation description can be found under https://

github.com/nansencenter/nansat). The presented sea ice drift

algorithm including an application example can be down-

loaded from https://github.com/nansencenter/sea_ice_drift.
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