Articles | Volume 10, issue 6
https://doi.org/10.5194/tc-10-2541-2016
https://doi.org/10.5194/tc-10-2541-2016
Research article
 | 
02 Nov 2016
Research article |  | 02 Nov 2016

Reflective properties of white sea ice and snow

Aleksey Malinka, Eleonora Zege, Georg Heygster, and Larysa Istomina

Related authors

Melt pond fractions on Arctic summer sea ice retrieved from Sentinel-3 satellite data with a constrained physical forward model
Hannah Niehaus, Larysa Istomina, Marcel Nicolaus, Ran Tao, Aleksey Malinka, Eleonora Zege, and Gunnar Spreen
The Cryosphere, 18, 933–956, https://doi.org/10.5194/tc-18-933-2024,https://doi.org/10.5194/tc-18-933-2024, 2024
Short summary
Experimental and model-based investigation of the links between snow bidirectional reflectance and snow microstructure
Marie Dumont, Frederic Flin, Aleksey Malinka, Olivier Brissaud, Pascal Hagenmuller, Philippe Lapalus, Bernard Lesaffre, Anne Dufour, Neige Calonne, Sabine Rolland du Roscoat, and Edward Ando
The Cryosphere, 15, 3921–3948, https://doi.org/10.5194/tc-15-3921-2021,https://doi.org/10.5194/tc-15-3921-2021, 2021
Short summary
The dual-field-of-view polarization lidar technique: a new concept in monitoring aerosol effects in liquid-water clouds – theoretical framework
Cristofer Jimenez, Albert Ansmann, Ronny Engelmann, David Donovan, Aleksey Malinka, Jörg Schmidt, Patric Seifert, and Ulla Wandinger
Atmos. Chem. Phys., 20, 15247–15263, https://doi.org/10.5194/acp-20-15247-2020,https://doi.org/10.5194/acp-20-15247-2020, 2020
Short summary
The dual-field-of-view polarization lidar technique: a new concept in monitoring aerosol effects in liquid-water clouds – case studies
Cristofer Jimenez, Albert Ansmann, Ronny Engelmann, David Donovan, Aleksey Malinka, Patric Seifert, Robert Wiesen, Martin Radenz, Zhenping Yin, Johannes Bühl, Jörg Schmidt, Boris Barja, and Ulla Wandinger
Atmos. Chem. Phys., 20, 15265–15284, https://doi.org/10.5194/acp-20-15265-2020,https://doi.org/10.5194/acp-20-15265-2020, 2020
Short summary
Reflective properties of melt ponds on sea ice
Aleksey Malinka, Eleonora Zege, Larysa Istomina, Georg Heygster, Gunnar Spreen, Donald Perovich, and Chris Polashenski
The Cryosphere, 12, 1921–1937, https://doi.org/10.5194/tc-12-1921-2018,https://doi.org/10.5194/tc-12-1921-2018, 2018
Short summary

Related subject area

Sea Ice
Why is summertime Arctic sea ice drift speed projected to decrease?
Jamie L. Ward and Neil F. Tandon
The Cryosphere, 18, 995–1012, https://doi.org/10.5194/tc-18-995-2024,https://doi.org/10.5194/tc-18-995-2024, 2024
Short summary
Impact of atmospheric rivers on Arctic sea ice variations
Linghan Li, Forest Cannon, Matthew R. Mazloff, Aneesh C. Subramanian, Anna M. Wilson, and Fred Martin Ralph
The Cryosphere, 18, 121–137, https://doi.org/10.5194/tc-18-121-2024,https://doi.org/10.5194/tc-18-121-2024, 2024
Short summary
The impacts of anomalies in atmospheric circulations on Arctic sea ice outflow and sea ice conditions in the Barents and Greenland seas: case study in 2020
Fanyi Zhang, Ruibo Lei, Mengxi Zhai, Xiaoping Pang, and Na Li
The Cryosphere, 17, 4609–4628, https://doi.org/10.5194/tc-17-4609-2023,https://doi.org/10.5194/tc-17-4609-2023, 2023
Short summary
Atmospheric highs drive asymmetric sea ice drift during lead opening from Point Barrow
MacKenzie E. Jewell, Jennifer K. Hutchings, and Cathleen A. Geiger
The Cryosphere, 17, 3229–3250, https://doi.org/10.5194/tc-17-3229-2023,https://doi.org/10.5194/tc-17-3229-2023, 2023
Short summary
Spatial characteristics of frazil streaks in the Terra Nova Bay Polynya from high-resolution visible satellite imagery
Katarzyna Bradtke and Agnieszka Herman
The Cryosphere, 17, 2073–2094, https://doi.org/10.5194/tc-17-2073-2023,https://doi.org/10.5194/tc-17-2073-2023, 2023
Short summary

Cited articles

Aoki, T., Fukabori, M., Hachikubo, A., Tachibana, Y., and Nishio, F.: Effects of snow physical parameters on spectral albedo and bi-directional reflectance of snow surface, J. Geophys. Res., 105, 10219–10236, 2000.
Beine, H., Anastasio, F. C., Domine, F., Douglas, T., Barret, M., France, J., King, M., Hall, S., and Ullmann, K.: Soluble chromophores in marine snow, seawater, sea ice and frost flowers near Barrow, Alaska, J. Geophys. Res., 117, D00R15, https://doi.org/10.1029/2011JD016650, 2012.
Bhatia, M., Das, S., Longnecker, K., Charette, M., andKujawinski, E.: Molecular characterization of dissolved organic matter associated with the Greenland ice sheet, Geochim. Cosmochim. Ac., 74, 3768–3784, https://doi.org/10.1016/j.gca.2010.03.035, 2010.
Boetius, A. and ARK-XXVII/3 Shipboard Scientific Party: List of sea ice measurements during Polarstern cruise ARK-XXVII/3 (IceArc), Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, https://doi.org/10.1594/PANGAEA.792734, 2012.
Boetius, A., Albrecht, S., Bakker, K., Bienhold, C., Felden, J., Fernández-Méndez, M., Hendricks, S., Katlein, C., Lalande, C., Krumpen, T., Nicolaus, M., Peeken, I., Rabe, B., Rogacheva, A., Rybakova, E., Somavilla, R., and Wenzhöfer, F.: RV Polarstern ARK27-3-Shipboard Science Party: Export of Algal Biomass from the Melting Arctic Sea Ice, Science, 339, 1430–1432, https://doi.org/10.1126/science.1231346, 2013.
Download
Short summary
The number of melt ponds on Arctic summer sea ice and its reflectance are required for better climate modeling and weather prediction. In order to derive these quantities from optical satellite observations, simple analytical formulas for the bidirectional reflectance factor and albedo at direct and diffuse incidence are derived from basic assumptions and verified with in situ measurements made during the expedition ARK-XXVII/3 of research vessel Polarstern in 2012.