Articles | Volume 10, issue 5
https://doi.org/10.5194/tc-10-2147-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-10-2147-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
How much cryosphere model complexity is just right? Exploration using the conceptual cryosphere hydrology framework
Thomas M. Mosier
CORRESPONDING AUTHOR
Water Resources Graduate Program, Oregon State University, Corvallis, Oregon, 97331, USA
Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, Oregon, 97331, USA
David F. Hill
Water Resources Graduate Program, Oregon State University, Corvallis, Oregon, 97331, USA
Civil and Construction Engineering, Oregon State University, Corvallis, Oregon, 97331, USA
Kendra V. Sharp
Water Resources Graduate Program, Oregon State University, Corvallis, Oregon, 97331, USA
Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, Oregon, 97331, USA
Related authors
No articles found.
Kai Parker, David Hill, Gabriel García-Medina, and Jordan Beamer
Nat. Hazards Earth Syst. Sci., 19, 1601–1618, https://doi.org/10.5194/nhess-19-1601-2019, https://doi.org/10.5194/nhess-19-1601-2019, 2019
Short summary
Short summary
Our ability to manage estuaries is currently limited by a poor understanding of how they will evolve into the future. This study explores flooding conditions at two US Pacific estuaries as controlled by changing climate. The hazard is characterized using a variety of models that track oceanic, atmospheric, and hydrologic forcing at decadal scales. It is found that flood surface height varies significantly across estuaries and can be expected to change in complex ways moving into the future.
Ryan L. Crumley, David F. Hill, Jordan P. Beamer, and Elizabeth R. Holzenthal
The Cryosphere, 13, 1597–1619, https://doi.org/10.5194/tc-13-1597-2019, https://doi.org/10.5194/tc-13-1597-2019, 2019
Short summary
Short summary
In this study we investigate the historical (1980–2015) and projection scenario (2070–2099) components of freshwater runoff to Glacier Bay, Alaska, using a modeling approach. We find that many of the historically snow-dominated watersheds in Glacier Bay National Park and Preserve may transition towards rainfall-dominated hydrographs in a projection scenario under RCP 8.5 conditions. The changes in timing and volume of freshwater entering Glacier Bay will affect bay ecology and hydrochemistry.
Related subject area
Mountain Processes
Quantifying frost-weathering-induced damage in alpine rocks
Subgridding high-resolution numerical weather forecast in the Canadian Selkirk mountain range for local snow modeling in a remote sensing perspective
Rapid warming and degradation of mountain permafrost in Norway and Iceland
Improving climate model skill over High Mountain Asia by adapting snow cover parameterization to complex-topography areas
Brief communication: How deep is the snow on Mount Everest?
Snow sensitivity to temperature and precipitation change during compound cold–hot and wet–dry seasons in the Pyrenees
Mountain permafrost in the Central Pyrenees: insights from the Devaux ice cave
Glacier–permafrost relations in a high-mountain environment: 5 decades of kinematic monitoring at the Gruben site, Swiss Alps
Multi-scale snowdrift-permitting modelling of mountain snowpack
How much snow falls in the world's mountains? A first look at mountain snowfall estimates in A-train observations and reanalyses
Brief communication: The influence of mica-rich rocks on the shear strength of ice-filled discontinuities
Resolving the influence of temperature forcing through heat conduction on rock glacier dynamics: a numerical modelling approach
A temperature- and stress-controlled failure criterion for ice-filled permafrost rock joints
Quantifying irreversible movement in steep, fractured bedrock permafrost on Matterhorn (CH)
Small-scale variation of snow in a regional permafrost model
Meteorological, elevation, and slope effects on surface hoar formation
Verification of analysed and forecasted winter precipitation in complex terrain
Soil erosion and organic carbon export by wet snow avalanches
Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model
Influence of surface and subsurface heterogeneity on observed borehole temperatures at a mountain permafrost site in the Upper Engadine, Swiss Alps
The mass and energy balance of ice within the Eisriesenwelt cave, Austria
Rapid changes of the ice mass configuration in the dynamic Diablotins ice cave – Fribourg Prealps, Switzerland
Till Mayer, Maxim Deprez, Laurenz Schröer, Veerle Cnudde, and Daniel Draebing
The Cryosphere, 18, 2847–2864, https://doi.org/10.5194/tc-18-2847-2024, https://doi.org/10.5194/tc-18-2847-2024, 2024
Short summary
Short summary
Frost weathering drives rockfall and shapes the evolution of alpine landscapes. We employed a novel combination of investigation techniques to assess the influence of different climatic conditions on high-alpine rock faces. Our results imply that rock walls exposed to freeze–thaw conditions, which are likely to occur at lower elevations, will weather more rapidly than rock walls exposed to sustained freezing conditions due to winter snow cover or permafrost at higher elevations.
Paul Billecocq, Alexandre Langlois, and Benoit Montpetit
The Cryosphere, 18, 2765–2782, https://doi.org/10.5194/tc-18-2765-2024, https://doi.org/10.5194/tc-18-2765-2024, 2024
Short summary
Short summary
Snow covers a vast part of the globe, making snow water equivalent (SWE) crucial for climate science and hydrology. SWE can be inversed from satellite data, but the snow's complex structure highly affects the signal, and thus an educated first guess is mandatory. In this study, a subgridding framework was developed to model snow at the local scale from model weather data. The framework enhanced snow parameter modeling, paving the way for SWE inversion algorithms from satellite data.
Bernd Etzelmüller, Ketil Isaksen, Justyna Czekirda, Sebastian Westermann, Christin Hilbich, and Christian Hauck
The Cryosphere, 17, 5477–5497, https://doi.org/10.5194/tc-17-5477-2023, https://doi.org/10.5194/tc-17-5477-2023, 2023
Short summary
Short summary
Permafrost (permanently frozen ground) is widespread in the mountains of Norway and Iceland. Several boreholes were drilled after 1999 for long-term permafrost monitoring. We document a strong warming of permafrost, including the development of unfrozen bodies in the permafrost. Warming and degradation of mountain permafrost may lead to more natural hazards.
Mickaël Lalande, Martin Ménégoz, Gerhard Krinner, Catherine Ottlé, and Frédérique Cheruy
The Cryosphere, 17, 5095–5130, https://doi.org/10.5194/tc-17-5095-2023, https://doi.org/10.5194/tc-17-5095-2023, 2023
Short summary
Short summary
This study investigates the impact of topography on snow cover parameterizations using models and observations. Parameterizations without topography-based considerations overestimate snow cover. Incorporating topography reduces snow overestimation by 5–10 % in mountains, in turn reducing cold biases. However, some biases remain, requiring further calibration and more data. Assessing snow cover parameterizations is challenging due to limited and uncertain data in mountainous regions.
Wei Yang, Huabiao Zhao, Baiqing Xu, Jiule Li, Weicai Wang, Guangjian Wu, Zhongyan Wang, and Tandong Yao
The Cryosphere, 17, 2625–2628, https://doi.org/10.5194/tc-17-2625-2023, https://doi.org/10.5194/tc-17-2625-2023, 2023
Short summary
Short summary
There is very strong scientific and public interest regarding the snow thickness on Mountain Everest. Previously reported snow depths derived by different methods and instruments ranged from 0.92 to 3.5 m. Our measurements in 2022 provide the first clear radar image of the snowpack at the top of Mount Everest. The snow thickness at Earth's summit was averaged to be 9.5 ± 1.2 m. This updated snow thickness is considerably deeper than values reported during the past 5 decades.
Josep Bonsoms, Juan Ignacio López-Moreno, and Esteban Alonso-González
The Cryosphere, 17, 1307–1326, https://doi.org/10.5194/tc-17-1307-2023, https://doi.org/10.5194/tc-17-1307-2023, 2023
Short summary
Short summary
This work analyzes the snow response to temperature and precipitation in the Pyrenees. During warm and wet seasons, seasonal snow depth is expected to be reduced by −37 %, −34 %, and −27 % per degree Celsius at low-, mid-, and high-elevation areas, respectively. The largest snow reductions are anticipated at low elevations of the eastern Pyrenees. Results anticipate important impacts on the nearby ecological and socioeconomic systems.
Miguel Bartolomé, Gérard Cazenave, Marc Luetscher, Christoph Spötl, Fernando Gázquez, Ánchel Belmonte, Alexandra V. Turchyn, Juan Ignacio López-Moreno, and Ana Moreno
The Cryosphere, 17, 477–497, https://doi.org/10.5194/tc-17-477-2023, https://doi.org/10.5194/tc-17-477-2023, 2023
Short summary
Short summary
In this work we study the microclimate and the geomorphological features of Devaux ice cave in the Central Pyrenees. The research is based on cave monitoring, geomorphology, and geochemical analyses. We infer two different thermal regimes. The cave is impacted by flooding in late winter/early spring when the main outlets freeze, damming the water inside. Rock temperatures below 0°C and the absence of drip water indicate frozen rock, while relict ice formations record past damming events.
Isabelle Gärtner-Roer, Nina Brunner, Reynald Delaloye, Wilfried Haeberli, Andreas Kääb, and Patrick Thee
The Cryosphere, 16, 2083–2101, https://doi.org/10.5194/tc-16-2083-2022, https://doi.org/10.5194/tc-16-2083-2022, 2022
Short summary
Short summary
We intensely investigated the Gruben site in the Swiss Alps, where glaciers and permafrost landforms closely interact, to better understand cold-climate environments. By the interpretation of air photos from 5 decades, we describe long-term developments of the existing landforms. In combination with high-resolution positioning measurements and ground surface temperatures, we were also able to link these to short-term changes and describe different landform responses to climate forcing.
Vincent Vionnet, Christopher B. Marsh, Brian Menounos, Simon Gascoin, Nicholas E. Wayand, Joseph Shea, Kriti Mukherjee, and John W. Pomeroy
The Cryosphere, 15, 743–769, https://doi.org/10.5194/tc-15-743-2021, https://doi.org/10.5194/tc-15-743-2021, 2021
Short summary
Short summary
Mountain snow cover provides critical supplies of fresh water to downstream users. Its accurate prediction requires inclusion of often-ignored processes. A multi-scale modelling strategy is presented that efficiently accounts for snow redistribution. Model accuracy is assessed via airborne lidar and optical satellite imagery. With redistribution the model captures the elevation–snow depth relation. Redistribution processes are required to reproduce spatial variability, such as around ridges.
Anne Sophie Daloz, Marian Mateling, Tristan L'Ecuyer, Mark Kulie, Norm B. Wood, Mikael Durand, Melissa Wrzesien, Camilla W. Stjern, and Ashok P. Dimri
The Cryosphere, 14, 3195–3207, https://doi.org/10.5194/tc-14-3195-2020, https://doi.org/10.5194/tc-14-3195-2020, 2020
Short summary
Short summary
The total of snow that falls globally is a critical factor governing freshwater availability. To better understand how this resource is impacted by climate change, we need to know how reliable the current observational datasets for snow are. Here, we compare five datasets looking at the snow falling over the mountains versus the other continents. We show that there is a large consensus when looking at fractional contributions but strong dissimilarities when comparing magnitudes.
Philipp Mamot, Samuel Weber, Maximilian Lanz, and Michael Krautblatter
The Cryosphere, 14, 1849–1855, https://doi.org/10.5194/tc-14-1849-2020, https://doi.org/10.5194/tc-14-1849-2020, 2020
Short summary
Short summary
A failure criterion for ice-filled rock joints is a prerequisite to accurately assess the stability of permafrost rock slopes. In 2018 a failure criterion was proposed based on limestone. Now, we tested the transferability to other rocks using mica schist and gneiss which provide the maximum expected deviation of lithological effects on the shear strength. We show that even for controversial rocks the failure criterion stays unaltered, suggesting that it is applicable to mostly all rock types.
Alessandro Cicoira, Jan Beutel, Jérome Faillettaz, Isabelle Gärtner-Roer, and Andreas Vieli
The Cryosphere, 13, 927–942, https://doi.org/10.5194/tc-13-927-2019, https://doi.org/10.5194/tc-13-927-2019, 2019
Short summary
Short summary
Rock glacier flow varies on multiple timescales. The variations have been linked to climatic forcing, but a quantitative understanding is still missing.
We use a 1-D numerical modelling approach coupling heat conduction to a creep model in order to study the influence of temperature variations on rock glacier flow. Our results show that heat conduction alone cannot explain the observed variations. Other processes, likely linked to water, must dominate the short-term velocity signal.
Philipp Mamot, Samuel Weber, Tanja Schröder, and Michael Krautblatter
The Cryosphere, 12, 3333–3353, https://doi.org/10.5194/tc-12-3333-2018, https://doi.org/10.5194/tc-12-3333-2018, 2018
Short summary
Short summary
Most of the observed failures in permafrost-affected alpine rock walls are likely triggered by the mechanical destabilisation of warming bedrock permafrost including ice-filled joints. We present a systematic study of the brittle shear failure of ice and rock–ice contacts along rock joints in a simulated depth ≤ 30 m and at temperatures from −10 to −0.5 °C. Warming and sudden reduction in rock overburden due to the detachment of an upper rock mass lead to a significant drop in shear resistance.
Samuel Weber, Jan Beutel, Jérome Faillettaz, Andreas Hasler, Michael Krautblatter, and Andreas Vieli
The Cryosphere, 11, 567–583, https://doi.org/10.5194/tc-11-567-2017, https://doi.org/10.5194/tc-11-567-2017, 2017
Short summary
Short summary
We present a 8-year continuous time series of measured fracture kinematics and thermal conditions on steep permafrost bedrock at Hörnligrat, Matterhorn. Based on this unique dataset and a conceptual model for strong fractured bedrock, we develop a novel quantitative approach that allows to separate reversible from irreversible fracture kinematics and assign the dominant forcing. A new index of irreversibility provides useful indication for the occurrence and timing of irreversible displacements.
Kjersti Gisnås, Sebastian Westermann, Thomas Vikhamar Schuler, Kjetil Melvold, and Bernd Etzelmüller
The Cryosphere, 10, 1201–1215, https://doi.org/10.5194/tc-10-1201-2016, https://doi.org/10.5194/tc-10-1201-2016, 2016
Short summary
Short summary
In wind exposed areas snow redistribution results in large spatial variability in ground temperatures. In these areas, the ground temperature of a grid cell must be determined based on the distribution, and not the average, of snow depths. We employ distribution functions of snow in a regional permafrost model, showing highly improved representation of ground temperatures. By including snow distributions, we find the permafrost area to be nearly twice as large as what is modelled without.
S. Horton, M. Schirmer, and B. Jamieson
The Cryosphere, 9, 1523–1533, https://doi.org/10.5194/tc-9-1523-2015, https://doi.org/10.5194/tc-9-1523-2015, 2015
Short summary
Short summary
We investigate how various meteorological and terrain factors affect surface hoar formation in complex terrain. We modelled the distribution of three surface hoar layers with a coupled NWP - snow cover model, and verified the model with field studies. The layers developed in regions and elevation bands with warm moist air, light winds, and cold snow surfaces. Possible avalanche forecasting applications are discussed.
M. Schirmer and B. Jamieson
The Cryosphere, 9, 587–601, https://doi.org/10.5194/tc-9-587-2015, https://doi.org/10.5194/tc-9-587-2015, 2015
Short summary
Short summary
Numerical Weather Prediction (NWP) models are rarely verified for mountainous regions during the winter season, although avalanche forecasters and other decision makers frequently rely on NWP models. We verified two NWP models (GEM-LAM and GEM15) and a precipitation analysis system (CaPA) at approximately 100 stations in the mountains of western Canada and northwestern USA. Ultrasonic snow depth sensors and snow pillows were used to observe daily precipitation amounts.
O. Korup and C. Rixen
The Cryosphere, 8, 651–658, https://doi.org/10.5194/tc-8-651-2014, https://doi.org/10.5194/tc-8-651-2014, 2014
V. Vionnet, E. Martin, V. Masson, G. Guyomarc'h, F. Naaim-Bouvet, A. Prokop, Y. Durand, and C. Lac
The Cryosphere, 8, 395–415, https://doi.org/10.5194/tc-8-395-2014, https://doi.org/10.5194/tc-8-395-2014, 2014
S. Schneider, M. Hoelzle, and C. Hauck
The Cryosphere, 6, 517–531, https://doi.org/10.5194/tc-6-517-2012, https://doi.org/10.5194/tc-6-517-2012, 2012
F. Obleitner and C. Spötl
The Cryosphere, 5, 245–257, https://doi.org/10.5194/tc-5-245-2011, https://doi.org/10.5194/tc-5-245-2011, 2011
S. Morard, M. Bochud, and R. Delaloye
The Cryosphere, 4, 489–500, https://doi.org/10.5194/tc-4-489-2010, https://doi.org/10.5194/tc-4-489-2010, 2010
Cited articles
Allen, R. G., Pereira, L. S., Raes, D., Smith, M.: Crop evapotranspiration – guidelines for computing crop water requirements, FAO irrigation and drainage paper 56, FAO, Rome, 1998.
Armstrong, R. L. and Armstrong, B. R.: Snow and avalanche climates of the western United States: a comparison of maritime, intermountain and continental conditions, IAHS Publ., 162, 281–294, 1987.
Arsenault, R. and Brissette, F. P.: Continuous streamflow prediction in ungauged basins: the effects of equifinality and parameter set selection on uncertainty in regionalization approaches, Water Resour. Res., 50, 6135–6153, https://doi.org/10.1002/2013WR014898, 2014.
Barry, R. G.: Mountain Weather and Climate, Cambridge University Press, Cambridge, UK, 2008.
Beamer, J. P., Hill, D. F., Arendt, A., and Liston, G. E.: High-resolution modeling of coastal freshwater discharge and glacier mass balance in the Gulf of Alaska watershed, Water Resour. Res., 52, 3888–3909, https://doi.org/10.1002/2015WR018457, 2016.
Bedient, P., Huber, W., and Baxter, V.: Hydrology and Floodplain Analysis, 5th Edn., Prentice Hall, Upper Saddle River, NJ, 2012.
Beven, K.: A manifesto for the equifinality thesis, J. Hydrol., 320, 18–36, https://doi.org/10.1016/j.jhydrol.2005.07.007, 2006.
Bieniek, P. A., Bhatt, U. S., Thoman, R. L., Angeloff, H., Partain, J., Papineau, J., Fritsch, F., Holloway, E., Walsh, J. E., Daly, C., Shulski, M., Hufford, G., Hill, D. F., Calos, S., and Gens, R.: Climate Divisions for Alaska Based on Objective Methods, J. Appl. Meteorol. Clim., 51, 1276–1289, https://doi.org/10.1175/JAMC-D-11-0168.1, 2012.
Braun, L. N. and Aellen, M.: Modelling discharge of glacierized basins assisted by direct measurements of glacier mass balance, IAHS Publ., 193, 99–106, 1990.
Brown, M. E., Racoviteanu, A. E., Tarboton, D. G., Gupta, A. S., Nigro, J., Policelli, F., Habib, S., Tokay, M., Shrestha, M. S., Bajracharya, S., Hummel, P., Gray, M., Duda, P., Zaitchik, B., Mahat, V., Artan, G., and Tokar, S.: An integrated modeling system for estimating glacier and snow melt driven streamflow from remote sensing and earth system data products in the Himalayas, J. Hydrol., 519, 1859–1869, https://doi.org/10.1016/j.jhydrol.2014.09.050, 2014.
Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A., Gupta, H. V., Wagener, T., and Hay, L. E.: Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models, Water Resour. Res., 44, W00B02, https://doi.org/10.1029/2007WR006735, 2008.
Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Freer, J. E., Gutmann, E. D., Wood, A. W., Brekke, L. D., Arnold, J. R., Gochis, D. J., and Rasmussen, R. M.: A unified approach for process-based hydrologic modeling: 1. Modeling concept, Water Resour. Res., 51, 2498–2514, https://doi.org/10.1002/2015WR017198, 2015a.
Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Freer, J. E., Gutmann, E. D., Wood, A. W., Gochis, D. J., Rasmussen, R. M., Tarboton, D. G., Mahat, V., Flerchinger, G. N., and Marks, D. G.: A unified approach for process-based hydrologic modeling: 2. Model implementation and case studies, Water Resour. Res., 51, 2515–2542, https://doi.org/10.1002/2015WR017200, 2015b.
Cline, D. W.: Snow surface energy exchanges and snowmelt at a continental, midlatitude Alpine site, Water Resour. Res., 33, 689–701, 1997.
Daly, C., Gibson, W. P., Taylor, G. H., Johnson, G. L., and Pasteris, P.: A knowledge-based approach to the statistical mapping of climate, Clim. Res., 22, 99–113, 2002.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., and Bauer, P.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, 2011.
DeWalle, D. R. and Rango, A.: Principles of Snow Hydrology, Cambridge University Press, Cambridge, UK, 2008.
Finger, D., Pellicciotti, F., Konz, M., Rimkus, S., and Burlando, P.: The value of glacier mass balance, satellite snow cover images, and hourly discharge for improving the performance of a physically based distributed hydrological model, Water Resour. Res. 47, W07519, https://doi.org/10.1029/2010WR009824, 2011.
Finger, D., Vis, M., Huss, M., and Seibert, J.: The value of multiple data set calibration versus model complexity for improving the performance of hydrological models in mountain catchments, Water Resour. Res., 51, 1939–1958, 2015.
Fujita, K. and Ageta, Y.: Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass-balance model, J. Glaciol., 46, 244–252, 2000.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling, J. Hydrol., 377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Hagg, W., Braun, L. N., Kuhn, M., and Nesgaard, T. I.: Modelling of hydrological response to climate change in glacierized Central Asian catchments, J. Hydrol., 332, 40–53, 2007.
Hall, D. K., Salomonson, V. V., and Riggs, G. A.: MODIS/Terra Snow Cover Monthly L3 Global 0.05Deg CMG, Version 5, MOD10CM, Tech. rep., NSIDC – National Snow and Ice Data Center, Boulder, Colorado, USA, https://doi.org/10.5067/IPPLURB6RPCN, 2006.
Hamon, W. R.: Estimating potential evapotranspiration, J. Hydraul. Div., 87, 107–120, 1961.
Her, Y. and Chaubey, I.: Impact of the numbers of observations and calibration parameters on equifinality, model performance, and output and parameter uncertainty, Hydrol. Process., 29, 4220–4237, https://doi.org/10.1002/hyp.10487, 2015.
Hijmans, R. J.: GADM database of Global Administrative Areas, Version 2, University of Berkeley, CA, US, and the International Rice Research Institute, Los Baños, the Philippines, 2011.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.: Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 25, 1965–1978, https://doi.org/10.1002/joc.1276, 2005.
Hock, R.: Modelling of Glacier Melt and Discharge, Zürcher Geographische Schriften 70, ETH Zürich, Zürich, 1998.
Hock, R.: A distributed temperature-index ice- and snowmelt model including potential direct solar radiation, J. Glaciol., 45, 101–111, 1999.
Hock, R.: Glacier melt: a review of processes and their modelling, Prog. Phys. Geogr., 29, 362–391, 2005.
Hock, R. and Holmgren, B.: A distributed surface energy-balance model for complex topography and its application to Storglaciären, Sweden, J. Glaciol., 51, 25–36, 2005.
Huintjes, E., Sauter, T., Schröter, B., Maussion, F., Yang, W., Kropàček, J., Buchroithner, M., Scherer, D., Kang, S., and Schneider, C.: Evaluation of a Coupled Snow and Energy Balance Model for Zhadang Glacier, Tibetan Plateau, Using Glaciological Measurements and Time-Lapse Photography, Arct. Antarct. Alp. Res., 47, 573–590, https://doi.org/10.1657/AAAR0014-073, 2015.
Huss, M., Funk, M., and Ohmura, A.: Strong Alpine glacier melt in the 1940s due to enhanced solar radiation, Geophys. Res. Lett., 36, L23501, https://doi.org/10.1029/2009GL040789, 2009.
Johnstone, D. and Cross, W. P.: Elements of applied hydrology, Ronald Press Co., New York, 1949.
Jung, I. and Chang, H.: Assessment of future runoff trends under multiple climate change scenarios in the Willamette River Basin, Oregon, USA, Hydrol. Process., 25, 258–277, https://doi.org/10.1002/hyp.7842, 2011.
Konz, M. and Seibert, J.: On the value of glacier mass balances for hydrological model calibration, J. Hydrol., 385, 238–246, 2010.
Konz, M., Finger, D., Buergi, C., Normand, S., Immerzeel, W. W., Merz, J., Giriraj, A., and Burlando, P.: Calibration of a distributed hydrological model for simulations of remote glacierized Himalayan catchments using MODIS snow cover data, Global Change, 340, 465–473, 2010.
Kustas, W. P., Rango, A., and Uijlenhoet, R.: A simple energy budget algorithm for the Snowmelt Runoff Model, Water Resour. Res., 30, 1515–1527, https://doi.org/10.1029/94WR00152, 1994.
Lader, R. T.: An evaluation of reanalysis products for Alaska to facilitate climate impact studies, PhD thesis, University of Alaska Fairbanks, Fairbanks, Alaska, 2014.
Legates, D. R. and McCabe Jr., G. J.: Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation, Water Resour. Res., 35, 233–241, 1999.
Lindström, G., Johansson, B., Persson, M., Gardelin, M., and Bergström, S.: Development and test of the distributed HBV-96 hydrological model, J. Hydrol., 201, 272–288, https://doi.org/10.1016/S0022-1694(97)00041-3, 1997.
Liston, G. E. and Elder, K.: A distributed snow-evolution modeling system (SnowModel), J. Hydrometeorol., 7, 1259–1276, 2006a.
Liston, G. E. and Elder, K.: A meteorological distribution system for high-resolution terrestrial modeling (MicroMet), J. Hydrometeorol., 7, 217–234, 2006b.
Liston, G. E. and Mernild, S. H.: Greenland Freshwater Runoff. Part I: a runoff routing model for glaciated and nonglaciated landscapes (HydroFlow), J. Climate, 25, 5997–6014, https://doi.org/10.1175/JCLI-D-11-00591.1, 2012.
Lu, J., Sun, G., McNulty, S. G., and Amatya, D. M.: A Comparison of Six Potential Evapotranspiration Methods for Regional Use in the Southeastern United States, J. Am. Water Resour. Assoc., 41, 621–633, https://doi.org/10.1111/j.1752-1688.2005.tb03759.x, 2005.
Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., and Bierkens, M. F. P.: Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation, Nat. Clim. Change, 4, 587–592, https://doi.org/10.1038/nclimate2237, 2014.
Marks, D. and Winstral, A.: Comparison of snow deposition, the snow cover energy balance, and snowmelt at two sites in a semiarid mountain basin, J. Hydrometeorol., 2, 213–227, 2001.
Marks, D., Dozier, J., and Davis, R. E.: Climate and energy exchange at the snow surface in the alpine region of the Sierra Nevada: 1. Meteorological measurements and monitoring, Water Resour. Res., 28, 3029–3042, 1992.
Martinec, J.: Snowmelt-runoff model for stream flow forecasts, Nord. Hydrol., 6, 145–154, 1975.
Moore, R. D., Trubilowicz, J., and Buttle, J.: Prediction of Streamflow Regime and Annual Runoff for Ungauged Basins Using a Distributed Monthly Water Balance Model, J. Am. Water Resour. Assoc., 48, 32–42, https://doi.org/10.1111/j.1752-1688.2011.00595.x, 2012.
Mosier, T.: thomasmosier/CCHF: Initial Public Release, Zenodo, https://doi.org/10.5281/zenodo.154273, 2016.
Nash, J. V. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I: a discussion of principles, J. Hydrol., 10, 282–290, 1970.
Ohmura, A.: Physical basis for the temperature-based melt-index method, J. Appl. Meteorol., 40, 753–761, 2001.
O'Neel, S., Hood, E., Arendt, A., and Sass, L.: Assessing streamflow sensitivity to variations in glacier mass balance, Climatic Change, 123, 329–341, https://doi.org/10.1007/s10584-013-1042-7, 2014.
Parajka, J. and Blöschl, G.: The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models, J. Hydrol., 358, 240–258, https://doi.org/10.1016/j.jhydrol.2008.06.006, 2008.
Pellicciotti, F., Brock, B., Strasser, U., Burlando, P., Funk, M., and Corripio, J.: An enhanced temperature-index glacier melt model including the shortwave radiation balance: development and testing for Haut Glacier d'Arolla, Switzerland, J. Glaciol., 51, 573–587, 2005.
Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., Hagen, J.-O., Hock, R., Kaser, G., Kienholz, C., and Miles, E. S.: The Randolph Glacier Inventory: a globally complete inventory of glaciers, J. Glaciol., 60, 537–552, 2014.
Poli, R., Kennedy, J., and Blackwell, T.: Particle swarm optimization, Swarm Intelligence, 1, 33–57, https://doi.org/10.1007/s11721-007-0002-0, 2007.
Ragettli, S. and Pellicciotti, F.: Calibration of a physically based, spatially distributed hydrological model in a glacierized basin: On the use of knowledge from glaciometeorological processes to constrain model parameters, Water Resour. Res., 48, W03509, https://doi.org/10.1029/2011WR010559, 2012.
Razavi, S. and Tolson, B. A.: An efficient framework for hydrologic model calibration on long data periods, Water Resour. Res., 49, 8418–8431, https://doi.org/10.1002/2012WR013442, 2013.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., and Bloom, S.: MERRA: NASA's modern-era retrospective analysis for research and applications, J. Climate, 24, 3624–3648, 2011.
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., and Liu, H.: The NCEP climate forecast system reanalysis, B. Am. Meteorol. Soc., 91, 1015–1057, 2010.
Sawilowsky, S. S. and Fahoome, G.: Statistics through Monte Carlo Simulation with FORTRAN, Journal of Modern Applied Statistical Methods Inc., Michigan, 2003.
Schwanghart, W. and Kuhn, N. J.: TopoToolbox: a set of Matlab functions for topographic analysis, Environ. Model. Softw., 25, 770–781, https://doi.org/10.1016/j.envsoft.2009.12.002, 2010.
Sedlar, J. and Hock, R.: Testing longwave radiation parameterizations under clear and overcast skies at Storglaciären, Sweden, The Cryosphere, 3, 75–84, https://doi.org/10.5194/tc-3-75-2009, 2009.
Sicart, J. E., Hock, R., and Six, D.: Glacier melt, air temperature, and energy balance in different climates: the Bolivian Tropics, the French Alps, and northern Sweden, J. Geophys. Res.-Atmos., 113, D24113, https://doi.org/10.1029/2008JD010406, 2008.
Silvestro, F., Gabellani, S., Rudari, R., Delogu, F., Laiolo, P., and Boni, G.: Uncertainty reduction and parameter estimation of a distributed hydrological model with ground and remote-sensing data, Hydrol. Earth Syst. Sci., 19, 1727–1751, https://doi.org/10.5194/hess-19-1727-2015, 2015.
Simpson, J., Hufford, G., Fleming, M., Berg, J., and Ashton, J.: Long-term climate patterns in Alaskan surface temperature and precipitation and their biological consequences, IEEE T. Geosci. Remote, 40, 1164–1184, https://doi.org/10.1109/TGRS.2002.1010902, 2002.
Singh, P., Kumar, N., and Arora, M.: Degree-day factors for snow and ice for Dokriani Glacier, Garhwal Himalayas, J. Hydrol., 235, 1–11, https://doi.org/10.1016/S0022-1694(00)00249-3, 2000.
Smith, M. B., Seo, D.-J., Koren, V. I., Reed, S. M., Zhang, Z., Duan, Q., Moreda, F., and Cong, S.: The distributed model intercomparison project (DMIP): motivation and experiment design, J. Hydrol., 298, 4–26, 2004.
Smith, M. B., Koren, V., Reed, S., Zhang, Z., Zhang, Y., Moreda, F., Cui, Z., Mizukami, N., Anderson, E. A., and Cosgrove, B. A.: The distributed model intercomparison project Phase 2: motivation and design of the Oklahoma experiments, J. Hydrol., 418, 3–16, 2012.
Sturm, M.: White water: fifty years of snow research in WRR and the outlook for the future, Water Resour. Res., 51, 4948–4965, https://doi.org/10.1002/2015WR017242, 2015.
Sturm, M., Holmgren, J., König, M., and Morris, K.: The thermal conductivity of seasonal snow, J. Glaciol., 43, 26–41, 1997.
Van Beusekom, A. E., O'Neel, S. R., March, R. S., Sass, L. C., and Cox, L. H.: Re-analysis of Alaskan benchmark glacier mass-balance data using the index method, US Geological Survey Scientific Investigations Report 5247, US Geological Survey, Reston, Virginia, USA, 2010.
Van de Wal, R. S. W. and Russell, A. J.: A comparison of energy balance calculations, measured ablation and meltwater runoff near Søndre Strømfjord, West Greenland, Global Planet. Change, 9, 29–38, 1994.
Wang, J., Jin, M., Musgrave, D., and Ikeda, M.: A hydrological digital elevation model for freshwater discharge into the Gulf of Alaska, J. Geophys. Res., 109, C07009, https://doi.org/10.1029/2002JC001430, 2004.
Wang, Q. J.: The Genetic Algorithm and Its Application to Calibrating Conceptual Rainfall-Runoff Models, Water Resour. Res., 27, 2467–2471, https://doi.org/10.1029/91WR01305, 1991.
Wang, W., Xie, P., Yoo, S.-H., Xue, Y., Kumar, A., and Wu, X.: An assessment of the surface climate in the NCEP Climate Forecast System Reanalysis, Clim. Dynam., 37, 1601–1620, 2011.
Zhou, X., Xie, H., and Hendrickx, J. M.: Statistical evaluation of remotely sensed snow-cover products with constraints from streamflow and SNOTEL measurements, Remote Sens. Environ., 94, 214–231, 2005.
Short summary
Our paper presents the Conceptual Cryosphere Hydrology Framework (CCHF), a tool to enable more rapid development and intercomparison of cryosphere process representations. Using the CCHF, we demonstrate that some common existing degree index cryosphere models are not well suited for assessing impacts across climates, even though these models appear to perform well under a common evaluation strategy. We show that more robust models can be formulated without increasing data input requirements.
Our paper presents the Conceptual Cryosphere Hydrology Framework (CCHF), a tool to enable more...