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Abstract. Making meaningful projections of the impacts
that possible future climates would have on water resources
in mountain regions requires understanding how cryosphere
hydrology model performance changes under altered cli-
mate conditions and when the model is applied to ungaged
catchments. Further, if we are to develop better models,
we must understand which specific process representations
limit model performance. This article presents a modeling
tool, named the Conceptual Cryosphere Hydrology Frame-
work (CCHF), that enables implementing and evaluating a
wide range of cryosphere modeling hypotheses. The CCHF
represents cryosphere hydrology systems using a set of cou-
pled process modules that allows easily interchanging in-
dividual module representations and includes analysis tools
to evaluate model outputs. CCHF version 1 (Mosier, 2016)
implements model formulations that require only precipita-
tion and temperature as climate inputs — for example varia-
tions on simple degree-index (SDI) or enhanced temperature
index (ETI) formulations — because these model structures
are often applied in data-sparse mountain regions, and per-
form relatively well over short periods, but their calibration
is known to change based on climate and geography. Using
CCHF, we implement seven existing and novel models, in-
cluding one existing SDI model, two existing ETT models,
and four novel models that utilize a combination of existing
and novel module representations. The novel module repre-
sentations include a heat transfer formulation with net long-
wave radiation and a snowpack internal energy formulation
that uses an approximation of the cold content. We assess the
models for the Gulkana and Wolverine glaciated watersheds
in Alaska, which have markedly different climates and con-

tain long-term US Geological Survey benchmark glaciers.
Overall we find that the best performing models are those
that are more physically consistent and representative, but no
single model performs best for all of our model evaluation
criteria.

1 Introduction

Robustly understanding connections between the climate,
cryosphere, and streamflow is necessary to make informed
decisions regarding water resources in mountainous regions.
Commonly, distributed hydrologic models are applied to
assess impacts of climate change (i.e., climatic conditions
for which the model was not calibrated) or ungaged basins
(i.e., geographies for which the model was not calibrated).
While energy balance models are theoretically more ro-
bust under altered climate and geographic settings, concep-
tual models are often implemented for data-sparse moun-
tain regions (e.g., Hagg et al., 2007; Jung and Chang, 2011;
Lutz et al., 2014) because they require fewer input data
than energy balance models and are often considered “good
enough”. Further, because energy balance models require
less frequently measured inputs, it is typically not known,
or studied, how uncertainty in the additional required inputs
propagates through the model and impacts results. There-
fore an important question is, how robust are conceptual
cryosphere hydrology models under geographies and cli-
mates for which the models were not calibrated? Addition-
ally, are there novel conceptual formulations that are more
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robust than existing conceptual models? Our present work
attempts to address these topics.

Our basic definition of the difference between conceptual
and energy balance models is that energy balance models
represent each heat flux independently and base calculation
of heat fluxes on a much larger set of physically relevant pa-
rameters, while conceptual models lump multiple heat fluxes
together and use parameterizations to reduce the number of
required input variables. Specifically, the only climatic vari-
ables typically used in conceptual models are air temperature
and precipitation. In contrast, energy balance models often
require additional variables such as wind speed, relative hu-
midity, and air pressure.

In reality, conceptual and energy balance models exist on
a spectrum rather than as entirely distinct model categories
because every model is an abstraction of reality and even
energy balance models make significant assumptions about
the relevant processes. Simultaneously, it is probable that im-
provements to conceptual model formulations will stem from
rooting the conceptual formulation more firmly in the energy
balance. The reason that energy balance models are theoret-
ically more robust than conceptual models is that the rela-
tive balance of heat fluxes changes over time and between
locations (Kustas et al., 1994, Sicart et al., 2008; Huss et al.,
2009). Several of the energy balance inputs are even more
sparsely measured in mountain environments than precipita-
tion and temperature and often vary significantly over short
spatial and temporal scales (see discussion on the surface en-
ergy balance in Sturm, 2015). As an example, wind speed
linearly scales each convective heat flux (i.e., sensible and
latent) and is therefore necessary for energy balance models.
The spatial distribution of wind speed is, however, difficult to
characterize even if there are measurements of wind speed at
points within the region (Marks et al., 1992; Marks and Win-
stral, 2001). Therefore, it warrants consideration of whether
including variables such as wind speed improves or reduces
model performance in a given application.

One advantage that conceptual models may have, there-
fore, over energy balance models in mountain environments
is that they require fewer inputs and these inputs may
have lower uncertainties (despite the uncertainties still being
higher for mountain regions than for adjacent lowlands; Hi-
jmans et al., 2005). Conceptual models perform well under
many circumstances (Ohmura, 2001), with enhanced tem-
perature index (ETI) models, which base melt magnitude on
shortwave radiation and temperature, typically performing
better than simple degree-index (SDI) models, which base
melt magnitude only on temperature (Hock, 1999; Pellic-
ciotti et al., 2005). The reasons for relatively good perfor-
mance of SDI and ETI models are that many heat fluxes are
functions of temperature (e.g., sensible convection and long-
wave radiation), seasonality of air temperature and short-
wave radiation are often correlated for a given location, and
shortwave radiation fluxes tend to be significantly larger than
convective heat fluxes during melt conditions (Marks et al.,
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1992; Cline, 1997). While previous studies have compared
ETI to energy balance models (e.g., Hock, 2005), the present
study seeks to assess whether adding more physical basis to
conceptual cryosphere structures (while holding the required
inputs constant) enhances model accuracy and precision.
For model performance to be robust, the means by which a
model calculates output must be representative of the entire
range of physical conditions being modeled (both climatic
regimes and geographies). Encapsulated in the above concept
is equifinality, which is specifically defined as the existence
of multiple distinct parameter sets for a given model that per-
form equally well during model calibration (Beven, 2006).
The existence of multiple parameter sets that equally explain
the observations used in evaluation is problematic because
each parameter set corresponds to a different set of assump-
tions about the physical system and may behave differently
under perturbations to the physical system (i.e., applications
for different geographies and climates). Including fitting pa-
rameters in a model is not inherently problematic though, be-
cause fitting parameters represent modeled approximations
to the physical system and may allow both better calibration
and validation performance, provided that the calibration cri-
teria are sufficient to minimize equifinality and adequately
represent the dominant processes being modeled (Konz et al.,
2010; Finger et al., 2015; Her and Chaubey, 2015).
Selecting suitable evaluation criteria is therefore impor-
tant, particularly when a model is to be calibrated for a rela-
tively small area and then applied over a much larger region
(Arsenault and Brissette, 2014). In general, longer model
evaluation periods reduce equifinality because longer periods
increase the likelihood that a diverse set of physical events
will be included in the evaluation (Razavi and Tolson, 2013;
Her and Chaubey, 2015); however, using multi-objective
evaluation criteria can also be important for reducing equi-
finality (Finger et al., 2011, 2015; Silvestro et al., 2015). In
the case of cryosphere hydrology models, a common set of
evaluation criteria are streamflow, snow-covered area (SCA),
and glacier stakes (Ragettli and Pellicciotti, 2012; Finger
et al., 2015). Some multi-objective evaluation schemes cal-
ibrate model parameters in a single stage (e.g., Finger et al.,
2015) and others utilize multiple stages (e.g., Ragettli and
Pellicciotti (2012) use three stages). In multi-stage calibra-
tion, it is important to consider the hierarchy of processes,
i.e., how modeled processes depend on one another, and con-
struct the calibration to reflect these relationships.
Identifying improvements to conceptual models requires a
framework for comparing existing structures and systemat-
ically assessing novel representations. Other hydrology in-
tercomparison projects have been carried out (e.g., Smith
et al., 2004, 2012; Clark et al., 2008) and are being devel-
oped (e.g., Clark et al., 2015a, b). The comparison carried
out by Smith et al. (2004) and Smith et al. (2012) assesses
several hydrologic models, many of which are conceptual,
but implement each model independently instead of through
a common framework. Clark et al. (2008) created a com-
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mon modeling structure for implementing lumped variants
of several hydrologic models for two basins in the USA but
do not model snowpack accumulation or melt. The Struc-
ture for Unifying Multiple Modeling Alternatives (SUMMA)
is a much more generalizable intercomparison framework
by Clark et al. (2015a). In SUMMA, the relevant mass and
energy conservation relationships are implemented, and the
structure is designed to allow alternative spatial representa-
tions of each process relevant to the system. Thus, in the-
ory SUMMA can be developed to implement any physically
based representation of a distributed hydrologic system. In
practice, SUMMA development has not focused on the pro-
cesses and conditions typical of data-sparse mountain re-
gions (Clark et al., 2015a, b).

The overall goal of our present work is to assess and im-
prove conceptual representations of snow and glacier pro-
cesses. To achieve this, we have developed the Concep-
tual Cryosphere Hydrology Framework (CCHF). The CCHF
modularizes alpine and glacier surface processes and in-
cludes routines to optimize model parameters and ana-
lyze outputs. The specific objectives of this study are to
(1) demonstrate that CCHF is a useful tool for developing
novel conceptual cryosphere hydrology models and (2) ex-
plore differences in accuracy and precision of existing and
novel conceptual cryosphere hydrology models for two well-
monitored glaciated model domains. We assess four heat flux
representations (including three existing and one novel for-
mulation) and two mass flux representations (one existing
and one novel). We focus on these processes because their
representations may depend significantly on climate regime.
We conduct our assessment for Gulkana and Wolverine wa-
tersheds in Alaska (Fig. 1), for the period July 2000 through
June 2010, and evaluate model performance using stream
gage, glacier stake, and SCA observations. We assess each
model through applying it to the opposite watershed for the
same period, which enables us to evaluate the models for
a long period using all three types of observation data and
serves as a test of how well the models perform under al-
tered geographies and climates. In addition to our present
assessment, a valuable attribute of CCHF is that it is open-
source (distributed on GitHub under “thomasmosier/CCHF"*)
and can easily be implemented for other regions, different
climate forcing datasets, or novel process representations.

1.1 Existing conceptual cryosphere heat and melt
representations

A basic, yet still widely used, conceptual cryosphere heat
and melt formulation is the SDI structure (two well-known
implementations are the Hydrologiska Byrans Vattenbal-
ansavdelning, presented in Lindstrom et al., 1997, and the
Snowmelt-Runoff Model, presented in Martinec, 1975). In
SDI models, melt, M ([M] =m, which represents depth
of water equivalent melt per unit area; throughout, square
brackets denote a variable’s units), occurs when the surface
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Figure 1. Gulkana and Wolverine model domains are depicted us-
ing insets in the upper right and upper left, respectively. While the
model is implemented for the entire rectilinear region, the red bor-
der highlights the grid cells contributing to streamflow at the US Ge-
ological Survey (USGS) stream gages in each domain. The digital
elevation model is produced by WorldClim (Hijmans, 2011) and
glacier coverage is from the Randolph Glacier Inventory version 5
(Pfeffer et al., 2014).

_o

air temperature at a grid cell, 7, ([T,] = °C), is above a tem-
perature threshold, Ty ([Tp] = °C) (Singh et al., 2000; Wang
et al., 2004). Otherwise, no melt occurs and incident precip-
itation during that time step adds to the snowpack. This is
represented mathematically as

(D

Iy (T =Ty At ifT, > Ty

0 otherwise
where fp, is the degree-index factor ([ f] =m °oc~lg=1yand
At is the model time step ([At]=s). In some SDI models
the value of f, is taken to be the same for snow and ice melt
(e.g., Wang et al., 2004) and other model implementations
use different values of fj, for snow and ice melt (e.g., Singh
et al., 2000).

ETI formulations expand on SDI structures by includ-
ing shortwave radiation, I ([/]= Wm_z). Two ETI formu-
lations, respectively, by Hock (1999) and Pellicciotti et al.
(2005), are

o [(asﬁl + ) (Ta=To) At if Ty > Ty .

0 otherwise
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M (ap(1 =) + fu (T —To)) At if Ty > Tp
0 otherwise ~

where agy; is a fitting parameter that takes different values
for snow melt versus ice melt ([ag;] =m3 J~1 °C™1), apisa
fitting parameter that scales melt from shortwave radiation
([ap] = m3J —1), and « is the surface albedo (unitless). Note
that the coefficient symbols and units have been changed
from those used in the citations in order to simplify the model
representations and ensure consistent notation throughout
this article.

These existing conceptual melt formulations (Eqs. 1-3)
use a step function to calculate when melt conditions occur.
Both SDI and ETI models typically ignore internal energy of
the snow or ice. The primary implication of this simplifica-
tion is that these conceptual models may not accurately cap-
ture the timing of melt or freezing onset. Many conceptual
cryosphere model implementations avoid this potential issue
by focusing only on the melt season (e.g., Kustas et al., 1994;
Hock, 1999; Pellicciotti et al., 2005; Sicart et al., 2008).

1.2 Cryosphere energy balance representations

The existing conceptual cryosphere models described in
Egs. (1)—(3) combine the snow and ice heat flux, internal en-
ergy, and mass flux into a single simplified formulation. The
premise of these conceptual representations is that tempera-
ture is a major determinant of the energy balance (tempera-
ture affects convective heat transfer, longwave radiation, and
conduction) and that surface melt typically occurs when the
air temperature is at some threshold above freezing. In real-
ity, the net heat flux modifies the sensible and latent energy of
the snowpack or ice, which can diverge from the temperature
threshold assumption in Egs. (1)—(3). While there are differ-
ent methods for formulating the surface energy balance, the
representation used in Hock (2005) is

ON+O0u+O0L+O0r+0c+0m=0, “4)

where Qv is the net radiation, Qy is the sensible heat flux,
Q1 is the latent heat flux (Qy and Qy, are sometimes referred
to as the turbulent heat fluxes), QR is sensible heat supplied
by rain, Qg is conduction, and Qy is energy that goes into
phase change (i.e., melt or refreezing). Equation (4) holds for
a variety of units, provided they are the same for each term;
often Watts per meter squared are used, though. If the units
of Owm in Eq. (4) are Watts per meter squared, Q) is related
to M in Egs. (1)—(3) through the relationship

_ OmAt?
PwLt '

M &)

where py, is the density of water ([pow] =kg m~3) and Ly is
the latent heat of fusion ([Lf] =Jkg™!). In practice, energy
balance cryosphere models often solve for melt energy, O,
as the residual in Eq. (4) (Liston and Elder, 2006a).
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Cold content, CC ([CC]=m), is an alternative means of
representing the internal energy state of a snowpack, which
is more physically representative than the step functions used
in Egs. (1)—(3) but simpler than the full energy balance in
Eq. (4). CC is defined as

CiPs
Ltpyw

CC=

ds (Tm - Ts,i) ’ (6)

where c; is the specific heat of ice ([ci] = Jkg_l K_l), Ps 18
the density of the snow mass ([ps] =kg m_3), dy is the depth
of snow ([ds] =m), Ty, is the temperature at which melt oc-
curs (i.e., 0°C; [T,] =°C), and Ts’i is the internal tempera-
ture of the snow mass (assuming the snow is isothermal or
that 7; is the mass-averaged temperature; [TSJ] =°C). CC
is simply a statement of the magnitude of sensible energy
deficit of the snow mass in terms of the latent energy required
to melt the same mass of water. Thus, positive CC values
correspond to conditions where more sensible heat transfer
is needed before melt can occur, and CC equal to zero means
that all additional energy inputs will go into latent heat trans-
fer (i.e., will cause melt to occur).

CC is a natural conceptual formulation of the snowpack
internal energy state to combine with an SDI or ETT heat flux
representation (e.g., Eqs. 1-3) because both are formulated in
terms of depth of water equivalent. Hock (2005) states that
the concepts of energy deficit (referring to Van de Wal and
Russell, 1994) and CC, or “negative melt” (referring to Braun
and Aellen, 1990), have been incorporated into previous con-
ceptual cryosphere models; however, the above-mentioned
articles that Hock (2005) cites do not mention their treatment
of internal energy. Therefore, we are not aware of any previ-
ous distributed cryosphere computational models that incor-
porate internal energy or “negative melt” into their formula-
tion using CC.

The surface energy balance, Eq. (4), applies to ice or
snowpack. For a complete representation of a multi-layered
cryosphere system (either multiple snow layers or snow and
ice layers), the internal energy of each layer and heat trans-
fer between the layers must be considered. In many com-
putational models, e.g., that described in Hock and Holm-
gren (2005), SnowModel (Liston and Elder, 2006a), and the
Better Assessment Science Integrating point and Nonpoint
Sources modeling framework (BASINS; Brown et al., 2014),
sensible and latent energy of snow are considered but sensi-
ble energy of glaciers is ignored. Some models, including
SnowModel (Liston and Elder, 2006a), have the option to
calculate the state properties of multiple snow layers. A few
models, including the COupled Snowpack and Ice surface
energy and MAss balance model (COSIMA; Huintjes et al.,
2015), calculate the sensible and latent energy of both snow
and ice.
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Table 1. Select geographic properties of Gulkana and Wolverine
study domains and watersheds (Fig. 1). “Total” refers to properties
aggregated over the study domain, “drainage” refers to properties
aggregated over the area contributing to the USGS stream gage, and
all elevations are with respect to the study domain.

Geographic property Gulkana  Wolverine
Total area, model (kmz) 52.5 74.6
Drainage area — model (kmz) 32.0 24.2
Drainage area — USGS (kmz) 31.3 24.4

Total glaciation (%) 45.0 52.6
Drainage glaciation (%) 62.3 92.9
Mean elevation (m) 1661 956

Min elevation (m) 1132 113

Max elevation (m) 2261 1601

1.3 Climates of Gulkana and Wolverine study domains

Gulkana and Wolverine glaciers are both US Geological Sur-
vey (USGS) long-term benchmark glaciers located in Alaska.
Wolverine glacier is on the Kenai Peninsula in relatively
close proximity to the Gulf of Alaska while Gulkana is in
the Alaska Range and much further from a large body of wa-
ter (Fig. 1). The model domain we use for Wolverine is larger
than that for Gulkana, although the catchment area upstream
of the Gulkana stream gage is larger (Table 1). Of note, the
elevation ranges within the Wolverine and Gulkana model
domains are 1488 and 1129 m, respectively, with the mean
elevation of Gulkana being significantly higher than that
for Wolverine. Additionally, the glacier coverage within the
catchment is 62.3 % for Gulkana and is 92.9 % for Wolver-
ine.

As expected from their respective geographies, the cli-
mates of Gulkana and Wolverine watersheds are markedly
different (Figs. 2 and Al). The hottest air temperatures
(i.e., summer temperatures) are similar between Gulkana and
Wolverine but Gulkana is significantly colder at the low end
of the distribution (i.e., corresponding to colder winter tem-
peratures at Gulkana). At all percentiles in the distribution,
Wolverine’s precipitation is greater than Gulkana’s. Based on
Gulkana being relatively drier and colder and Wolverine be-
ing wetter and warmer, the watersheds can be classified, re-
spectively, as continental and maritime (Armstrong and Arm-
strong, 1987; O’Neel et al., 2014). These climate classifica-
tions are consistent with findings for the Alaska region pre-
sented in Bieniek et al. (2012) (using cluster analysis of sta-
tion records) and Simpson et al. (2002) (based on Parameter-
elevation Regressions on Independent Slopes Model interpo-
lated climate surfaces; Daly et al., 2002).

Snowpacks in continental climates tend to be much more
polythermal and less dense than snowpacks in maritime
climates (Armstrong and Armstrong, 1987; DeWalle and
Rango, 2008; Barry, 2008). Higher densities in maritime
snowpacks are partially caused by atmospheric conditions
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Figure 2. Cumulative probability distributions of daily precipita-
tion and mean surface air temperature for the Gulkana and Wolver-
ine watersheds (Fig. 1) from 1980 to 2009. The lines correspond to
the spatially averaged precipitation and temperature values and the
shaded region indicates 1 standard deviation in the spatial distribu-
tion of precipitation and temperature within the watershed. Climate
representation is derived from the daily downscaled Climate Sys-
tem Forecast Reanalysis (Saha et al., 2010) product discussed in
Sect. 3.1.

during snowfall and also by repeat freezing and melting cy-
cles, which are more common to under maritime conditions.
These climatic differences in turn affect the thermal proper-
ties of snow and ice because the thermal conductivity of snow
is primarily a function of density and water content, and the
snowpack properties impact the surface heat flux of glaciers
when and where they are snow covered (Sturm et al., 1997;
DeWalle and Rango, 2008).

O’Neel et al. (2014) find that Gulkana’s glacier mass bal-
ance is primarily a function of summer temperatures and
Wolverine glacier’s mass balance is a function of both sum-
mer temperatures and winter precipitation. Interestingly, an-
nual glacier mass balances at Wolverine is much more vari-
able year-to-year than those for Gulkana (O’Neel et al.,
2014). Additionally, the streamflow at Wolverine is less
strongly coupled to the summer mass balance compared to
Gulkana glacier, even though the fractional glacier cover-
age at Wolverine is greater, which is consistent with the two
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glaciers’ respective classifications as maritime and continen-
tal.

2 The Conceptual Cryosphere Hydrology
Framework (CCHF)

CCHF version 1 models alpine and glacier systems using
nine process modules (see Fig. 3, Mosier, 2016). While it is
common for conceptual cryosphere models to combine heat
and snow/ice melt into a single formulation (e.g., Egs. 1-3),
CCHEF represents these processes using two distinct modules,
namely “cryosphere heat transfer” (referred to as the heat
module for brevity; described in Sect. 2.1) and “cryosphere
mass flux” (referred to as the mass flux module; described in
Sect. 2.2). While we have programmed multiple representa-
tions for each process module in CCHF, we only vary the heat
module and mass flux module in this work. We choose this
focus because the processes represented in these modules are
the most sensitive to climatic differences (resulting from ei-
ther interregional variability or long-term climatic changes).
Section 2 describes the capabilities of CCHF and Sect. 3 out-
lines the specific methods used to implement CCHF for the
present model evaluation.

CCHF is designed to be easy to apply and extend.
Presently CCHF can be applied to hourly, daily, or monthly
time steps and any spatial grid expressed in uniformly spaced
geographic coordinates. We have built in capability for
CCHF to read precipitation, mean temperature, minimum
temperature, and maximum temperature climate inputs. It
would be straightforward, though, to expand CCHF for use
with additional climate inputs. CCHF does not include meth-
ods for correcting any of the climate inputs — any corrections
must be undertaken during pre-processing of the climate in-
puts. All heat flux terms, either conceptual (e.g., degree day
factors) or physical (e.g., shortwave radiation), are parame-
terized within CCHF.

The process representations for the seven fixed modules,
provided in Table 2, are used because preliminary analysis
indicated these representations work well for the conditions
under which the CCHF is currently implemented. Section 2.4
discusses the modules involved in translating snow and ice
melt and rain into streamflow, which are represented by the
four modules on the right-hand side of the engine in Fig. 3.
In addition to the nine process modules, CCHF also includes
a built-in calibration routine (Fig. 3), which we discuss in
Sect. 2.5.

We model the ratio of precipitation that falls as snow, 7,
(also referred to as precipitation partitioning), using a linear
ramp formulation

1 if T, < Tps
J— Tp,r_Ta .
=TTy HTps =Ta=Tpr, (7
0 if Ty < T
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Figure 3. Categories of process modules included in version 1 of the
Conceptual Cryosphere Hydrology Framework (CCHF). Rounded
blocks refer to process modules and ovals refer to data inputs and
outputs. Blocks tinted green denote modules used for all models
and blocks tinted orange denote modules only used for models that
include shortwave radiation.

where T is the threshold air temperature at which all pre-
cipitation falls as snow ([7,s]="°C) and T, is the thresh-
old air temperature at which all precipitation falls as rain
([T,;]=°C). The threshold temperatures at which all pre-
cipitation falls as snow and rain can be optimized or set.
Throughout this work we set 7,3, =0°C and T,,=2°C.
We choose these threshold air temperatures because Beamer
et al. (2016) optimizes this precipitation partitioning function
(Eq. 7) for the Gulf of Alaska and finds that these temperature
thresholds perform better than other sets of threshold temper-
atures tested. Of note, Beamer et al. (2016) also find that the
performance of SnowModel (the model they implement; Lis-
ton and Elder, 2006a) is insensitive to modest perturbations
in the precipitation partitioning parameters. A likely reason
that the model is insensitive to these parameters for this re-
gion is that Alaska has strong seasonal variations in temper-
ature and winter temperatures are typically much colder than
the mixed-phase precipitation zone. Therefore, we do not ex-
pect the precise values to significantly impact results of our
study and by setting the values fixed we reduce the dimen-
sionality of our model calibration.

When rain is incident on snow, it adds to the liquid water
content of the snowpack, from which point rain on snow is
accounted for in the same manner as melted snow (see de-
scription in Sect. 2.4). Rain incident directly on the glacier
surface is treated in the same manner as when it is incident
on bare ground (see Sect. 2.4). An implication is that we do
not allow refreezing on the bare glacier surface.

www.the-cryosphere.net/10/2147/2016/
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Table 2. Process representations for modules that are fixed in the present CCHF implementation. ¢y and cyyyo are fitting parameters
(unitless), AT is maximum temperature minus minimum temperature ([A7T]=K), and >_ Tmax is the cumulative sum of maximum daily
temperatures since the last precipitation event ([, Tmax] = K). Albedo of exposed ice is assumed to be 0.35.

Module name Representation

Source

Top-of-atmosphere

function of latitude, slope, aspect, and

DeWalle and Rango (2008)

radiation day of year

Atmospheric Catm1 (1 —exp (—0.01 catmzATZA)) DeWalle and Rango (2008)
transmittance

Albedo (snow) 0.90 — 0.551og (> Timax) Pellicciotti et al. (2005)
Potential Eq. (22) Allen et al. (1998),
evapotranspiration Lu et al. (2005)

Flow path Sect. 2.4 manually determined
Cell-to-cell flow Eq. (23) Johnstone and Cross (1949)
time

Runoff to streamflow  Sect. 2.4 Moore et al. (2012)

conversion

2.1 Cryosphere heat transfer

Implementing the existing conceptual cryosphere models de-
scribed by Eqs. (1)-(3) requires transforming their units be-
cause all heat terms in CCHF have units of Watts per meter
squared. We therefore define heat representations to use in
CCHF that are analogs to these previous conceptual repre-
sentations (i.e., Egs. (1)—(3), respectively):

Hspi = cim (T2 — Tp) , 8®)
Herin) = (choesi + cim) (Ta — To) )
Herip) = cpet(1 — @)1 + ctm (Ta — To) (10)

where the H terms are the net heat fluxes ([H] =Wm 2
subscript “SDI” refers to the generic SDI model,
“ETI(H)” refers to the ETI model described in Hock,
1999, and “ETI(P)” refers to the ETI model described in
Pellicciotti et al., 2005), cgy is the degree-index factor
([efml =Wm? °C’1), Chocs/i Tepresents two fitting pa-
rameters, Choc,s and choc,i, Which scale incoming shortwave
radiation, I, incident upon snow and ice, respectively
([ah,s/i]z"C_l), and cpe is a fitting parameter to scale
the magnitude of shortwave radiation in the Hgrip)
representation (unitless).

We also implement and assess a novel conceptual heat rep-
resentation, which we refer to as the longwave, shortwave,
and temperature (LST) formulation. The LST representation
is similar to ETI(P) except that LST includes a longwave ra-
diation balance term and LST does not have a fitting param-
eter to scale shortwave radiation. The LST heat flux, HisT
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([Histl=Wm™2), is
Hist=(—-) +cinTa+o0 (ea(Ta +273.15)*
—(Tus +273.15)4) , (11)

where o is the Stefan-Boltzmann constant (o =5.67 x
1073 Wm2K™), &, is the effective atmospheric emis-
sivity (unitless), and Ty is the snow surface temperature
([Tss]1=°C). The LST formulation assumes &, to be 0.7
when there is no precipitation and 1 otherwise, which
roughly translates to clear-sky and cloudy conditions (Hock,
2005; Sedlar and Hock, 2009). Unlike the SDI, ETI(H), and
ETI(P) heat transfer representations (Eqs. 8-10), the LST
representation requires modeling the snowpack and ice sur-
face temperatures, which is discussed in Sect. 2.2.

2.2 Cryosphere mass flux

We implement two process representations within the mass
flux module to relate the net heat flux to changes in the in-
ternal energy and mass of snow and ice. The first representa-
tion is a step function, denoted as 0, which is implicit in the
SDI and ETI formulations used in existing conceptual mod-
els (i.e., Eqs. 1-3). The second mass flux representation is
based on the cold content (Eq. 6) and is denoted as CC. In
both the 6 and CC mass flux representations, heat is trans-
lated into melt potential, Mp ([ Mp] = m), which is analogous
to M in Eq. (5), through the relationship

_ HAt
prf.

P (12)

Melt in the 8 mass flux representation, My ([Mp] =m) is
equal to the melt potential (Eq. 12) when air temperature is
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greater than a threshold value, which is described mathemat-
ically as

Mp ifT,
My = p 11, >.Cthr ’ (13)
0 otherwise

where cgr is taken to be a fitting parameter ([cihr] = °C).
Therefore, combining the respective heat flux representations
Hsp1, Hetiny, and Herypy with the 6 mass flux representa-
tion essentially allows us to reproduce the previous concep-
tual models presented in Egs. (1)-(3), albeit with different
units for many of the fitting parameters.

Cold content in CC mass flux representation is denoted as
w¢ ([we] = m) to distinguish it from the general definition of
CC in Eq. (6). w, is calculated as

if Mp; <0

14
otherwise (14

where subscript i refers to the current time step, subscript
“i — 17 refers to the previous time step, c is a unitless fit-
ting parameter that provides a hysteresis in the accumulation
and depletion of w, and Mp can be either positive or nega-
tive (determined by sign of H in Eq. 12). The lower bound on
wc is zero (i.e., wc is set to zero if it becomes negative) and
w, 1s always zero at grid locations without snowpack, includ-
ing those with ice but no snow. Physically, the CC hysteresis
relates to differences in the conduction of energy through the
snowpack during accumulation (dry) versus ablation (wet)
conditions. Melt in the CC mass flux representation, Mcc
([Mcc] =m), is calculated as

if Mp > We
Mcc = .- (15)
0 otherwise

While snowpack temperature cannot be modeled in the 6
representation, the CC representation models the average in-
ternal snowpack temperature, 7', as

Ts,i = —CtsnWc, (16)

where ¢y is a fitting parameter to translate w, into inter-
nal temperature ([cgp]=°C m’l). Thus, the assumption is
made in the CC representation that the snowpack is isother-
mal (i.e., Ts,i = T;s). When liquid water in the snowpack is
greater than 0.5 % of solid snow water equivalent (SWE), the
snowpack temperature is set to 0°C. The LST heat repre-
sentation is the only formulation implemented here that uses
Eq. (16) and in this case it is assumed that the snow surface
temperature, Ts ¢ in Eq. (11), is equal to the snowpack’s aver-
age internal temperature, T'; in Eq. (16). This is equivalent
to a strict isothermal snowpack assumption, which is more
realistic for wet and warm snowpacks than for dry and cold
snowpacks. Based on the climates of Gulkana and Wolverine
(Figs. 2 and A1), we expect this to be a better assumption for
Wolverine than Gulkana.
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Both the 6 and CC mass flux representations con-
tain a maximum snowpack liquid water content, MLC
([MLC] = m), represented by

MLC = ¢4qSWEj, a7

where cqq is a unitless fitting parameter and SWE; is the
snowpack’s solid water content expressed as depth of lig-
uid water equivalent ([SWEg] =m). All liquid water in ex-
cess of the snow’s liquid water holding capacity drains from
the snowpack during each time step. In the CC formulation,
the snowpack’s liquid water is refrozen when CC is greater
than 0, and the CC is reduced in direct proportion to the depth
of water frozen. Only water that drains from the snowpack is
counted as a change in the snowpack’s total water content.

2.3 Glacier treatment

Fully representing ice processes requires accounting for the
ice’s internal energy. Conceptual models typically do not do
this, instead assuming the ice temperature is 0 °C when there
is no snow present and the heat flux into the ice is positive
(Hock, 1998, 1999). The present version of CCHF does not
include any mass flux modules that account for the inter-
nal energy of ice, although this is an area that we believe
should be developed in the future. Instead, CCHF assumes
the glacier surface albedo is 0.35 and that the glacier’s sur-
face temperature is the minimum of the air temperature in
the previous time step and 0°C. The glacier’s surface tem-
perature only impacts net longwave heat flux calculated in
the LST model.

During a given time step, ice melt potential, Mpjcc
([Mpjce] =m), is calculated as the remainder of potential
melt after snow melt is calculated, i.e.,

Mp—M ifMp>M
MP,ice = . . (18)
0 otherwise

Actual ice melt, Mice ([Mijce] =m), is scaled by a unitless
fitting parameter, cgc, that accounts for energy differences
in melting ice versus snow (e.g., accounting for differences
in heat conduction between ice and snow). Thus, ice melt is
calculated as

Hice
Mice = CgICFMP,ices (19)

where Hic. is the heat flux for the ice surface properties and
H is the equivalent heat flux for snow surface properties. For
a given model implementation, both H and Hjc. correspond
to the same heat flux representation (i.e., one representation
from Eqs. 8—11). For example, for the model where Hgryp) is
used as the heat representation, the only difference between
H and Hi in Eq. (19) is due to the difference in surface
albedo. The purpose of Eq. (19) is that it allows ice melt to
occur in the same time step in which the snowpack has com-
pletely melted from a grid cell. Equation (19), which is es-
sentially a ratio to scale the melt potential available for ice,
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approximates the portion of energy that is still available for
ice melt after all snow has melted during the current time
step. Over short time steps, the error incurred by not allow-
ing snow and ice melt to occur for a given grid cell during the
same time step is small; however, including Eq. (19) allows
the model to scale better between small and large time steps.

2.4 Melt and rain to streamflow

Once liquid water drains from the snowpack, ice melt occurs,
or rain is incident on a grid cell without snow, CCHF mod-
els its transport through the landscape with the four mod-
ules on the right side of Fig. 3. Two general phases of this
transport are (1) transition from snow or ice melt to runoff
and (2) flow through the stream network. To model phase
one, we implement a leaky groundwater bucket model as de-
scribed in Moore et al. (2012). In the bucket representation,
all liquid water released from snow, snlr ([snlr] =m), liquid
water released from ice, iclr ([iclr] =m), and rain incident
on a grid cell without snow ([rain] =m) enters the ground-
water bucket. The water in the bucket is described as the soil
moisture, SM ([SM] = m), with a total soil moisture capacity,
Csme ([Csme] =m; cgme 1s a fitting parameter). SM is updated
during each time step as

SM; =

SM; _1 + rain; + snlr; 4iclr; — rg; —PET; if no snow or ice present (20)
b

SM; _1 + rain; + snlr; +iclr; —rg; otherwise

where subscript i refers to the value during the ith time
step and PET is potential evapotranspiration ([PET] = m; de-
scribed below). Runoff, r¢ ([rf] = m3 day_l), in the bucket
model is then calculated based on SM and cgyc as

A((1+car) SM — cyme)  if SM > cyme
= ] s 21
otherwise

AcyrSM

where A is the grid cell’s area ([A] = m2) and cq; is the drain
rate of soil moisture from the leaky groundwater bucket per
day ([cqr] = day™!; fitting parameter ranging from O to 1).

PET is calculated using a formulation of the Hamon equa-
tion (Hamon, 1961) based on Allen et al. (1998) and Lu et al.
(2005), in which

6.108exp| 723745 |

T,+273.15

PET =218.39 X cpet X N . (22)

where cpe; is a unitless fitting parameter and N is the number
of daylight hours ([N]=h), which is calculated according
to the formulation presented in DeWalle and Rango (2008).
PET is set to zero when snow or ice is present.

Flow direction between grid cells in CCHF can be input by
the user (in the form of an Environmental Systems Research
Institute — ESRI — formatted flow direction grid) or calcu-
lated automatically using algorithms from the TopoToolbox
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(Schwanghart and Kuhn, 2010). The travel time through each
cell, t; ([#]=s), is then calculated using a formulation by
Johnstone and Cross (1949):

[ Al
= 36OOCW1 — (23)
A/ m

where ¢y is a unitless fitting parameter, Al is the distance be-
tween the centroids of grid cells in the flow path ([A/]=m),
and m is the slope between cells in the flow path expressed
as a ratio (unitless).

Streamflow is then routed downhill along the flow path de-
termined by the flow direction grid using either the “lumped”
or Muskingum methods (Bedient et al., 2012). The lumped
method does not allow dispersion of streamflow, whereas the
Muskingum method does allow dispersion according to the
formulation presented in Bedient et al. (2012). The results
of both flow routing methods are comparable for simulating
small watersheds at large time steps; however, dispersion be-
comes more important as the size of the watershed increases
relative to the time step (Bedient et al., 2012). In this work we
use the lumped method since the model domains are small.

2.5 Calibration routine

Several calibration routine options are built into the CCHF,
including a genetic algorithm (Wang, 1991), Monte Carlo
simulation (Sawilowsky and Fahoome, 2003), Particle
Swarm Optimization (PSO; Poli et al., 2007), and a hybrid al-
gorithm developed by us. The hybrid algorithm works by im-
plementing the Monte Carlo routine for the first several cali-
bration generations (ranging from 4 to 15 generations based
on the number of fitting parameters) and updating the fitting
parameters in the following generations using PSO until two
consecutive generations stagnate to the same fitness score
(referred to here as an initial stagnation). Once an initial stag-
nation occurs, the hybrid algorithm uses a combination of
Monte Carlo simulations and linear sensitivity analysis to al-
ternately add diversity to the population (Monte Carlo simu-
lation) and explore the local parameter space (linear sensitiv-
ity). If a new local optima is found, PSO is reinitiated. The
process repeats until the same best fitness score is returned
for 15 consecutive generations (referred to here as terminal
stagnation). A population of 30 parameter sets is used in each
generation of the optimization process.

Calibration in the CCHF can be conducted in one or mul-
tiple stages. If multiple stages are implemented, the user
must determine which categories of fitting parameters to op-
timize in each stage. The three performance metrics we use
are the Nash—Sutcliffe efficiency (NSE; Nash and Sutcliffe,
1970) score, the Kling—Gupta efficiency (KGE; Gupta et al.,
2009) score, and the Moderate Resolution Imagining Spec-
troradiometer (MODIS; Hall et al., 2006) SCA comparison
paradigm presented in Parajka and Bloschl (2008), which
we refer to as the Parajka and Bloschl error (PBE; Parajka
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and Bloschl, 2008). The NSE and KGE scores are computed
for glacier stake and streamflow comparisons while the PBE
score is computed to compare SCA observations to modeled
snow as described below.

The NSE score is extensively used to assess hydrologic
models and, as is shown in Gupta et al. (2009), can be de-
composed into the form

NSE=2ozr—oz2—/32, (24)

where « is the ratio of the model standard deviation to the
observed standard deviation, r is the linear correlation coef-
ficient, and B is the bias normalized by the observed standard
deviation. From Eq. (24) it is evident that the NSE score un-
equally weights standard deviation, correlation coefficient,
and bias. Therefore, Gupta et al. (2009) propose using the
KGE score, defined as

KGE:1—\/(r—1)2+(a—1)2+(,3—1)2, (25)

which equally weights errors in the correlation, standard de-
viation, and the non-dimensional bias.

A perfect KGE or NSE score is 1 and the negative bound
on the scores is negative infinity. An NSE score of 0 indicates
the mean of the observation time series is as good of a pre-
dictor as the modeled time series. Note, though, that a KGE
score of O does not share this interpretation. The advantage
of using the KGE for calibration instead of the NSE is that
the NSE is sensitive to errors in extreme values and less sen-
sitive to errors in the overall distribution relative to the KGE
metric (Legates and McCabe Jr., 1999).

Using MODIS SCA observations for model evaluation
presents a unique challenge since MODIS observes snow and
ice cover while CCHF models SWE. The PBE score over-
comes this issue by calculating two error metrics — snow
overestimation error, SS (unitless), and snow underestima-
tion error, Sg (unitless) — which, respectively, capture in-
stances where the model grid cell contains snow but the
MODIS pixel does not report SCA and instances where the
model grid cell does not contain snow but the MODIS pixel
reports SWE. Sg and Sg are calculated as

/

1
= — 2 mo A (SWE > Eswg) A (SCA = 0), (26)
ml =
U 1 l
Sg = oyl ,2:1 my A (SWE = 0) A (SCA > &sca), 27

where m is the number of number of MODIS time steps in
which less than 60 % of the MODIS image over the entire
domain is cloud covered (images with cloud cover greater
than this threshold are not used), / is the number of grid cells
that are not glaciated or have permanent snow cover (these
MODIS pixels are also removed from analysis as explained
below), the summation over j loops over all MODIS pixels
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that contribute to /, m,, is the number of MODIS time steps
for which MODIS reports 0 % snow cover at the current grid
cell and modeled SWE is greater than a threshold value set
by éswE ([Eswg] = m), and my is the number of MODIS time
steps where no SWE is modeled at the current grid cell but
MODIS observes snow cover greater than £sca (unitless).
Due to potential issues in which MODIS incorrectly classi-
fies permanent ice as snow, we remove all MODIS pixels
from analysis when a given pixel is classified as snow dur-
ing more than 90 % of the time steps. Thus, MODIS data are
only used in model evaluation for grid cells with seasonal
snow cover and not for grid cells that MODIS classifies as
having permanent snow.

The PBE score is calculated from 51(5) and SIE:J using the
weighting function

PBE = w; S{ + ws Sg, (28)

where PBE is the snow cover error used in model assess-
ment (unitless; range is 0 to 1, where O indicates no error)
and wi and w; are unitless weighting factors used to scale
the model overestimation and underestimation errors, respec-
tively.

SS and Sg , respectively, decrease as &swg and &sca
increase. Thus, errors are largest with &gwg=0m and
&Esca =0 %. Parajka and Bloschl (2008) set the values of
Eswr and &scy in order to balance 51(5) and Sg . Unfortunately
it is not possible to balance S]E:) and S]g a priori in the present
implementations because the sensitivity of SQ and Sy with
respect to £&swg and £sca changes between model domains,
model formulations, and with different fitting parameter val-
ues. We set &gwg to 10mm and &sca to 10 % in order to
increase the sensitivity of the calibration to both S and Sy .
We do not set the £ values to 0 in order to recognize that there
can be classification errors in MODIS SCA observations for
pixels with low snow cover and because CCHF assumes all
snow is uniformly distributed over the grid cell, whereas at
very low SWE values this is not likely to be accurate. We
set wi and wy in Eq. (28) to 5 because we find through ini-
tial calibration analysis that this tends to result in PBE having
similar magnitudes to KGE values computed for glacier stake
observations.

3 Methods for model comparison

In this work we implement seven models, shown in Table 3,
which are combinations of the heat module and mass flux
module representations described in Sects. 2.1 and 2.2, re-
spectively. Our primary objectives in developing the model
evaluation strategy are to reduce equifinality and identify
differences in accuracy and precision between the models.
We reduce equifinality through utilizing a multi-objective
evaluation criteria comprised of observations from multiple
glacier stakes, MODIS SCA images, and stream gage data,
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Table 3. Heat module and mass flux module combinations that we
assess, described, respectively, in Sects. 2.1 and 2.2. In all cases the
seven fixed module formulations are those presented in Table 2.

Model Heat Mass flux
label Eq. (no.) Eq. (no.)
SDI-0 1 13
SDI-CC 1 14
ETI(H)-6 2 13
ETI(H)-CC 2 14
ETI(P)-0 3 13
ETI(P)-CC 3 14
LST-CC 11 14-16

calibrating the models in two stages, and conducting cali-
bration for 10 consecutive water years in which all obser-
vation data are available. Reducing equifinality helps enable
intercomparison of model accuracy and precision. We addi-
tionally assess how much equifinality is present in each of
the seven calibrated models. Section 3.1 describes the in-
puts used in these implementations of the model, Sect. 3.2
then provides information on the observation data used, and
Sect. 3.3 explains the evaluation strategy.

3.1 Model inputs

CCHF presently supports inputs of precipitation and temper-
ature (mean, minimum, and maximum) time series, a digi-
tal elevation model (DEM; we use the WorldClim 30 arcsec
DEM by Hijmans, 2011), a data file containing outlines of
glacier or ice cover, and a flow direction raster (FDR). The
FDR can be generated automatically within CCHF using al-
gorithms from the TopoToolbox, Schwanghart and Kuhn,
2010; however, we manually delineate the watersheds and
create the FDR using a combination of ESRI algorithms and
visual analysis.

The climate time series inputs used here are derived from
the Climate Forecast System Reanalysis (CFSR), which is
produced by the National Centers for Environmental Predic-
tion (NCEP) (Saha et al., 2010). CFSR is an hourly climate
product available from 1979 to 2010 as 0.312° grids. Wang
et al. (2011) and Lader (2014) find that CFSR represents pre-
cipitation and temperature variability as well or better than
other reanalysis products such as MERRA (Rienecker et al.,
2011) and ERA-Interim (Dee et al., 2011) for the Alaska re-
gion. Further, Beamer et al. (2016) find that CFSR performs
well relative to other reanalysis products for Gulkana and
Wolverine glaciers and also better reproduces total volumes
of water flux into the Gulf of Alaska.

We temporally aggregate the hourly 0.312° CFSR product
to daily time steps. Precipitation and mean temperature are
used in all instances, while minimum and maximum temper-
ature are only used in model formulations that include short-
wave radiation. We input the temporally aggregated 0.312°
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CFSR product into MicroMet (Liston and Elder, 2006b). Mi-
croMet resamples the input time series to the spatial grid of
the DEM and applies temperature lapse rates and precipita-
tion correction factors based on elevation distribution, which
vary as a function of the day of the year, creating a 30 arcsec
daily time series for each climate variable.

Glacier outlines in CCHF can be supplied in gridded for-
mat using the same grid as the input DEM or can be input
as a shapefile. In the case where a shapefile is input to the
model, CCHF determines the fractional area of glacier cov-
erage within each of the model’s grid cells. We use the Ran-
dolph Glacier Inventory version 5 shape files (Pfeffer et al.,
2014) to generate the glacier outlines in this work and hold
these outlines fixed over the duration of each model run.

3.2 Observation data

The three types of observation data we use to assess model
performance are USGS stream gage measurements of flow
rate (referred to in the results as “flow”), MODIS (Hall
et al., 2006) images of SCA (referred to as “SCA”), and
USGS glacier stake measurements of changes in snow and
ice water equivalent (referred to as “stake”). Gulkana and
Wolverine are both considered long-term benchmark glaciers
by the USGS, with the implication that glacier stakes and
stream gages have been present at both locations for multiple
decades, albeit with some interruptions as described below.

The USGS has been measuring glacier and snow accu-
mulation and ablation at three locations on Gulkana glacier
from 1974 through the present (with an additional stake
from 1990 through the present) and three locations on
Wolverine from 1965 through the present (Van Beusekom
et al., 2010). Glacier stakes measure changes in depth of
snow and ice at one location between two observation dates.
These changes in depth are then converted to changes in mass
through measuring the density of snow and assuming a den-
sity for ice. Wolverine glacier is entirely free of surface de-
bris, while a portion of the ablation zone of Gulkana glacier
contains scattered debris cover, but we model both glaciers as
debris free. In our analysis, we treat each glacier stake obser-
vation equally, regardless of duration, season, or magnitude
of change.

There are stream gages located slightly below the termini
of Gulkana and Wolverine glaciers. The stream gages were
installed in 1966 and are maintained by the USGS. The tem-
poral coverage of the stream gages is not continuous. For ex-
ample, the stream gage at Gulkana is missing measurements
from October 1978 through September 1989 and the stream
gage at Wolverine does not have measurements from Octo-
ber 1978 through September 2000. The USGS also cautions
that there may be significant errors in the flows, especially at
high flows, because the stream gages are located in geomor-
phologically active channels.

We use the MODIS MOD10A2 version 5 SCA estimates,
which are 8-day maximum SCA estimates projected to 500 m
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using a Sinusoidal tile grid, available from March 2000
through the present (Hall et al., 2006). We use the 8-day im-
ages rather than daily because cloud cover obstructions are
a significant hindrance in the daily product and Zhou et al.
(2005) achieve better performance using the 8-day time se-
ries rather than the daily. MOD10A?2 version 5 provides a bi-
nary classification for each pixel (i.e., either snow, no snow,
or no decision). When 60 % or more of the pixels in a current
image corresponding to one of the study domains is no de-
cision, we set the entire image to no decision (this threshold
is also used in Parajka and Bloschl, 2008). We then reproject
the image to geographic coordinates and resample the images
to our model domains using bilinear interpolation. Therefore,
the SCA values used in model assessment can range from 0
to 100 %.

3.3 Evaluation strategy

Our primary goal with the model intercomparison is under-
standing how each of the seven models in Table 3 performs
under different climatic regimes (as a partial analog for cli-
mate change applications) and across geographies (because
models are often calibrated for gaged watersheds but ap-
plied to non-gaged watersheds). Due to this, we calibrate
each model to both Gulkana and Wolverine domains sepa-
rately and then validate each model for the opposite water-
shed (i.e., we perform a total of 14 model calibrations and
14 model validations). We spin up each of the model runs
from September 1997 through August 2000 and then con-
duct each calibration or validation assessment from Septem-
ber 2000 through August 2010.

The combined use of MODIS, glacier stake, and stream
gage observations has been shown to significantly improve
model performance and better differentiate performance of
model parameter set ensemble members (Konz and Seibert,
2010; Finger et al., 2011). By only evaluating models for the
period 2000-2010, we are able to use all three observation
types and therefore utilize a stronger evaluation criteria for
each model. We view the 10-year calibration and validation
periods as necessary to assess performance over a range of
climatic conditions and reduce equifinality. Often models are
assessed for shorter periods (e.g., Singh et al., 2000; Liston
and Mernild, 2012; Hock and Holmgren, 2005) but there is
evidence that assessing models over short periods can lead to
incorrect assessments (e.g., see Razavi and Tolson, 2013).

We calibrate each model in two stages. In the first stage,
parameters relating to cryosphere modules (see Fig. 3) are
optimized by maximizing the average of 1 minus the PBE
score for MODIS SCA relative to modeled SWE and the
KGE value between measured and modeled changes in SWE
and ice water equivalent at glacier stake changes (see details
in Sect. 2.5). In the second stage, the calibrated cryosphere
parameters are then set to their optimized values and all re-
maining parameters (i.e., those related to runoff generation
and routing processes; see Sect. 2.4) are optimized by maxi-
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Figure 4. Model flow performance during calibration and vali-
dation as a function of combined cryosphere performance using
the methodology and metrics described in Sects. 2.5 and 3.3. In
subplot (a), models are calibrated for Gulkana and validated for
Wolverine; in subplot (b), models are calibrated for Wolverine and
validated for Gulkana. As indicated in the plot legends, the marker
border indicates phase of assessment, face color indicates the heat
module representation, and shape indicates the mass flux module
representation.

mizing the KGE score for modeled and measured streamflow
at the USGS stream gage locations. Since glacier stake ob-
servations are available at multiple points, fitness scores dur-
ing the first stage of calibration are calculated at each glacier
stake location and then averaged to produce a single glacier
stake score for each parameter set.

We assess equifinality due to the cryosphere process rep-
resentations by conducting validation on the 100 parameter
sets that perform best during the first stage of calibration. We
set the fitting parameters corresponding to non-cryosphere
parameters (i.e., those calibrated in the second stage) to their
calibrated values. Thus, we are only investigating equifinal-
ity in fitting parameters related to modeling cryosphere pro-
cesses. We provide equifinality assessment statistics in all ta-
bles of validation run results. Specifically, we include (1) val-
idation performance for the parameter set that performs best
during calibration, (2) the mean validation performance for
the 100 best performing calibration runs, and (3) the standard
deviation of validation performance for the 100 best perform-
ing calibration runs. The general format we use for reporting
these statistics is “x1; xp &= x3”, where the x; refer to the three
numbered statistics from the previous sentence.

4 Results and discussion

Each of the seven models (Table 3) is calibrated and val-
idated using the procedure outlined in Sect. 3.3. The cor-
responding PBE scores (for SCA observations) and KGE
scores (for stake and flow observations) are summarized in
Fig. 4 (full results, including NSE scores and metrics to con-
vey equifinality, are provided in Tables B3-BS5). The cor-
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responding calibrated fitting parameter values are provided
in Tables B1 and B2. While Fig. 4 efficiently summarizes
the results, trends become more apparent when model per-
formance is aggregated in specific ways. We therefore sep-
arate this section into several subsections to highlight inter-
esting aspects of the model intercomparison results. Some
of the findings are as follows: (1) which mass flux mod-
ule representation performs best depends on the watershed
(Sect. 4.1); (2) overall performance varies between the two
watersheds (Sect. 4.2); and (3) which model formulations
performs best depends on the observation variable consid-
ered, but the ETI(P)-CC and LST-CC models stand out as the
most accurate and robust between regions (Sect. 4.3). Sec-
tion 4.5 then summarizes general observations.

We also want to note at the outset that the choice of metric,
as well as the overall assessment methodology, are significant
determinants of perceived model performance. We primarily
use and report the KGE score (Eq. 25) for glacier stake and
flow observations and the PBE score (Eq. 28) for SCA obser-
vations, although Tables B3-B5 provide model performance
quantified by the NSE score (Eq. 24) as well. As is displayed
in Sect. 2.5, the KGE and NSE scores can be decomposed
into three principal sources of error (i.e., correlation, standard
deviation, and bias). As is outlined in Gupta et al. (2009),
the relative importance of each of the three additive terms in
Egs. (24) and (25), F;, can be calculated as

F = ; (29)

3
2. fi
j=1

where f; are values of the respective terms. To demonstrate
how each error component impacts the overall KGE and NSE
scores, Table 4 provides the stake error components corre-
sponding to validation runs for the LST-CC model. What
is important to note is that the first term of the NSE score
(2ar/ > [n;]) is negative for both watersheds and therefore
masks some of the error in the other two terms, which relate
to the standard deviation and bias. This potential for error
masking in the NSE score explains one factor contributing to
higher NSE scores relative to the corresponding KGE scores
(see Tables B3-B5).

Another finding from Table 4 is that the largest sources
of KGE error for Gulkana are the correlation coefficient and
standard deviation components, while the largest sources of
error for Wolverine are the correlation coefficient and bias
components. The cause of these respective errors cannot be
ascertained from Table 4 without more investigation; how-
ever, this type of information may be informative for improv-
ing the future model representations.

Many other modeling studies implement similar concep-
tual models and report “better” model performance. “Better”
is placed in quotation marks because, as is shown in Table 4,
what constitutes better depends on the metric used and how
the model is assessed. Commonly glacier models are eval-
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Table 4. Sources of stake measurements errors in the Kling—Gupta
efficiency (Eq. 25) score in the LST-CC model during validation for
Gulkana and Wolverine glaciers. The three error types are the linear
correlation coefficient, r, the ratio of the model standard deviation to
the observed standard deviation, «, and the bias normalized by the
observed standard deviation, 8. >"[k;] and > [n ;] refer to the sum
of additive terms for the KGE score and NSE score, respectively
(i.e., the denominator on the right-hand side of Eq. (29).

Error term Gulkana  Wolverine
Ir—1| 0.83 0.96
la — 1] 0.82 0.73
18 —1] 0.59 0.83
r— 1%/ [k;] 0.40 0.43
(@ =12/ [kj] 0.39 0.25
(B—1?/3[kj] 0.20 0.32
2ar/ 3 [n;] —0.44 —0.27
—a?/¥[n;] 0.23 0.91
—B%/Xn;] 1.21 0.36

vated for only a few years (e.g., Liston and Mernild, 2012)
or only during the melt season (e.g., Singh et al., 2000; Pel-
licciotti et al., 2005). Additionally, models evaluated using
fewer types of observations tend to appear to perform bet-
ter (Konz et al., 2010; Finger et al., 2015). It has also been
demonstrated by Razavi and Tolson (2013) that when cali-
brating and validating hydrologic models, use of short du-
rations can lead to inaccurate assessments of model perfor-
mance and increase model equifinality. In the context of iden-
tifying robust models for use in projecting the impacts of cli-
mate change, it is therefore necessary to ensure that the val-
idation utilizes a sufficient number of types of observation
data, that the evaluation period is sufficiently long, and that
evaluation is conducted for multiple climatic regimes.

4.1 Mass flux module

Average performance of the two mass flux representations,
6 and CC, tends to vary by watershed (Table 5). On aver-
age the 6 representation performs better for Gulkana and the
CC representation performs better for Wolverine. A differ-
ence between these watersheds is that Gulkana is drier and
colder than Wolverine (Figs. 2 and Al). Although it is be-
yond the scope of the present work to establish precisely why
the 6 representation performs better for Gulkana and the CC
representation performs better for Wolverine, it may be re-
lated to the way each module represents the timing of accu-
mulation and melt.

The CC representation assumes that the snowpack is
isothermal, which causes errors in how the internal energy
is accounted for and also impacts the net heat flux in the LST
heat representation. The former point is related, in part, to
the fact that the isothermal assumption neglects thermal con-
ductivity within the snow. The thermal conductivity is lower
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Table 5. Evaluation scores during model validation by mass flux
module representation and watershed, averaged over heat module
representation. The watershed listed is that which the model is val-
idated for. Evaluation methodology and metrics are described in
Sects. 2.5 and 3.3.

Model Gulkana Wolverine

Flow SCA Stake Flow SCA Stake
0 0.66 079 —-041 031 054 -0.32
CC 0.39 0.56 0.08 0.74  0.56 0.51

for less dense snowpacks, which causes energy changes at
the surface to propagate more slowly through the low-density
snowpack relative to a higher-density equivalent snowpack.
By this mechanism, the CC representation may overestimate
internal energy deficit during dry and cold winter months,
which would impact models applied to Gulkana more than
models applied to Wolverine.

One characteristic of an improved mass flux representa-
tion would be that it allows snowpack temperature to vary
vertically through the snowpack. This would have two ad-
vantages over the CC representation: (1) the net surface heat
fluxes could be better calculated across climatic regimes and
(2) the effect of the snowpack’s thermal conductivity could
be accounted for in updating the snowpack’s average inter-
nal energy. An approach to accomplish this would be to it-
eratively solve for the surface temperature by requiring that
the surface energy balance be zero, as is done in Liston and
Elder (2006a). Using such a method, melt would occur based
on the energy balance at the surface of the snowpack rather
than as a function of the snowpack’s average internal energy,
as is the case in the CC representation.

4.2 Regional differences

If validation results are aggregated over model applications
to the same region, it appears that on average the seven mod-
els better reproduce stake observations for Wolverine and
better reproduce SCA observations for Gulkana. Simulta-
neously, though, they reproduce flow observations roughly
equally well (Table 6). One important caveat is that averaging
over models ignores intermodel differences in performance.
To better understand causes of interregional model perfor-
mance, we also calculate the linear correlation coefficient, r,
between performance in each of the cryosphere observation
types (i.e., SCA and stake) and flow, by region (Table 6).
For Wolverine, the correlation between stake and flow perfor-
mance is 0.99, while for Gulkana the correlation is not statis-
tically significant. For Gulkana, the correlation between SCA
and flow performance is 0.86, while for Wolverine the corre-
lation is not statistically significant. One reason why stake
performance may be more important to Wolverine is that a
larger portion of the model domain and area contributing to
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Table 6. Model-averaged evaluation performance scores and linear
correlation coefficient, , between performance of each cryosphere
observation type and flow during model validation, shown by re-
gion. The watershed listed is that which the model is validated for.
The top row for each watershed is the regionally averaged evalua-
tion score; the first number in parentheses is r and the second num-
ber is the p value, which is an indicator of statistical significance
(typically values less than 0.05 are considered significant). Evalua-
tion methodology and metrics are described in Sects. 2.5 and 3.3.

Region Flow SCA Stake
051  0.65 ~0.13
Gulkana (0.86;0.012)  (0.43; 0.33)
Wolverine 56 055 0.15
0.20:0.66)  (0.99; 0.00)

the stream gage is glacier covered. It is surprising, though,
that for Wolverine SCA performance is not significantly cor-
related to flow performance. We are not sure why SCA and
flow performance are not correlated for Wolverine.

4.3 Model accuracy, precision, and equifinality

The primary model assessment goal of this work is to evalu-
ate the robustness of the seven conceptual cryosphere models
between regions and climatic conditions. Two aspects of ro-
bustness are overall accuracy (i.e., predictive skill for each
model application) and precision (i.e., how the predictive
skill varies between applications of the model across regions
and climatic conditions). Additionally, equifinality affects ro-
bustness insofar as different equally acceptable parameter
sets selected through calibration may lead to different inter-
pretations of model results. Tables B4 and B5 display results
of the equifinality exercise described in Sect. 3.3. In roughly
half of the validation cases, the mean validation performance
of the 100 best calibration parameter sets is slightly higher
than the validation performance of the parameter set that per-
forms best during calibration; the differences between these
two metrics are almost always very small, though. Given that
the assessment criteria includes flow, SCA, and stake ob-
servations and that the validation assessment is particularly
stringent (i.e., applying the calibrated models to a different
model domain with a different climatic regime), we believe
this level of equifinality is acceptable. For example, the dif-
ferences in model performance are smaller than those ob-
tained in Finger et al. (2011) and Razavi and Tolson (2013),
although because of differences in each assessment approach
it is not possible to make quantitative comparisons.

Table 7 provides the validation performance of each model
averaged across regions and the difference in performance
between each region. Under this analysis the ETI(P)-CC and
LST-CC models have the best predictive accuracy for re-
producing flow and stake observations, while the SDI-6 and
ETI(H)-6 models have the best predictive accuracy for re-
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Table 7. Regionally averaged evaluation scores during model val-
idation by model. Values in parentheses are absolute difference in
model validation scores between regions. Evaluation methodology
and metrics are described in Sects. 2.5 and 3.3.

Model Flow SCA  Stake Mean
R ke 019 025 030
I 06y 020 039 06
ETI(H)-0 (o(.);g ((&619) (—0(.)-2492) (0(.).2255)
ETI(H)-CC (0(')458(; (0(.)(')574; (0(.)5211) (0(.);(1)5)
ETP 05 03 029 00
FHee <0(-)i725> <0(~)6670> (0(.)2571) (o(.)i65§
e <0(~)i723> <0(-)i622> (0(.)'250§ (0(.)'1651

producing SCA observations. The precision, i.e., how simi-
lar performance is between applications, for the ETI(P)-CC
and LST-CC models is better than for the other five mod-
els, including for SCA performance. While there are minor
differences in performance between the ETI(P)-CC and LST-
CC models (e.g., with respect to stake performance), the dif-
ferences in performance between these two models are rela-
tively small compared to differences with the other five mod-
els. Therefore, we conclude that both the ETI(P)-CC and
LST-CC models are superior to the other five models eval-
uated in terms of validation accuracy and precision.

The novel conceptual model formulations that we assess
include the four that utilize the CC mass flux representa-
tion (i.e., the SDI-CC, ETI(H)-CC, ETI(P)-CC, and LST-
CC models). If we compare only the pre-existing models
(i.e., SDI-6, ETI(H)-0, and ETI(P)-0), the SDI-6 model ex-
hibits the best flow performance, the SDI-6 and ETI(H)-0
models exhibit the best SCA performance, and the SDI-0
model exhibits the best stake performance (Table 7). On av-
erage, the SDI-9 model outperforms the other models with
0 mass flux representations, but none of these three pre-
existing models is precise between watersheds. One signif-
icant difference between these three models is that the SDI-6
model relies only on temperature both for determining the
heat flux and onset of melt conditions, while the ETI(H)-6
and ETI(P)-60 models use both temperature and shortwave
radiation to determine the heat flux but only temperature to
determine onset of melt conditions. The latter set of process
representations is not physically consistent given that in real-
ity onset of melt conditions is determined by the energy bal-
ance, which is impacted by all of the heat fluxes. This is not
to claim that the SDI-8 model is more physically representa-
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Figure 5. Model performance for Gulkana using Gulkana calibra-
tion (i.e., parameters from Table B1) and validating each model for
Gulkana from September 1990 through August 2000. Only stake
and flow observations are available during this validation period.
The marker border indicates the whether the model period is cali-
bration or validation, face color indicates heat module representa-
tion, and shape indicates mass flux module representation, as de-
scribed in the legends.

tive than the others, just that the heat and melt formulations
may be more consistent.

4.4 Assessment using Gulkana only

In this section we provide results for a model assessment us-
ing only Gulkana watershed. The purpose of this is to under-
stand the importance of the two-watershed model assessment
methodology (described in Sect. 3.3), in which the water-
sheds have contrasting climates and geographies, that we use
to produce all of the model evaluation results provided else-
where in this paper. For the Gulkana-only assessment, we
use the model parameter sets displayed in Table B1, which
are calibrated for Gulkana from September 2000 through
August 2010. We then validate these calibrated models for
Gulkana from September 1990 through August 2000, using
the preceding 36 months as a model a spin-up period. Only
stake and flow observations are available for this validation
period. We cannot conduct a similar validation for Wolverine
because stake observations are not available for this period.
The results of this exercise, displayed in Fig. 5, are in-
triguing because the relative ranking of model performance
is somewhat different than that found through the two-
watershed assessment (e.g., Table 7). For the Gulkana-only
assessment, the ETI(H)-60 model exhibits the best valida-
tion flow and stake performance, followed by the ETI(P)-6
and SDI-6 models. This is consistent with the findings pre-
sented in Sect. 4.1 that the 6 mass flux module representation
performs better for Gulkana. In contrast to the main accu-
racy and precision results presented in Sect. 4.3, the ETI(P)-
CC and LST-CC models perform among the worst for the
Gulkana-only assessment. The contrast in results between
the one-watershed and two-watershed assessments clearly
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highlights the importance of selecting an evaluation method-
ology that tests model behavior over the range of conditions
that the model will be applied for. As an example, if the ob-
jective is to simulate recent historic conditions at Gulkana,
the one-watershed assessment is appropriate and finds that
the ETI(H)-6 model should be used. If the model will be ap-
plied to altered climatic or geographic conditions, the two-
watershed assessment tests model performance over a wider
range of conditions and finds that either the ETI(P)-CC or
LST-CC models may be more suitable.

4.5 General remarks and future directions

As discussed in Fujita and Ageta (2000), glacier surface pro-
cesses are not sufficient to describe glaciers; for example,
because up to 20 % of melt refreezes. Surface refreezing is
allowed in the CC mass flux module representation for snow-
packs when the CC is positive, but not for glaciers. The pri-
mary differences between snow and ice heat fluxes in the
models implemented here are that (1) ice has a different sur-
face albedo than snow and (2) ice includes a fitting param-
eter to allow heat fluxes to translate into melt at a different
rate than for snow (see Sect. 2.3). None of the models con-
tains a representation of the ice’s internal energy. Even Snow-
Model, an energy balance cryosphere hydrology model, does
not characterize the internal energy of ice (Liston and Elder,
2006a). However, conceptual and energy balance cryosphere
hydrology models are often applied to assess the impacts
of glacier melt on projected future streamflow. We therefore
perceive this as a significant deficiency in current cryosphere
hydrology models and an area where future work must be
done.

None of the cryosphere hydrology models implemented
here uses wind speed or humidity as inputs, but these vari-
ables are needed to explicitly represent the sensible and latent
convective heat fluxes. The choice to exclude these inputs is
made because they are less frequently observed for mountain
environments, are difficult to characterize at high spatial res-
olutions, and are therefore not commonly used in conceptual
models. For continental snow and glacier environments, such
as Gulkana, sublimation is an appreciable source of negative
mass flux (Ohmura, 2001; DeWalle and Rango, 2008; Sicart
et al., 2008). Similarly, sensible convection is important dur-
ing the times of the year when the air and snow/ice surface
temperatures differ from one another the most (e.g., late sum-
mer during the glacier ablation season). Each of the concep-
tual models we implement accounts for sensible heat fluxes
through a degree-index term, which is a significant abstrac-
tion from the actual process. In reality convective heat fluxes
also depend on the wind speed and whether the atmosphere
is in a stable, unstable, or neutral state (DeWalle and Rango,
2008). A potentially enlightening future experiment would
be to develop a heat module representation that uses wind
speed as an input and compare how uncertainties in charac-
terizing wind speed impact representation of the heat balance
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relative to using a degree-index term. The same experiment
could be conducted for humidity to directly account for sub-
limation.

5 Conclusions

Understanding how the cryosphere will respond to cli-
matic changes has important water resources implications
and requires implementing models that are robust across
geographic domains and climatic conditions. Conceptual
cryosphere hydrology models are often used to make these
types of projections in mountain environments due to data
paucity, yet existing conceptual models are known to be less
robust than physically based model structures. We have de-
veloped the CCHF (Fig. 3) in order to systematically assess
cryosphere modeling assumptions. We use the CCHF here to
implement seven conceptual models (including existing and
novel formulations; Table 3) for two glaciated watersheds in
Alaska (Fig. 1). The CCHF enables us to interchange individ-
ual module representations, which provides more insight into
the causes of differences in model performance compared to
if we were to implement standalone models. While no sin-
gle model outperforms the others for all categories of ob-
servations, the ETI(P)-CC and LST-CC models stand out as
overall the most accurate and precise between climatic con-
ditions and geographic domains when model performance is
assessed using flow, SCA, and stake observations.

Our model analysis is by no means exhaustive, but pro-
vides some general insights and directions for future inves-
tigations. For example, we find that the 6 mass flux module
representation results in better model validation performance
for Gulkana (the colder and drier of the two watersheds)
and that the CC mass flux module representation results in
better model validation performance under the same analy-
sis for Wolverine (Table 5). Neither of these representations
captures the impact of vertical temperature gradients within
a snowpack on internal energy or on heat fluxes across the
boundary. These deficiencies in cryosphere model formula-
tions are consistent with other conceptual models (e.g., Hock,
1999; Pellicciotti et al., 2005) and even with energy balance
models such as SnowModel (Liston and Elder, 2006a) that
are used in data-sparse mountain environments. Thus, we be-
lieve an area of future work with CCHF will be to better rep-
resent internal snow and glacier processes.

While the representations we assess are considered con-
ceptual rather than physical, these model types exist on a
spectrum rather than as discrete model types. We empha-
size conceptual formulations in this work because this clas-
sification of processes representations is often used in data-
sparse mountain regions. Of the representations we assess,
we find that the more physically based structures are more
robust (i.e., overall the LST-CC and ETI(P)-CC models are
the most robust). Therefore, interesting future work would
be to incorporate more input data types, e.g., wind speed
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and vapor pressure, and assess the impacts of more physi-
cally based heat flux representations on overall model accu-
racy and robustness. As we demonstrate through conducting
assessments using one watershed and two watersheds with
contrasting climatic conditions, no single model can be ex-
pected to perform the best under all circumstances. The rea-
son is that each model’s performance will depend on a host
of factors, including climatic and geographic conditions, un-
certainty in the required inputs, propagation of uncertainty
through the model, and the evaluation methodology. Certain
models, though, will inevitably perform better or worse un-
der specific conditions, and the utility of the CCHF is that
it enables users to easily test multiple cryosphere hydrology
modeling hypotheses for their system of interest. Our hope
is that CCHF will be a useful tool for advancing our ability
to represent cryosphere processes. We encourage interested
parties to access CCHF version 1 on GitHub (distributed un-
der “thomasmosier/CCHF”).

www.the-cryosphere.net/10/2147/2016/

6 Data availability
Reference to the publically available CCHF model is pro-

vided in Sect. 2. All input data used are publically available,
with references provided in Sect. 3.
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Appendix A: Joint distribution of precipitation and
temperature

Wolverine Gulkana

1990-1999
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Figure A1. Joint distribution function of daily precipitation and mean surface air temperature for Gulkana and Wolverine watersheds (Fig. 1)

from 1980 to 1989 and 1990 to 2009. The precipitation and temperature values are spatially averaged over each watershed. Climate repre-
sentation is derived from the daily downscaled Climate System Forecast Reanalysis (Saha et al., 2010) product discussed in Sect. 3.1.
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Appendix B: Model parameters and results

B1 Calibrated model parameters

Table B1. All fitting parameters calibrated for Gulkana used in each of the models presented in Table B3.

SDI-6  SDI-CC ETI(H)-6 ETI(H)-CC ETI(P)-¢ ETI(P)-CC LST-CC

cam] (Table2) - - 0.98 0.82 0.69 0.74 0.61
Ccamp (Table2) - - 28.09 2.05 6.16 30.00 541
cfm (Egs. 8-11)  8.20 14.57 28.09 27.98 2.27 17.95 13.87
Choc,s (Eq.9) - - 0.02 0.08 - - -
Choc,i (Eq.9) - - 4.69 2.28 — - —
cpel (Eq. 10) - - - - 0.27 0.42 -
cinr (Eq. 13) 3.92 - 3.80 - 3.62 - -
cee (Eq. 14) - 0.10 - 0.20 - 0.20 0.27
cisn (Eq. 16) - - - - - - 0.00
csiq (Eq. 17) 0.07 0.06 0.03 0.00 0.10 0.09 0.01
cele (Eq. 19) 3.60 2.64 0.81 0.18 6.79 1.40 1.25
cqr (Eq. 21) 0.01 0.02 0.03 0.03 0.00 0.00 0.03
csme (BEq. 21) 0.06 0.00 0.01 0.02 0.03 0.02 0.02
cpet (Eq. 22) 0.004  0.02 0.10 0.00 0.00 0.02 0.01
¢yl (Eq. 23) 0.02 0.29 0.06 0.20 0.08 0.38 0.29

Table B2. All fitting parameters calibrated for Wolverine used in each of the models presented in Table B3.

SDI-6  SDI-CC ETI(H)-6 ETI(H)-CC ETI(P)-¢ ETI(P)-CC LST-CC

Catmi (Table2)  — - 0.63 0.77 0.60 0.78 0.70
Catmo (Table 2) - - 723 9.42 30.00 14.10 30.00
cim (Egs. 8-11) 1852 36.01 13.22 22.13 11.29 8.72 6.41
Choes (BQ.9) - - 0.05 0.14 - - -
Choc.i (Eq. 9) - - 0.09 0.12 - - -
cpel (Eq. 10) - - - - 0.73 0.94 -
cer (Eq. 13) 400 - 4.00 - 4.00 - -

cee (Eq. 14) - 0.20 - 0.38 - 0.41 0.36
cesn (Eq. 16) - - - - - - 0.08
cslq (Eq. 17) 0.08  0.02 0.10 0.04 0.07 0.07 0.07
cale (Eq. 19) 115 051 0.94 0.45 1.56 1.49 111
car (Eq. 21) 0.00  0.00 0.03 0.00 0.02 0.00 0.00
csme (Bq.21) 008 037 0.13 0.02 0.05 0.64 0.36
cpet (Eq. 22) 0.03  0.00 0.09 0.02 0.02 3.32 0.01
cwl (Eq. 23) 001  0.10 0.13 0.38 0.11 0.29 0.01
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Table B3. Best model evaluation scores during calibration. The top row for each model is 1 minus the PBE score for the “SCA” columns
and the KGE score for the “flow” and “stake” columns; the bottom row is the NSE score.

Model Gulkana ‘Wolverine
Flow SCA  Stake Flow SCA  Stake
SDLO 0.72 0.63 0.60 0.74 0.64 0.65
(0.76) =) (0.71) (0.66) =) (0.90)
0.66 0.58 0.70 0.70 0.51 0.77
SDI-CC (0.68) -) (0.69) (0.64) -) (0.85)
0.75 0.67 0.53 0.77 0.63 0.67
ETI(H)-6 (0.74) =) (0.71) (0.58) =) (0.89)
0.61 0.61 0.69 0.73 0.52 0.80
ETI(H)-CC 0.67) -) (0.62) (0.60) -) (0.80)
0.70 0.62 0.62 0.79 0.63 0.70
ETI(P)-0 (0.76) =) (0.66) (0.63) -) 0.91)
0.59 0.59 0.67 0.80 0.59 0.73
ETI(R)-CC 0.65) (=) (0.66) 0.68) (=) (0.89)
0.57 0.60 0.65 0.77 0.54 0.80
LST-CC (0.64) -) (0.67) (0.68) =) (0.88)

B3 Validation performance scores

Table B4. Best model evaluation scores during validation for Wolverine; parameter sets are calibrated for Gulkana. The top row for each
model is 1 minus the PBE score for the “SCA” columns and the KGE score for the “flow” and “stake” columns; the bottom row is the NSE

score.

Model Flow SCA Stake
SDLo 0.35;0.38+0.02 0.58;0.58 +0.01 —0.16; —0.09 £ 0.06
(0.56; 0.58 £0.02) =) (0.42;0.47 £0.06)

SDI.CC 0.61;0.61 +0.09 0.60; 0.59 +0.01 0.24;0.30£0.12
(0.69; 0.69 £0.03) =) (0.68;0.70 £0.13)

ETI(H)-0 0.35;0.34+0.00 0.58;0.57 +0.00 —0.27; —0.30£0.01
(0.55; 0.55£0.00) -) (0.23;0.20£0.01)
0.74;0.73+0.01  0.50; 0.50 4+ 0.00 0.48; 0.38 £ 0.04

ETI(H)-CC (0.50; 0.49 £0.01) =) (0.78; 0.72 £0.02)
ETI(P)-0 0.24;0.25+0.01 0.46;0.454+0.01 —0.53; —0.51£0.02
(0.47;,0.47£0.01) =) (=0.07; —0.07 £0.02)
0.81;0.80+0.03  0.56; 0.56 +=0.01 0.64; 0.63+0.11

ETI(P)-CC (0.68; 0.69 £0.03) -) (0.79; 0.81 £0.10)
LST-CC 0.79;0.78 £ 0.02  0.56; 0.56 4+ 0.00 0.66; 0.67 £0.04
(0.67; 0.66 £0.01) =) (0.79; 0.80 +0.04)
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Table BS. Best model evaluation scores during validation for Gulkana; parameter sets are calibrated for Wolverine. The top row for each
model is 1 minus the PBE score for the “SCA” columns and the KGE score for the “flow” and “stake” columns; the bottom row is the NSE
score.

Model Flow SCA Stake
SDLO 0.81;0.784+0.03 0.77;0.78 £0.01 0.09; —0.07 £0.10
(0.63; 0.63 +£0.02) =) (0.52;0.34£0.12)

SDL.CC —0.05; —0.15£1.00 0.34;0.36 £0.06 —0.64; —0.88 +2.53
(0.08; —0.92 £+ 10.00) (- (=0.94; —6.11 £50.81)

ETI(H)-0 0.61;0.63£0.05 0.79;0.79 +0.00 —0.56; —0.55+0.15
(0.50; 0.52 +0.05) ()] (—0.28; —0.27 £0.20)

0.26;0.29£0.04 0.57;0.58£0.01 0.14;0.17 £0.05

ETI(H)-CC (0.49; 0.524+0.04) =) (0.22; 0.25 £0.05)
ETI(P)-0 0.56;0.59£0.05 0.80; 0.8040.00 —0.76; —0.72+0.14
(0.47;0.514+0.05) -) (—0.54; —0.48 £0.20)

0.69;0.69£0.15 0.63;0.644+0.04 0.37,0.20£0.30

ETI(P)-CC (0.69; 0.69 £+ 0.08) =) (0.66; 0.28 +0.28)
LST-CC 0.67;0.63£0.21 0.68;0.68 +0.06 0.46; 0.05 £0.40
(0.74; 0.67 +£0.14) =) (0.65; 0.20 £ 0.40)

B4 Validation Kling—Gupta efficiencies for Gulkana
and Wolverine watersheds

Heat Melt
A Gulkana A SDI = Step
A  Wolverine|| 4 ETI(H)|| 4 CC
1 ETI(P) [
(@) 4 LST (b)
0.8} o VN 0.8} o
A AA
A A
o6l = A ©osf A =
X X
E) 3
04F 04F
] o
i as N my s
02f © 0.2} e
0 [ A 1 1 L L 1 ] 0 L 1 AL L L J
05 -02 01 04 0.7 1 0 02 04 06 038 1
Stake, KGE SCA, 1 -PBE

Figure B1. Model flow performance during validation as a function of SCA and stake performance. The marker border indicates phase of
assessment, face color indicates heat module representation, and shape indicates mass flux module representation, as described in the legends.
(a) displays KGE scores for stake measurements and flow. (b) displays 1 minus the PBE score for SCA and the KGE score for flow.
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Watershed

A Gulkana
0.8 -A A 4 Wolverine

A Heat

g 0.6} o A A SDI
¥ A ETI(H)
9 ETI(P)

E 04F o A LST

L A Melt

(]

0.2 = Step
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0 L 1 1 L 1 1 ]

0 02 04 06 08 1
Cryosphere, average

Figure B2. Model flow performance during validation as a function of combined cryosphere performance using the methodology and metrics

described in Sects. 2.5 and 3.3. The marker border indicates the validation watershed, face color indicates heat module representation, and
shape indicates mass flux module representation, as described in the legends.
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