Articles | Volume 10, issue 5
https://doi.org/10.5194/tc-10-2013-2016
https://doi.org/10.5194/tc-10-2013-2016
Research article
 | 
09 Sep 2016
Research article |  | 09 Sep 2016

Observations of capillary barriers and preferential flow in layered snow during cold laboratory experiments

Francesco Avanzi, Hiroyuki Hirashima, Satoru Yamaguchi, Takafumi Katsushima, and Carlo De Michele

Related authors

Development of HYPER-P: HYdroclimatic PERformance-enhanced Precipitation at 1 km/daily over the Europe-Mediterranean region from 2007 to 2022
Paolo Filippucci, Luca Brocca, Luca Ciabatta, Hamidreza Mosaffa, Francesco Avanzi, and Christian Massari
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-156,https://doi.org/10.5194/essd-2025-156, 2025
Preprint under review for ESSD
Short summary
Learning to filter: Snow data assimilation using a Long Short-Term Memory network
Giulia Blandini, Francesco Avanzi, Lorenzo Campo, Simone Gabellani, Kristoffer Aalstad, Manuela Girotto, Satoru Yamaguchi, Hiroyuki Hirashima, and Luca Ferraris
EGUsphere, https://doi.org/10.5194/egusphere-2025-423,https://doi.org/10.5194/egusphere-2025-423, 2025
Short summary
Water and Us: tales and hands-on laboratories to educate about sustainable and nonconflictual water resources management
Francesca Munerol, Francesco Avanzi, Eleonora Panizza, Marco Altamura, Simone Gabellani, Lara Polo, Marina Mantini, Barbara Alessandri, and Luca Ferraris
Geosci. Commun., 7, 1–15, https://doi.org/10.5194/gc-7-1-2024,https://doi.org/10.5194/gc-7-1-2024, 2024
Short summary
A random forest approach to quality-checking automatic snow-depth sensor measurements
Giulia Blandini, Francesco Avanzi, Simone Gabellani, Denise Ponziani, Hervé Stevenin, Sara Ratto, Luca Ferraris, and Alberto Viglione
The Cryosphere, 17, 5317–5333, https://doi.org/10.5194/tc-17-5317-2023,https://doi.org/10.5194/tc-17-5317-2023, 2023
Short summary
IT-SNOW: a snow reanalysis for Italy blending modeling, in situ data, and satellite observations (2010–2021)
Francesco Avanzi, Simone Gabellani, Fabio Delogu, Francesco Silvestro, Flavio Pignone, Giulia Bruno, Luca Pulvirenti, Giuseppe Squicciarino, Elisabetta Fiori, Lauro Rossi, Silvia Puca, Alexander Toniazzo, Pietro Giordano, Marco Falzacappa, Sara Ratto, Hervè Stevenin, Antonio Cardillo, Matteo Fioletti, Orietta Cazzuli, Edoardo Cremonese, Umberto Morra di Cella, and Luca Ferraris
Earth Syst. Sci. Data, 15, 639–660, https://doi.org/10.5194/essd-15-639-2023,https://doi.org/10.5194/essd-15-639-2023, 2023
Short summary

Related subject area

Snow Hydrology
Exploring how Sentinel-1 wet-snow maps can inform fully distributed physically based snowpack models
Bertrand Cluzet, Jan Magnusson, Louis Quéno, Giulia Mazzotti, Rebecca Mott, and Tobias Jonas
The Cryosphere, 18, 5753–5767, https://doi.org/10.5194/tc-18-5753-2024,https://doi.org/10.5194/tc-18-5753-2024, 2024
Short summary
Impact of intercepted and sub-canopy snow microstructure on snowpack response to rain-on-snow events under a boreal canopy
Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, Nander Wever, Adrien Michel, Michael Lehning, and Pierre-Erik Isabelle
The Cryosphere, 18, 2783–2807, https://doi.org/10.5194/tc-18-2783-2024,https://doi.org/10.5194/tc-18-2783-2024, 2024
Short summary
Snow and glacier melt contributions to streamflow on James Ross Island, Antarctic Peninsula
Ondřej Nedělčev, Michael Matějka, Kamil Láska, Zbyněk Engel, Jan Kavan, and Michal Jenicek
EGUsphere, https://doi.org/10.5194/egusphere-2024-1185,https://doi.org/10.5194/egusphere-2024-1185, 2024
Short summary
Towards large-scale daily snow density mapping with spatiotemporally aware model and multi-source data
Huadong Wang, Xueliang Zhang, Pengfeng Xiao, Tao Che, Zhaojun Zheng, Liyun Dai, and Wenbo Luan
The Cryosphere, 17, 33–50, https://doi.org/10.5194/tc-17-33-2023,https://doi.org/10.5194/tc-17-33-2023, 2023
Short summary
Drone-based ground-penetrating radar (GPR) application to snow hydrology
Eole Valence, Michel Baraer, Eric Rosa, Florent Barbecot, and Chloe Monty
The Cryosphere, 16, 3843–3860, https://doi.org/10.5194/tc-16-3843-2022,https://doi.org/10.5194/tc-16-3843-2022, 2022
Short summary

Cited articles

Abramoff, M. D., Magalhães, P. J., and Ram, S. J.: Image Processing using ImageJ, Biophotonics International, 11, 36–43, 2004.
Adachi, S., Yamaguchi, S., Ozeki, T., and Kose, K.: Hysteresis in the water retention curve of snow measured using an MRI system, in: Proceedings to the 2012 International Snow Science Workshop, Anchorage, Alaska, 918–922, 2012.
Avanzi, F., Caruso, M., Jommi, C., De Michele, C., and Ghezzi, A.: Continuous-time monitoring of liquid water content in snowpacks using capacitance probes: A preliminary feasibility study, Adv. Water Resour., 68, 32–41, https://doi.org/10.1016/j.advwatres.2014.02.012, 2014.
Avanzi, F., Hirashima, H., Yamaguchi, S., Katsushima, T., and De Michele, C.: Laboratory-based observations of capillary barriers and preferential flow in layered snow, The Cryosphere Discuss., 9, 6627–6659, https://doi.org/10.5194/tcd-9-6627-2015, 2015a.
Avanzi, F., Yamaguchi, S., Hirashima, H., and De Michele, C.: Bulk volumetric liquid water content in a seasonal snowpack: modeling its dynamics in different climatic conditions, Adv. Water Resour., 86, 1–13, https://doi.org/10.1016/j.advwatres.2015.09.021, 2015b.
Download
Short summary
We investigate capillary barriers and preferential flow in layered snow during nine cold laboratory experiments. The dynamics of each sample were replicated solving Richards equation within the 1-D multi-layer physically based SNOWPACK model. Results show that both processes affect the speed of water infiltration in stratified snow and are marked by a high degree of spatial variability at cm scale and complex 3-D patterns.
Share