Articles | Volume 10, issue 4
https://doi.org/10.5194/tc-10-1529-2016
https://doi.org/10.5194/tc-10-1529-2016
Research article
 | 
19 Jul 2016
Research article |  | 19 Jul 2016

Retrieval of the thickness of undeformed sea ice from simulated C-band compact polarimetric SAR images

Xi Zhang, Wolfgang Dierking, Jie Zhang, Junmin Meng, and Haitao Lang

Related authors

A comparison of constant false alarm rate object detection algorithms for iceberg identification in L- and C-band SAR imagery of the Labrador Sea
Laust Færch, Wolfgang Dierking, Nick Hughes, and Anthony P. Doulgeris
The Cryosphere, 17, 5335–5355, https://doi.org/10.5194/tc-17-5335-2023,https://doi.org/10.5194/tc-17-5335-2023, 2023
Short summary
Linking sea ice deformation to ice thickness redistribution using high-resolution satellite and airborne observations
Luisa von Albedyll, Christian Haas, and Wolfgang Dierking
The Cryosphere, 15, 2167–2186, https://doi.org/10.5194/tc-15-2167-2021,https://doi.org/10.5194/tc-15-2167-2021, 2021
Short summary
Estimating statistical errors in retrievals of ice velocity and deformation parameters from satellite images and buoy arrays
Wolfgang Dierking, Harry L. Stern, and Jennifer K. Hutchings
The Cryosphere, 14, 2999–3016, https://doi.org/10.5194/tc-14-2999-2020,https://doi.org/10.5194/tc-14-2999-2020, 2020
Short summary
Sea ice local surface topography from single-pass satellite InSAR measurements: a feasibility study
Wolfgang Dierking, Oliver Lang, and Thomas Busche
The Cryosphere, 11, 1967–1985, https://doi.org/10.5194/tc-11-1967-2017,https://doi.org/10.5194/tc-11-1967-2017, 2017
Short summary
Sea ice draft in the Weddell Sea, measured by upward looking sonars
A. Behrendt, W. Dierking, E. Fahrbach, and H. Witte
Earth Syst. Sci. Data, 5, 209–226, https://doi.org/10.5194/essd-5-209-2013,https://doi.org/10.5194/essd-5-209-2013, 2013

Related subject area

Sea Ice
Suitability of the CICE sea ice model for seasonal prediction and positive impact of CryoSat-2 ice thickness initialization
Shan Sun and Amy Solomon
The Cryosphere, 18, 3033–3048, https://doi.org/10.5194/tc-18-3033-2024,https://doi.org/10.5194/tc-18-3033-2024, 2024
Short summary
A large-scale high-resolution numerical model for sea-ice fragmentation dynamics
Jan Åström, Fredrik Robertsen, Jari Haapala, Arttu Polojärvi, Rivo Uiboupin, and Ilja Maljutenko
The Cryosphere, 18, 2429–2442, https://doi.org/10.5194/tc-18-2429-2024,https://doi.org/10.5194/tc-18-2429-2024, 2024
Short summary
Experimental modelling of the growth of tubular ice brinicles from brine flows under sea ice
Sergio Testón-Martínez, Laura M. Barge, Jan Eichler, C. Ignacio Sainz-Díaz, and Julyan H. E. Cartwright
The Cryosphere, 18, 2195–2205, https://doi.org/10.5194/tc-18-2195-2024,https://doi.org/10.5194/tc-18-2195-2024, 2024
Short summary
Why is summertime Arctic sea ice drift speed projected to decrease?
Jamie L. Ward and Neil F. Tandon
The Cryosphere, 18, 995–1012, https://doi.org/10.5194/tc-18-995-2024,https://doi.org/10.5194/tc-18-995-2024, 2024
Short summary
Seasonal Evolution of the Sea Ice Floe Size Distribution from Two Decades of MODIS Data
Ellen Margaret Buckley, Leela Cañuelas, Mary-Louise Timmermans, and Monica Martinez Wilhelmus
EGUsphere, https://doi.org/10.5194/egusphere-2024-89,https://doi.org/10.5194/egusphere-2024-89, 2024
Short summary

Cited articles

Arcone, A., Gow, A. G., and McGrew, S.: Structure and dielectric properties at 4.8 and 9.5 GHz of saline ice, J. Geophys. Res., 91, 14281–14303, 1986.
Barber, D. G. and Nghiem, S. V.: The role of snow on the thermal dependence of microwave backscatter over sea ice, J. Geophys. Res., 104, 25789–25803, 1999.
Behrendt, A., Dierking, W., Fahrbach, E., and Witte, H.: Sea ice draft in the Weddell Sea, measured by upward looking sonars, Earth Syst. Sci. Data, 5, 209–226, https://doi.org/10.5194/essd-5-209-2013, 2013.
Cox, G. and Weeks, W.: Equations for determining the gas and brine volumes in sea-ice samples, J. Glaciol., 29, 306–316, 1983.
Download
Short summary
In this work, we introduced a parameter ("CP ratio") for the retrieval of the thickness of undeformed first-year sea ice that is specifically adapted to compact polarimetric SAR images. Based on a validation using other compact polarimetric SAR images from the Labrador Sea, we found a root mean square error of 8 cm and a maximum correlation coefficient of 0.94 for the retrieval procedure when applying it to level ice between 0.1 m and 0.8 m thick.