Articles | Volume 10, issue 1
https://doi.org/10.5194/tc-10-1-2016
https://doi.org/10.5194/tc-10-1-2016
Research article
 | 
15 Jan 2016
Research article |  | 15 Jan 2016

A moving-point approach to model shallow ice sheets: a study case with radially symmetrical ice sheets

B. Bonan, M. J. Baines, N. K. Nichols, and D. Partridge

Related authors

Evaluation of root zone soil moisture products over the Huai River basin
En Liu, Yonghua Zhu, Jean-Christophe Calvet, Haishen Lü, Bertrand Bonan, Jingyao Zheng, Qiqi Gou, Xiaoyi Wang, Zhenzhou Ding, Haiting Xu, Ying Pan, and Tingxing Chen
Hydrol. Earth Syst. Sci., 28, 2375–2400, https://doi.org/10.5194/hess-28-2375-2024,https://doi.org/10.5194/hess-28-2375-2024, 2024
Short summary
Analyzing past and future droughts that induce clay shrinkage in France using an index based on water budget simulation for trees
Sophie Barthelemy, Bertrand Bonan, Miquel Tomas-Burguera, Gilles Grandjean, Séverine Bernardie, Jean-Philippe Naulin, Patrick Le Moigne, Aaron Boone, and Jean-Christophe Calvet
EGUsphere, https://doi.org/10.5194/egusphere-2024-1079,https://doi.org/10.5194/egusphere-2024-1079, 2024
Short summary
A new approach for drought index adjustment to clay-shrinkage-induced subsidence over France: advantages of the interactive leaf area index
Sophie Barthelemy, Bertrand Bonan, Jean-Christophe Calvet, Gilles Grandjean, David Moncoulon, Dorothée Kapsambelis, and Séverine Bernardie
Nat. Hazards Earth Syst. Sci., 24, 999–1016, https://doi.org/10.5194/nhess-24-999-2024,https://doi.org/10.5194/nhess-24-999-2024, 2024
Short summary
Evaluation of model-derived root-zone soil moisture over the Huai river basin
En Liu, Yonghua Zhu, Jean-christophe Calvet, Haishen Lü, Bertrand Bonan, Jingyao Zheng, Qiqi Gou, Xiaoyi Wang, Zhenzhou Ding, Haiting Xu, Ying Pan, and Tingxing Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-33,https://doi.org/10.5194/hess-2023-33, 2023
Manuscript not accepted for further review
Short summary
Assimilation of passive microwave vegetation optical depth in LDAS-Monde: a case study over the continental USA
Anthony Mucia, Bertrand Bonan, Clément Albergel, Yongjun Zheng, and Jean-Christophe Calvet
Biogeosciences, 19, 2557–2581, https://doi.org/10.5194/bg-19-2557-2022,https://doi.org/10.5194/bg-19-2557-2022, 2022
Short summary

Related subject area

Numerical Modelling
Past and future of the Arctic sea ice in High-Resolution Model Intercomparison Project (HighResMIP) climate models
Julia Selivanova, Doroteaciro Iovino, and Francesco Cocetta
The Cryosphere, 18, 2739–2763, https://doi.org/10.5194/tc-18-2739-2024,https://doi.org/10.5194/tc-18-2739-2024, 2024
Short summary
Biases in ice sheet models from missing noise-induced drift
Alexander A. Robel, Vincent Verjans, and Aminat A. Ambelorun
The Cryosphere, 18, 2613–2623, https://doi.org/10.5194/tc-18-2613-2024,https://doi.org/10.5194/tc-18-2613-2024, 2024
Short summary
A 3D glacier dynamics–line plume model to estimate the frontal ablation of Hansbreen, Svalbard
José M. Muñoz-Hermosilla, Jaime Otero, Eva De Andrés, Kaian Shahateet, Francisco Navarro, and Iván Pérez-Doña
The Cryosphere, 18, 1911–1924, https://doi.org/10.5194/tc-18-1911-2024,https://doi.org/10.5194/tc-18-1911-2024, 2024
Short summary
Data-driven surrogate modeling of high-resolution sea-ice thickness in the Arctic
Charlotte Durand, Tobias Sebastian Finn, Alban Farchi, Marc Bocquet, Guillaume Boutin, and Einar Ólason
The Cryosphere, 18, 1791–1815, https://doi.org/10.5194/tc-18-1791-2024,https://doi.org/10.5194/tc-18-1791-2024, 2024
Short summary
Using Icepack to reproduce ice mass balance buoy observations in landfast ice: improvements from the mushy-layer thermodynamics
Mathieu Plante, Jean-François Lemieux, L. Bruno Tremblay, Adrienne Tivy, Joey Angnatok, François Roy, Gregory Smith, Frédéric Dupont, and Adrian K. Turner
The Cryosphere, 18, 1685–1708, https://doi.org/10.5194/tc-18-1685-2024,https://doi.org/10.5194/tc-18-1685-2024, 2024
Short summary

Cited articles

Baines, M. J., Hubbard, M. E., and Jimack, P. K.: A moving mesh finite element algorithm for the adaptive solution of time-dependent partial differential equations with moving boundaries, Appl. Numer. Math., 54, 450–469, https://doi.org/https://doi.org/10.1016/j.apnum.2004.09.013, 2005.
Baines, M. J., Hubbard, M. E., and Jimack, P. K.: Velocity-based moving mesh methods for nonlinear partial differential equations, Commun. Comput. Phys., 10, 509–576, https://doi.org/https://doi.org/10.4208/cicp.201010.040511a, 2011.
Blake, K. W.: Moving Mesh Methods for Non-Linear Parabolic Partial Differential Equations, PhD thesis, available at: https://doi.org/http://www.reading.ac.uk/web/FILES/maths/Kw_blake.pdf (last access: 4 August 2015), University of Reading, Reading, Berks, UK, 2001.
Budd, C. J., Huang, W., and Russell, R. D.: Adaptivity with moving grids, Acta Numerica, 18, 111–241, https://doi.org/https://doi.org/10.1017/S0962492906400015, 2009.
Bueler, E., Lingle, C. S., Kallen-Brown, J. A., Covey, D. N., and Bowman, L. N.: Exact solutions and verification of numerical models for isothermal ice sheets, J. Glaciol., 51, 291–306, https://doi.org/https://doi.org/10.3189/172756505781829449, 2005.
Download
Short summary
This paper introduce a moving-point approach to model the flow of ice sheets. This particular moving-grid numerical approach is based on the conservation of local masses. This allows the ice sheet margins to be tracked explicitly. A finite-difference moving-point scheme is derived and applied in a simplified context (1-D). The conservation method is also suitable for 2-D scenarios. This paper is a first step towards applications of the conservation method to realistic 2-D cases.