Articles | Volume 10, issue 1
https://doi.org/10.5194/tc-10-1-2016
https://doi.org/10.5194/tc-10-1-2016
Research article
 | 
15 Jan 2016
Research article |  | 15 Jan 2016

A moving-point approach to model shallow ice sheets: a study case with radially symmetrical ice sheets

B. Bonan, M. J. Baines, N. K. Nichols, and D. Partridge

Related authors

Modelling extensive green roof CO2 exchanges in the TEB urban canopy model
Aurélien Mirebeau, Cécile de Munck, Bertrand Bonan, Christine Delire, Aude Lemonsu, Valéry Masson, and Stephan Weber
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-233,https://doi.org/10.5194/gmd-2024-233, 2025
Preprint under review for GMD
Short summary
Evaluation of root zone soil moisture products over the Huai River basin
En Liu, Yonghua Zhu, Jean-Christophe Calvet, Haishen Lü, Bertrand Bonan, Jingyao Zheng, Qiqi Gou, Xiaoyi Wang, Zhenzhou Ding, Haiting Xu, Ying Pan, and Tingxing Chen
Hydrol. Earth Syst. Sci., 28, 2375–2400, https://doi.org/10.5194/hess-28-2375-2024,https://doi.org/10.5194/hess-28-2375-2024, 2024
Short summary
Analyzing past and future droughts that induce clay shrinkage in France using an index based on water budget simulation for trees
Sophie Barthelemy, Bertrand Bonan, Miquel Tomas-Burguera, Gilles Grandjean, Séverine Bernardie, Jean-Philippe Naulin, Patrick Le Moigne, Aaron Boone, and Jean-Christophe Calvet
EGUsphere, https://doi.org/10.5194/egusphere-2024-1079,https://doi.org/10.5194/egusphere-2024-1079, 2024
Short summary
A new approach for drought index adjustment to clay-shrinkage-induced subsidence over France: advantages of the interactive leaf area index
Sophie Barthelemy, Bertrand Bonan, Jean-Christophe Calvet, Gilles Grandjean, David Moncoulon, Dorothée Kapsambelis, and Séverine Bernardie
Nat. Hazards Earth Syst. Sci., 24, 999–1016, https://doi.org/10.5194/nhess-24-999-2024,https://doi.org/10.5194/nhess-24-999-2024, 2024
Short summary
Evaluation of model-derived root-zone soil moisture over the Huai river basin
En Liu, Yonghua Zhu, Jean-christophe Calvet, Haishen Lü, Bertrand Bonan, Jingyao Zheng, Qiqi Gou, Xiaoyi Wang, Zhenzhou Ding, Haiting Xu, Ying Pan, and Tingxing Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-33,https://doi.org/10.5194/hess-2023-33, 2023
Manuscript not accepted for further review
Short summary

Related subject area

Numerical Modelling
New glacier thickness and bed topography maps for Svalbard
Ward van Pelt and Thomas Frank
The Cryosphere, 19, 1–17, https://doi.org/10.5194/tc-19-1-2025,https://doi.org/10.5194/tc-19-1-2025, 2025
Short summary
Quantifying the buttressing contribution of landfast sea ice and melange to Crane Glacier, Antarctic Peninsula
Richard Parsons, Sainan Sun, G. Hilmar Gudmundsson, Jan Wuite, and Thomas Nagler
The Cryosphere, 18, 5789–5801, https://doi.org/10.5194/tc-18-5789-2024,https://doi.org/10.5194/tc-18-5789-2024, 2024
Short summary
Multi-physics ensemble modelling of Arctic tundra snowpack properties
Georgina J. Woolley, Nick Rutter, Leanne Wake, Vincent Vionnet, Chris Derksen, Richard Essery, Philip Marsh, Rosamond Tutton, Branden Walker, Matthieu Lafaysse, and David Pritchard
The Cryosphere, 18, 5685–5711, https://doi.org/10.5194/tc-18-5685-2024,https://doi.org/10.5194/tc-18-5685-2024, 2024
Short summary
Two-way coupling between ice flow and channelized subglacial drainage enhances modeled marine-ice-sheet retreat
George Lu and Jonathan Kingslake
The Cryosphere, 18, 5301–5321, https://doi.org/10.5194/tc-18-5301-2024,https://doi.org/10.5194/tc-18-5301-2024, 2024
Short summary
Sensitivity of the future evolution of the Wilkes Subglacial Basin ice sheet to grounding-line melt parameterizations
Yu Wang, Chen Zhao, Rupert Gladstone, Thomas Zwinger, Benjamin K. Galton-Fenzi, and Poul Christoffersen
The Cryosphere, 18, 5117–5137, https://doi.org/10.5194/tc-18-5117-2024,https://doi.org/10.5194/tc-18-5117-2024, 2024
Short summary

Cited articles

Baines, M. J., Hubbard, M. E., and Jimack, P. K.: A moving mesh finite element algorithm for the adaptive solution of time-dependent partial differential equations with moving boundaries, Appl. Numer. Math., 54, 450–469, https://doi.org/https://doi.org/10.1016/j.apnum.2004.09.013, 2005.
Baines, M. J., Hubbard, M. E., and Jimack, P. K.: Velocity-based moving mesh methods for nonlinear partial differential equations, Commun. Comput. Phys., 10, 509–576, https://doi.org/https://doi.org/10.4208/cicp.201010.040511a, 2011.
Blake, K. W.: Moving Mesh Methods for Non-Linear Parabolic Partial Differential Equations, PhD thesis, available at: https://doi.org/http://www.reading.ac.uk/web/FILES/maths/Kw_blake.pdf (last access: 4 August 2015), University of Reading, Reading, Berks, UK, 2001.
Budd, C. J., Huang, W., and Russell, R. D.: Adaptivity with moving grids, Acta Numerica, 18, 111–241, https://doi.org/https://doi.org/10.1017/S0962492906400015, 2009.
Bueler, E., Lingle, C. S., Kallen-Brown, J. A., Covey, D. N., and Bowman, L. N.: Exact solutions and verification of numerical models for isothermal ice sheets, J. Glaciol., 51, 291–306, https://doi.org/https://doi.org/10.3189/172756505781829449, 2005.
Download
Short summary
This paper introduce a moving-point approach to model the flow of ice sheets. This particular moving-grid numerical approach is based on the conservation of local masses. This allows the ice sheet margins to be tracked explicitly. A finite-difference moving-point scheme is derived and applied in a simplified context (1-D). The conservation method is also suitable for 2-D scenarios. This paper is a first step towards applications of the conservation method to realistic 2-D cases.