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Abstract. Predicting the evolution of ice sheets requires nu-
merical models able to accurately track the migration of ice
sheet continental margins or grounding lines. We introduce a
physically based moving-point approach for the flow of ice
sheets based on the conservation of local masses. This al-
lows the ice sheet margins to be tracked explicitly. Our ap-
proach is also well suited to capture waiting-time behaviour
efficiently. A finite-difference moving-point scheme is de-
rived and applied in a simplified context (continental radi-
ally symmetrical shallow ice approximation). The scheme,
which is inexpensive, is verified by comparing the results
with steady states obtained from an analytic solution and
with exact moving-margin transient solutions. In both cases
the scheme is able to track the position of the ice sheet mar-
gin with high accuracy.

1 Introduction

Ice sheets are an influential component of the climate sys-
tem whose dynamics lead to changes in terms of ice thick-
ness, ice velocity, or migration of ice sheet continental mar-
gins and grounding lines. Therefore numerical modelling of
ice sheets needs accuracy not only of the physical variables
but also in the position of their boundaries. However, sim-
ulating the migration of an ice sheet margin or a grounding
line remains a complex task (Huybrechts et al., 1996; Vieli
and Payne, 2005; Pattyn et al., 2012, 2013). This paper intro-
duces a moving-point method for the numerical simulation
of ice sheets, especially the migration of their boundaries. In
this paper we focus on the migration of continental ice sheet
margins.

At the scale of an ice sheet or a glacier, ice is modelled
as a flow which follows the Stokes equations of fluid flows
(Stokes, 1845), even though the flow is non-Newtonian.
Solving this problem at that scale is costly. A 3-D finite ele-
ment model called Elmer/Ice has been developed for this pur-
pose numerically (see Gagliardini et al., 2013, for a detailed
description of Elmer/Ice). Other models take advantage of
the very small aspect ratio of ice sheets and use a thin layer
approximation differing only in the order of the approxima-
tion. The oldest and numerically least expensive model used
for ice flow is the Shallow Ice Approximation, or SIA (Hut-
ter, 1983). It gives an analytical formulation for horizontal
velocities of ice in the sheet and for their vertically averaged
counterpart. Although simple and fast, the SIA captures well
the nonlinearity of the system due to shearing at large scales.
However, the SIA is not designed to include basal sliding
and is a poor approximation for small scales especially at the
ice divide and the ice sheet margin. The SIA is, nevertheless,
an excellent resource for testing numerical approaches, since
moving-margin exact solutions exist in the literature (Halfar,
1981, 1983; Bueler et al., 2005).

Significant efforts have been invested in ice sheet mod-
elling. These have led ice sheet modellers to compare re-
sults obtained by various models for the same idealistic test
problems. They first started by comparing results obtained
with fixed-grid models for grounded ice sheets using the
SIA (European Ice Sheet Modelling INiTiative (EISMINT):
Huybrechts et al., 1996; Payne et al., 2000). Then the focus
shifted to the simulation of grounding-line migration. The
MISMIP (Marine Ice Sheet Model Intercomparison Project)
and MISMIP3d projects (Pattyn et al., 2012, 2013) have
shown that fixed-grid methods perform poorly without high
resolution around the grounding line or by enforcing the
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flow at the grounding line using asymptotic results from a
boundary layer theory (Schoof, 2007, 2011). This has led ice
sheet modellers to develop adaptive and moving techniques
to overcome this issue.

One approach to gain high resolution is to use auto-
mated adaptive remeshing (Durand et al., 2009; Gudmunds-
son et al., 2012), forcing the resolution to stay high around
the ice sheet margin. A related approach is to use adaptive
mesh refinement (AMR) techniques, which allow improved
resolution to be achieved in key spatially and temporally
evolving subregions (Goldberg et al., 2009; Gladstone et al.,
2010; Cornford et al., 2013; Jouvet and Graser, 2013). How-
ever, even with AMR, the ice sheet margin still falls between
grid points, although by adapting the grid to increase the res-
olution near the margin the accuracy is kept high. Adapting
the grid is, nevertheless, an expensive procedure, as areas
where refinement is needed have to be regularly re-identified.

Another possibility is to transform the moving domain.
The number of grid points is kept constant in time, but the
accuracy is kept high by the explicit tracking of the position
of the ice sheet margin. This is done by transforming the ice
domain to a fixed coordinate system via a geometric trans-
formation. This approach has been successfully applied by
Hindmarsh (1993) and Hindmarsh and Le Meur (2001) to an
ice sheet along a flowline. However, it is not easily translated
into two dimensions.

We consider here intrinsically moving-grid methods. As
in the case of transformed grids, these methods allow ex-
plicit tracking of the ice sheet margin. There exist a number
of techniques for generating the nodal movement in moving-
grid methods. They can be classified into two subcategories:
location-based methods and velocity-based methods (Cao
et al., 2003). In location-based methods the positions of the
nodes are redefined directly at each time step by a mapping
from a reference grid (Budd et al., 2009). This is generally
done by choosing a monitor function. This approach has been
used by Goldberg et al. (2009), the main difficulty being the
definition of the monitor function. In velocity-based meth-
ods, on the other hand, the movement of the nodes is de-
fined in terms of a time-dependent velocity, which allows
the nodes to be influenced by their previous position (Baines
et al., 2005; Lee et al., 2015). Currently, this approach has
not been applied to the dynamics of ice sheets.

In this paper, we apply a particular velocity-based moving-
point approach based on conservation of local mass fractions
to continental ice sheets. The method is in the tradition of
ALE (arbitrary Lagrangian—Eulerian) methods (Donea et al.,
2004), with the difference that, instead of seeking a velocity
intermediate between Lagrangian and Eulerian, the method
uses both Eulerian and Lagrangian conservation to deduce
the velocity and solution, respectively (see Baines et al.,
2011, and references therein). We derive a finite-difference
moving-point scheme in a simplified context and verify the
approach with steady states obtained from an analytic solu-
tion and with exact moving-margin transient solutions in the
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case of radially symmetrical ice sheets. We show in partic-
ular that the scheme is able to track the position of the ice
sheet margin accurately. The paper is organised as follows: in
Sect. 2 we recall the SIA and detail the simplified context of
our study, in Sect. 3 we describe our velocity-based moving-
point approach, and in Sect. 4 we verify our approach by
comparison with exact solutions before concluding in Sect. 5.

2 Ice sheet modelling
2.1 Ice sheet geometry and Shallow Ice Approximation

We consider a single solid-phase ice sheet whose thickness
at position (x, y) and time ¢ is denoted by A(z, x, y). We as-
sume that the ice sheet lies on a fixed bedrock and denote by
b(x, y) the bed elevation. The surface elevation, s(z, x, y), is
then obtained as

s=b+h. 1)

The evolution of ice sheet thickness is governed by the bal-
ance between the ice gained or lost on the surface, snow pre-
cipitation and surface melting, and ice flow draining ice ac-
cumulated in the interior towards the edges of the ice sheet.
This is summarised in the mass balance equation

%:m—V-(kU) in Q@), 2)
where m(z, x, y) is the surface mass balance (positive for ac-
cumulation, negative for ablation), U(z, x, y) is the vector
containing the vertically averaged horizontal components of
the velocity of the ice, and (¢) is the area where the ice
sheet is located.

Formally derived by Hutter (1983), the SIA is one of the
most common approximations for large-scale ice sheet dy-
namics. Combined with Glen’s flow law (Glen, 1955), the
SIA provides (in the isothermal case) an analytical form for
U as follows:

2
U=———A(pig)"h" V5" 1Vs. ®3)
n+1

Parameters involved in this formulation are summarised in
Table 1. Regarding the exponent n > 1, its fixed value is clas-
sically set to 3 (see Cuffey and Paterson, 2010, for more de-
tails).

2.2 Radially symmetrical ice sheets

As a first step, we confine the study to limited-area ice sheets
with radial symmetry, in other words, Q(¢) = [0,r;(¢)] x
[0, 27]. The ice sheet is centred on (0, 0), and r;(¢) denotes
the position of the ice sheet margin (edge of the ice sheet)
at time ¢ (see Fig. 1, which shows a section through the ice
sheet). The radial symmetry implies that the geometry of the
sheet depends only on r, so h(t, x, y) = h(t,r), s(t,x,y) =
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Table 1. Parameters involved in the computation of the vertically
averaged horizontal components of the velocity of the ice.

Parameter  Meaning Value

n Creep exponent in Glen’s flow law 3

A Creep parameter in Glen’s flow law 1016 pa—3yr—1
i Density of ice 910kgm=—3

g Gravitational acceleration 9.81ms—2

s(t,r),and b(x, y) = b(r). The vector U can then be written
in the radial coordinate system as

n— 185
ar’

as

2
U=———=A(oig)"h" | — o

U=U#,
4 nt2

(4)

where 7 is the unit radial vector, and the mass balance Eq. (2)
simplifies to

dh 1a(rhU
on _ _1aGhrU) (5)
at r or
A symmetry condition is added at the ice divide (r = 0):
ad
U=0 and - =0, (6)
ar

and the ice sheet margin r;(¢) is characterised by the Dirichlet
boundary condition:

h(t,r (1)) =0. @)

We also assume that the flux of ice through the ice sheet mar-
gin is zero (no calving).

Under hypotheses regarding the regularity of the ice thick-
ness near the margin (see Calvo et al., 2002), we can differ-
entiate Eq. (7) with respect to time. Using the mass balance
equation Eq. (5) and 4 = 0 at the margin,

dh (t ) oh + oh dr;
J— r —_— — —_——
! or dr
18(rhU) oh dry
" r or + or dt ®)
and
d(rhlU) ou, oh oh
a—r_h(Ur ar)+VUra—r—rUr8—r (9)

at the margin. Realistically, since 42 = 0 at the margin, 0k /or
will not be zero there, and hence

d an\ 7t
d—?=U(t,rl(t))—m(t,rl(t))(g) . (10)

This velocity (Eqg. 10) will be used in the moving-point ap-
proach described in the next section.
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Figure 1. Section of a grounded radially symmetrical ice sheet.

3 A moving-point approach

In the following paragraphs we describe the moving-point
method that we use to simulate the dynamics of ice sheets in
the context of Sect. 2.2. This method is essentially a velocity-
based (or Lagrangian) method relying on the construction of
velocities for grid points at each time step. This allows the
grid to move with the flow of ice. Moving points cover the
domain only where the ice sheet exists, so that no grid point
is wasted. Adjacent points move to preserve local mass frac-
tions, and the movement is thus based on the physics (Blake,
2001; Baines et al., 2005, 2011; Scherer and Baines, 2012;
Lee et al., 2015). This conservation method has been applied
to a variety of problems and is perfectly suitable for multi-
dimensional problems (different examples are summarised in
Baines et al. (2011) and references therein; see also Partridge
(2013) for the special case of ice sheet dynamics). The key
points of the method are given in the next paragraphs, and the
numerical verification of the method is carried out in Sect. 4.

3.1 Conservation of mass fraction

Moving-point velocities are derived from the conservation of
mass fractions (CMF). To apply this principle we first define
the total mass of the ice sheet 8 (¢) as

ri(t)

0()=2m p; / rh(t,r)dr, (11)

where p; is the constant density of ice. Since only mass frac-
tions are considered in this paper and p; is assumed constant,
we can omit p; without loss of generality.

Since the flux of ice through the ice sheet margin is as-
sumed to be zero, any change in the total mass over the whole
ice sheet is due solely to the surface mass balance m(z,r),
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and hence the rate of change of the total mass, 6, is given by

ri(1)
/ rm(t,r)dr. (12)
0

0(r)=2n

We now introduce the principle of the conservation of mass
fractions. Let 7(¢) be a moving point and define w(7), the
relative mass in the moving subinterval (0, 7(z)), as

(1)
R 27
w(r) = % / rh(t,r)dr. (13)
0

The rate of change of 7(¢) is determined by keeping w(7)
independent of time for all moving subdomains of [0, r;(#)].
Note that u(7) € [0, 1] is a cumulative function, with 1 (0) =
Oand w(r) =1.

3.2 Trajectories of moving points

We obtain the velocity of a moving point by differentiating
Eqg. (13) with respect to time, giving

~>
—~

1)

d 27 | rh(,r)dr

a = () o). (14)

o

Carrying out the time differentiation using Leibniz’s integral
rule and substituting for 3/ /3t from the mass balance Eq. (5)
gives

(1)

% /rh(t,r)dr =

~>
—~

1)
rm(t,r)dr

o\

0

+7(@)h(t, 7 (1)) (

A

dr

T v, f(z))) (15)

with boundary conditions (Eqg. 6) at » = 0. From Eqgs. (14),
(15), and (12), we can determine the velocity of every interior
point as

~

dr ~
G = VRO + s

1)
rm(t,r)dr |. (16)

—~

ri(t) 7

w(#) / rm(t,r)dr —

o\

0

The point at » = 0 is located at the ice divide, which does
not move during the simulation. The point at r;(¢) is dedi-
cated to the ice sheet margin, which moves with the velocity
obtained in Eg. (10). We verify in Appendix A that the inte-
rior velocity calculated by Eq. (16) coincides with the bound-
ary velocities calculated directly from the boundary condi-
tions (see Eq. 10).
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3.3 Determination of the ice thickness profile

Once the velocities dr/d¢ of the moving points 7(¢) have
been found from Eq. (16), the points are moved in a La-
grangian manner. In addition, the total mass 6(¢) is updated
from Eq. (12). The ice thickness profile is then deduced from
Eq. (13) as follows. Differentiating Eq. (13) with respect to
72, we obtain

. (1) du(7)
ht,r(t) = — ———, 17
tF0) === 5o (17)
which allows the ice thickness profile at time ¢ to be con-
structed since du(7)/d(#2) is constant in time and therefore
known from the initial data. Note that the positivity of the
ice thickness is preserved since w is by definition a strictly

increasing function (see Eqg. 13).
3.4 Asymptotic behaviour at the ice sheet margin

As pointed out by Fowler (1992) and Calvo et al. (2002), sin-
gularities can appear with the SIA at the margin of grounded
ice sheets. The singularity arises because of the vanishing of
h at the margin and the steepening of the slope 34 /dr. Nev-
ertheless the ice velocity U defined by Eqg. (4) can remain
finite even if the slope is infinite. We give more details on
this subject in this subsection. We also detail the influence of
the singularity on the movement of the ice sheet margin.

At a fixed time and for points r sufficiently close to r;, we
can write the ice thickness profile 4(r) as the first term in
a Frobenius expansion,

h(r) = (r1—r)" ¢, (18)

to leading order, where ¢; = O(1). If y =1, then A(r) is lo-
cally linear with slope ¢;, but if y <1 the slope dh/dr is
unbounded. Hence in the asymptotic region near the margin,
in the case where the bedrock topography b(r) is constant,
from Eq. (4)

U = i A (,Oig)")/"(rz _ r)(2n+l)y—n¢12n+l’ (19)
n+2

which vanishes as r tends to r; if y > n/(2n+1) and remains

finiteif y =n/(2n +1).

Suppose that, in the evolution of the solution over time,
y(t) > n/(2n +1) initially so that »;(¢) is constant and the
boundary is stationary (waiting). If 7(¢) follows a CMF tra-
jectory, then, in the absence of accumulation/ablation, the ve-
locity of the moving coordinate 7 (¢) is given by

2 nn
U= mA (0ig)"y @) (ri(2)

_ f(t))(2n+1)y(t)—n¢l ([)2n+1_ (20)

Asymptotically, except at the boundary itself, this velocity
is finite and positive, since U > 0 and its spatial derivative
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oU/or < 0 sufficiently close to the boundary, showing that
the distance r;(¢) — 7 (¢) decreases with time.

In the absence of accumulation/ablation, therefore, the
conservation of mass fractions from Eq. (13) implies that
(ri2(t) — F2(t)) h(z, 7(¢)) is constant in time. Thus, from Eq.
(18), for points 7 (¢) sufficiently close to the boundary (r; () +
F(1)) (r (1) —F (1)) D1, (1) is constant in time. Hence, since
(r;(t) —7(¢)) is decreasing, y(¢) is also decreasing. When
y (t) reaches n/(2n + 1), the boundary moves.

It is a technical exercise to show that this property ex-
tends to cases with accumulation/ablation and with a gen-
eral bedrock with a finite slope b /9r at the margin (see Par-
tridge, 2013). The key point to notice is that the asymptotic
behaviour depends on an infinite slope of 4 at the margin
whereas b(r) always has a finite slope.

3.5 Numerics

We now implement a numerical scheme using a finite-
difference method. The complete algorithm is detailed in Ap-
pendix B. In addition, we explain in Appendix B6 why our
implementation respects the asymptotic behaviour of the ice
sheet at its margin.

4 Numerical results

This section is dedicated to the verification of the numerical
scheme derived from the moving-point method detailed in
Sect. 3 and to the study of its behaviour. Every numerical
experiment is performed with the parameter values given in
Table 1.

4.1 \Verification with steady states on flat bedrock
4.1.1 Accurate estimation of steady ice thickness profile

We consider a surface mass balance m(r) independent of
time. The steady state of an ice sheet occurs when the tempo-
ral change in ice thickness a4/t is zero. In that case, from
Eg. (5), the following relationship is valid:

d
rm:a—r(rhooU,oo), (21)

with 2°°(r) being the thickness of the steady ice sheet and
U (r) its ice velocity. By integrating the previous equation
and by including the boundary conditions (Egs. 6 and 7), the
position of the margin 7 can be obtained from

r° e
/rm(r) dr = / ai(r R UX)dr
r
0 0
=[rh®UX], =0. (22)

If the bedrock is flat, the profile of the steady ice sheet, from
Egs. (21) and (4), is
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wor = (20t DY 2 20D
r =
npig 2A

n
2(n+1)

e 7 n
/ %/m(s)s ds | dr’ . (23)
r 0

This approach was already in use in the EISMINT intercom-
parison project (Huybrechts et al., 1996) with the following
constant-in-time surface mass balance:

m(r) =min (0.5 myr~1, 102 myr—tkm~1. (450km — r)).
(24)

Eqg. (22) has an analytical formulation with this surface mass
balance. Therefore, r° is determined with machine precision
by numerical root-finding algorithms (r° ~ 579.81km), and
the profile of the steady state is accurately estimated from
Eqg. (23) by a single numerical integration (for/m(s)sds in
Eq. (23) has an analytical form) using a composite trape-
zoidal rule (we take enough grid points to ensure that the
error of the estimates is smaller than 0.01m).

4.1.2 Runs with different initial profiles

We check the ability of the CMF method to track either ad-
vancing or retreating ice sheet margins by performing three
different model runs. In each case, the numerical model has a
grid with 21 points, uses the EISMINT surface mass balance,
and is initialised using the following profile:

r 2\"
h(ty,r) :ho(l— (l’l(to)) ) . (25)

For each of the three different runs, we take

(a) auniformly distributed initial grid with r;(0) = 450km,
ho =1000m, and p = 3/7,;

(b) an initial grid with r;(0) = 500km and with higher res-
olution near the margin, ko = 1000m, and p =1,

(c) auniformly distributed initial grid with r;(0) = 600 km,
ho =4000m, and p = 1/4.

The model is run for 25 000 yr with a constant time step Az =
0.1yr.

Figure 2 shows the evolution of the geometry and the over-
all motion of the grid points for each run. In run (a) the mar-
gin is staying at its initial position until the ice sheet is large
enough and the sheet front steep enough to make it advance.
Run (b) shows a retreating margin at an early stage before
advancing, and run (c) captures the opposite behaviour.
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Evolution of the geometry
(green: initial, blue: final)
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Figure 2. Evolution of the geometry (on the left) and overall motion of the grid points (on the right) for three experiments with the EISMINT
surface mass balance and initial profile described by Eq. (25). Top: initial uniform grid with r;(0) = 450km, hg = 1000m, and p = 3/7;
middle: initial grid with higher resolution near the margin with r;(0) = 500km, g = 1000m, and p = 1; bottom: initial uniform grid with

r1(0) = 600km, hg = 4000m, and p = 1/4.

We also note that run (b) has no difficulty with a non-
uniform initial grid and keeps the resolution high close to
the margin. This stresses the flexibility of the CMF method
to deal with various resolutions at the same time.

We then check the convergence of the three initial states
to the same steady state. The calculated ice thickness at the
ice divide and the position of the margin at the final time
are compared with reference values in Table 2. In each case
our numerical model has been able to approach the position
of the margin with high accuracy (less than 400 m) at low
resolution, as only 21 grid points have been employed.

4.1.3 EISMINT moving-margin experiment

We now perform the moving-margin experiment described
in the EISMINT benchmark in order to both verify our nu-
merical model in this case and compare our results with
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Table 2. Comparison between reference steady state described in
Sect. 4.1.1 and results obtained after a 25000yr run using 21
moving points with the EISMINT surface mass balance and ini-
tial profile described by Eq. (25). Exp 1(a): initial uniform grid
with r;(0) = 450km, hg =1000m and p = 3/7; Exp 1(b): initial
grid with higher resolution near the margin with r;(0) = 500km,
hg =1000m, and p = 1; Exp 1(c): initial uniform grid with r;(0) =
600km, hg =4000m, and p = 1/4.

Ice thickness at Position of
r =0 (inm) the margin (in km)
Reference  2986.9540.01 579.81+0.01
Exp 1(a) 3019.59 579.99
Exp 1(b) 3040.28 579.77
Exp 1(c) 3017.75 579.43
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Table 3. Comparison between intercomparison results for the EIS-
MINT moving-margin experiment in steady state (see Table 5 in
Huybrechts et al., 1996) and results obtained for the same exper-
iment with the moving-point method with an identical number of
grid points n, = 28. The reference values are obtained from the ac-
curate evaluation described in Sect. 4.1.1.

Ice thickness at Position of
r=0(inm) the margin (in km)
Reference 2986.95 +0.01 579.81£0.01
EISMINT/2d  2982.3+26.4 593.34+9.0
Moving point 3005.76 579.68

those obtained by 2-D fixed-grid models used in Huybrechts
et al. (1996). Compared with the experiments performed in
Sect. 4.1.2, the only differences are that we use an initial
uniformly distributed grid with 28 nodes, an initial domain
of length r;(0) = 450km, and an initial ice thickness profile
h(0,r) = At xm(r), where At = 0.1yr is the constant model
time step and m(r) is given by Eq. (24). Then we run the
model as in the EISMINT experiment for 25000yr to reach
the steady state.

We first verify the result of our run with the steady state
obtained in Sect. 4.1.1. As shown in Fig. 3, absolute errors
in the ice thickness profile mostly occur near the ice sheet
margin, rising to 58.23m at the last grid point (compared to
an rms error of 15.71 m and an absolute error at the ice divide
of 18.81m). Regarding the ice sheet margin, its position is
again well estimated (with an absolute error of only 138.5m).

We next compare these results with results from fixed-grid
models involved in the EISMINT intercomparison project.
We confine our comparison to 2-D fixed-grid models as we
only use radial symmetry (see Huybrechts et al., 1996). Re-
garding the ice thickness at the ice divide, our model re-
sult of 3005.76 m is within the range of estimation given by
the intercomparison; 2982.3+26.4m. These results are sum-
marised in Table 3, showing that our moving-point method is
able to achieve as good an equivalent estimation as classical
fixed-grid methods with a small number of nodes while pro-
viding accurate tracking of the movement of the margin, in
the context of a shallow grounded ice sheet.

4.1.4 Rates of convergence with EISMINT
moving-margin experiment

We now study the rate of convergence of our method towards
the reference solution in the EISMINT experiment. Rates of
convergence are generally expressed in the form O ((Ar)Y),
with Ar being some mesh spacing. However, this approach
is not appropriate in our case since the moving-point method
has mesh spacings varying in time and space. Instead we
present our estimated rate of convergence as a function of
the number of grid points.
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Figure 3. The steady state from the EISMINT moving-margin ex-
periment compared with our 25000yr model run with 28 nodes,
uniformly distributed at the initial time. The reference profile is
obtained by a numerical integration of Eq. (23) using a composite
trapezoidal rule. The error in the ice thickness occurs mostly near
the ice sheet margin, as in other experiments (rms error is 15.71m
and maximum error is 58.23m). The position of the margin is well
determined as the absolute error is only 138.5m.

We calculate the absolute error for both the margin posi-
tion and ice thickness at the ice divide from the results ob-
tained in the EISMINT framework using an initial uniformly
spaced grid with n, = 20,30, 40,60, and 80 grid points.
From those results we estimate the rate of convergence for
both errors. Results are summarised in Table 4. We observe
that the error for the margin position decreases at an almost
quadratic rate O (n;-9) and the error in the ice thickness at
the ice divide at a linear rate O (n18). This confirms that
our CMF method is well able to track the ice sheet margin
without losing accuracy in the ice thickness profile.

4.2 Steady states with non-flat bedrock

The steady-state approach of Sect. 4.1.1 is still valid for an
ice sheet lying on a non-flat bedrock. However, the exper-
iments in such cases are quite limited as we only have the
position of the steady margin from Eq. (22). Nevertheless we
carry out a few experiments in this context in order to demon-
strate that the CMF moving-point approach is perfectly suit-
able for non-flat bedrock.
We consider the following fixed bedrock elevation:

PR
b(r) = 2000m — 2000m - (m)

+1000m- (300rkm)4 —150m. (m)6 (26)

As in the previous section, experiments are performed with
the EISMINT surface mass balance (Eq. 24). At an initial
time r =0 we prescribe a uniformly distributed grid with
a margin located at r;(0) = 450km and an initial ice thick-
ness h(0,r) = Ar x m(r) for the constant time step Az =
0.1yr. The model is run for 25000yr. The resulting evolu-
tion of the geometry and the overall motion of the grid points
are shown for a grid of 20 points in Fig. 4. Regarding the po-
sition of the margin at steady state, our run has an absolute
error of 127.7m. This is even better than the previous result
obtained for a flat bedrock.

The Cryosphere, 10, 1-14, 2016
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Table 4. Estimation of absolute errors from results obtained in the EISMINT framework using the moving-point method with an initial
uniformly spaced grid with n, = 20, 30, 40, 60, and 80 grid points. Rates of convergence are estimated directly from the calculated absolute

errors.
Number of Absolute error in Absolute error in
grid points n, the ice thickness at r =0 (inm)  the position of the margin (in m)
20 29.46 233.58
30 17.29 139.02
40 12.51 62.17
60 7.97 28.49
80 5.86 16.33
Rate of convergence O(n,‘l‘le) O(nr_l"%)

Evolution of the moving points
(red: margin)

Evolution of the geometry
(green: initial, blue: final)

10000

4000
t=10,000 yr 8000
3000 |
T =
c > 6000
= =
o 2000 =1,000 yr Py
E E 4000
s t=0yr [
<
1000 — 2000
0 0
0 200 400 600 0 200 400 600

Radius (in km) Radius (in km)

Figure 4. Evolution of the geometry and overall motion of the grid
points for the non-flat bedrock (topography given in Eq. 26) with
the EISMINT surface mass balance. At steady state, the observed
error for the position of the margin is 127.7 m.

We also check the convergence of the estimated mar-
gin position at steady state towards its reference value by
performing the same experiment with an initial uniformly
spaced grid and n, grid points, n, = 20, 30, 40, 60, and 80.
Absolute errors are summarised in Table 5. As in Sect. 4.1.4
we observe that the absolute error for the margin position
decreases at a nearly quadratic rate O (n,;-83). This corrobo-
rates the ability of the moving-point method to track the ice
sheet margin even for non-flat bedrocks.

4.3 Verification with time-dependent solutions

In the previous paragraphs, steady states were used to ver-
ify our numerical CMF moving-point numerical method.
However these experiments did not verify the transient be-
haviour of the ice sheet margin. To do so, we use exact time-
dependent solutions.

4.3.1 Similarity solutions

Few exact solutions for isothermal shallow ice sheets have
been derived in the literature. Most are based on the simi-
larity solutions established by Halfar (1981, 1983) for a zero
surface mass balance. Bueler et al. (2005) extended this work
to non-zero surface mass balance and established a new fam-

The Cryosphere, 10, 1-14, 2016

ily of similarity solutions by adopting the following parame-
terised form for the surface mass balance:

m® @) = =h® @), (27)

with ¢ being a real parameter in the interval (ﬁ +oo).

Assuming that ¢ > 0, this leads to the following family of
similarity solutions:

1 2n+1 r % 1
KO = — (ho”i - A(s)(—t ﬁ(s)) ) (28)
forr € [0,1P® 0 ()],

2—(m+1e 14+ @2n+1e

a(s):w, B(e) = 5n+3 (29)
and
1
_2n+1((n+2)B(e)\"
A®=ST0 ( 24(pi9)" ) ’
LIS ;
O(e) :ho':{1 A(g) T+, (30)

The total mass of such ice sheets, as defined in Eqg. (11), is
6 (6) = Ble) 11" Wy, (31)

where Wy is a constant independent of &:

0(1)

2n+1 n+1 ﬁ
W1 =2n /s(ho”i —A(l)sn) ds. (32)
0
4.3.2 Results

We study in this section the accuracy of transient model runs
in comparison with the time-dependent exact solutions. The
initialisation of every experiment is done by using the ex-
act time-dependent solution (Eq. 28), and, at each time step,

www.the-cryosphere.net/10/1/2016/
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Table 5. Estimation of absolute error from results obtained with
the non-flat bedrock described by Eq. (26) using the moving-
point method with an initial uniformly spaced grid with n, =
20, 30,40, 60, and 80 grid points. Rates of convergence are esti-
mated directly from the calculated absolute errors.

Number of Absolute error in
grid points n, the position of the margin (in m)
20 127.74
30 98.44
40 43.96
60 18.23
80 12.39

Rate of convergence 0(n,‘1‘83)

5000

4000+ b
£ 3000 ]
@
E
£ 2000/ *
<

1000r

O L L L L 1l
0 200 400 600 800 1000

Radius (in km)

Figure 5. The reference ice sheet profile (¢ =0) obtained from
transient similarity solutions (see Sect. 4.3.1) is displayed for t =
100 years, for r = 1000 years, and at 1000-year intervals thereafter.
Rapid changes occur in the state of the sheet at the beginning of the
simulation; then the dynamics dramatically slow. The ice thickness
at the ice divide decreases at a rate r—1/9, and the position of the
margin increases at a rate 11/18.

the surface mass balance is evaluated at each moving node
by using the relationship m = £ h from Eq. (27). When ¢ is
non-zero, some feedback between the surface mass balance
and the ice thickness is expected (Leysinger Vieli and Gud-
mundsson, 2004). Each model run in this section uses a fixed
time step of Az = 0.01yr.

The first experiment is conducted with the constant
mass similarity solution (¢ = 0) between ¢t = 100yr and r =
20000yr for the reference period. Rapid changes occur in
the state of the similarity solution between r = 100yr and
t = 1000yr; then the dynamics dramatically slow (see Fig. 5
for the evolving ice thickness profile of the similarity solu-
tion). The ice thickness at the ice divide decreases at a rate
+~1/°_ and the position of the margin increases at a rate r1/18,

We begin by analysing the results obtained with a grid
made up of 100 nodes, uniformly distributed at the ini-
tial time. In terms of thickness, errors mostly occur near

www.the-cryosphere.net/10/1/2016/

o Ice sheet at final time 20,000 yr (eps = 0) 1?(!])solute error between result and reference
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Figure 6. The result obtained at final time = 20 000yr with 100
nodes equally distributed at initial time z = 100 yr, and a fixed time
step Ar =0.01yr is compared to the reference transient similarity
solution with e =0 (see Sect. 4.3.1). A maximum error of 134m
on the ice thickness is obtained at the computed margin, while the
interior of the sheet has errors less than 10 m. The position of the
margin is obtained with an error of 880 m.

the ice sheet margin as is the case with fixed-grid meth-
ods (see Bueler et al., 2005). For example, at the final time
t =20000yr, a maximum error of 134 m in the ice thickness
is obtained at the computed margin while the interior of the
sheet has errors less than 10m (see Fig. 6). We also notice
that errors in the ice thickness (both maximum and rms er-
rors) decrease as the ice sheet slows down (see Fig. 7). Re-
garding the margin, even if the absolute error in its position
increases in time, it is kept under one kilometre (880 m at the
final time r = 20000yr). This confirms the combined ability
of our method to model accurately the evolution of the ice
thickness profile and to track precisely the movement of the
ice sheet margin in transient behaviour.

We then study the convergence of our scheme at a final
time ¢ =20000yr when the number of grid points is in-
creased. We perform the same analysis for ¢ = —1/8,1/4,
and 3/4. Rates of convergence for different errors (rms error
and maximum error for ice thickness profile, absolute error
for the position of the margin and the volume of the ice sheet)
are summarised in Table 6. These demonstrate the ability of
the scheme to achieve accurate results for the position of the
margin and the ice thickness profile for transient behaviour
even with a small number of nodes.

5 Conclusions

In this paper, we have introduced a moving-point approach
for ice sheet modelling using the SIA (including non-flat
bedrock) based on the conservation of local mass. From this
principle we derived an efficient finite-difference moving-
point scheme. The scheme was verified by comparing re-
sults with steady states from the EISMINT benchmark (Huy-
brechts et al., 1996) and time-dependent solutions from
Bueler et al. (2005). Accurate results have been achieved
with a small number of grid points in both cases. In particu-
lar our approach has been able to track the position of the ice
sheet margin with high accuracy without compromising the

The Cryosphere, 10, 1-14, 2016
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Table 6. Rate of convergence of different errors between numerical results obtained for time-dependent solutions at time ¢ = 20 000yr. The
different estimated rates of convergence are obtained by performing experiments with »,, = 10, 20, 40, 60, 80, 100, and 200 grid points for

different configurations of surface mass balance (Eq. 27).

£=0 e=-1/8 e=1/4  £=3/4
rms error on & on Y om MY om0 omyt1?)
Max error on h o0y %%y 0% 0 9% 0n; 080
Error in r; om0ty 0By oY
Error in total volume - O(n;1'24) O(nr’l'43) O(nfl 43)

Errors on ice thickness (eps = 0) Error on margin position (eps = 0)

250 1000
+ |
t + |
200 Max. error 800 £§y/——
E150 E 600
£ S
8100 8 400
[ (7]
50 200
0 0
0 5,000 10,000 15,000 20,000 0 5,000 10,000 15,000 20,000
time (in yr) time (in yr)

Figure 7. Evolution of the rms error and maximum absolute error in
the ice thickness, and absolute error in the position of the margin be-
tween the run obtained with 100 nodes equally distributed at initial
time r = 100yr and a fixed time step At = 0.01y and the reference
transient similarity solution with ¢ =0 (see Sect. 4.3.1). Errors in
the ice thickness decrease as the ice sheet slows down. The errors
in the position of the margin increase in time, but their evolution is
slower when the dynamics are slower.

estimation of the ice thickness profile. Hence the comparison
shows that the approach has considerable potential for future
investigations.

The Cryosphere, 10, 1-14, 2016

Whilst this paper uses a vertically averaged horizontal ice
velocity given by the shallow ice approximation, the moving-
mesh scheme is independent of the form of the ice veloc-
ity used here and could be used as a solver for mass bal-
ance alongside more complex vertically integrated approxi-
mations (see e.g. Schoof and Hindmarsh, 2010).

As mentioned earlier, the conservation approach is suitable
not only for 1-D cases (flowline or radial) but also for 2-D
scenarios. A first application has been demonstrated in Par-
tridge (2013) and will be the subject of a new paper. The con-
servation approach can also be applied to marine ice sheets.
In these cases, different kinds of boundaries have to be con-
sidered: e.g. grounding line, shelf front, and continental mar-
gin. Preliminary results with the moving-point method have
been obtained in Dodd (2013). However, the problem of ini-
tialisating such a model for use in real applications remains
open. The incorporation of various data assimilation proce-
dures is currently being investigated in this context.

www.the-cryosphere.net/10/1/2016/
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Appendix A: Consistency of the moving-point approach
at boundaries

We now verify that d7/dr tends to the velocity obtained from
Eqg. (10) at the ice margin when 7 (¢) tends to r;(¢). Assuming
the continuity of d2/dr and m in the vicinity of the ice sheet
margin, by L’Hépital’s rule

A

dr

lim —=U(t,r)
F()—ri(r) dt (
Gnr o an n R
zrh(t,r) —rm(t,r
+ lim (¢ (A)AB,(A). (A1)
FO—=n@\ h(t, 7)) +75:(,7)
This gives
o dF dh -1
lim —r=U(t,rl)—m(t,rl)(—(t,rl)) . (A2)
P —r(0) dt or

The limit is consistent with the velocity of the moving margin
obtained in Eq. (10). The same approach can be used to show
that d7/dr tends to O when 7(¢) tends to the ice divide r = 0.

Appendix B: A finite-difference algorithm

The moving-point method is discretised on a radial line using
finite differences on the grid {#;},i =1,...,n,, where

0=r1(t) <io(t) < ... <Pp—1(t) <7y (t) =r((1). (B1)

The approximation of i (¢, r) at 7 () = 7¥ is written 1%, and
that of the ice velocity U(z,r) as Ul.". The velocity of the
points is represented by vl’F. The symbol 6% designates the
numerical approximation of the total mass, and the constant
mass fractions are represented by u; for every M(f,-k)-
Before giving the formula for every quantity calculated,
we give the structure of the finite-difference algorithm in Al-
gorithm 1.
Algorithm 1 Finite difference moving point algorithm
Require: {f?} and {h,?}, i=1,...,n, with #{ =0 and h,[,)LT =0.
1: Compute total mass §° with Eq. (B2)
2: Compute mass fractions p;, i = 1,...,n,, with Eq. (B3)
3: while ¢ < t.,q do
Compute ice velocities UF with Eq. (B4) and Eq. (B5)
Compute point velocities v¥ with Eq. (B6) and Eq. (B7)
Update total mass 6%*1 with Eq. (BS)
Update moving point positions 'ff“ with Eq. (B9)
Update ice thickness h**! with Eq. (B10) and Eq. (B11)
9: k—k+1
10:  t—t+ At
11: end while

"

© N> @

B1 Initialisation

At the initial time the user needs to provide the initial location
of each grid point {#°} and the initial ice thickness {1°} there.
By definition, we assume that 72 =0 and h9 =0. We esti-
mate the total mass of the ice sheet at the initial time by

www.the-cryosphere.net/10/1/2016/

using a composite trapezoidal rule approximating Eq. (11).
This gives

o %ni;l (hs +h?+1) ((;?Jrl)? 3 (rf)z) , (B2)
=

We derive the numerical approximation for the mass frac-
tions w; by discretising Eq. (13) following the same princi-
ple:

n1=0,

-

i—

=g 209 +000) (20 - ())- e

J

I
1N

B2 Ice velocities

We confine the algorithm to n = 3 for the creep exponent in
the Glen flow law. Then Eq. (4), giving the ice velocity, can
be expanded by using the binomial theorem

(2 3 39(h5) (9b)?
(ar) + 5 or (Br)
L)\ %0b 27 (33"
+3( or ) 8r+343( or ) '
We choose to rewrite the radial form of Eq. (4) in this way
in order to ensure that the ice velocity at the ice sheet margin
computed with a finite-difference scheme can be non-zero as
noted in Sect. 3.4. The bedrock elevation b and its deriva-
tive are known for every location of the domain. The sign of
UF (Uf = 0) is obtained by calculating the sign of s —s¥ |
(approximating the sign of the surface slope by an upwind
scheme). We also approximate the derivatives of 4?7 for any
p > 0 by an upwind scheme:
(rf)" = ()"

why - ) ZWia) (B5)

k_ .k
o p=rk i T Tic

2 3
|U@,r)| = gA (0ig)

B3 Approximate nodal velocities

The velocity of interior nodes is obtained by discretising
Eq. (16) as

v’f:O,

~k ~k
Tny i

u{‘:UikJrzAihk p.i/m(lk,r)d(rz)—/m(tk,r)d(rz) , (B6)
iy 0 0

where the integrals in Eq. (B6) are approximated by a com-
posite trapezoidal rule. For the velocity of the ice sheet mar-
gin, Eqg. (10) is discretised by using a first-order upwind
scheme, namely,

~k ~k
rnr - rn, -1

hk — bk

ny—1

(B7)

nr > ny

ok :U,]f —m(tk rk)
r
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B4 Time stepping

The total mass 61 is updated by using an explicit Euler
scheme:

}ck

O+l — ok 4 ArGk =0k £ Arn /m(t,r)d (rz). (BS)
0

Again the integral is approximated by a composite trape-
zoidal rule.

As in the case of the total mass, the position of the nodes
is updated by using an explicit Euler scheme:
PR = P Ar ok, (B9)
At is taken small enough to preserve the node order in
Eg. (B1) and to avoid oscillations in the ice thickness profile.
In practice we have never observed node overtaking since
spurious oscillations always appear first. This behaviour is
similar to that observed with explicit schemes for fixed stag-
gered grid methods (Hindmarsh and Payne, 1996).

B5 Approximate ice thickness

The ice thickness for interior nodes hf.‘“ is recovered alge-
braically at the new time using a second-order midpoint ap-
proximation of Eq. (17), namely,

k+1
ket O i — i
! T fk“rl 2_ fk+l 2
i+1 i—1

The ice thickness at the ice divide h'{*l is obtained by using
the first-order upwind scheme

(B10)

R+l gkt M2 — 11

1 .
T (petl 2 k1 2
2 1

(B11)
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B6 Behaviour of the approximate ice velocity at the ice
margin

As in Sect. 3.4, assuming that the topography of the bedrock
is flat in the vicinity of the margin, the asymptotic form of
the radial ice velocity is

2 -
U=——Apig)"y" (g —r) &yt

— (B12)

Hence the leading term in the numerical approximation
(Eq. B4) to the ice velocity at the approximation #; to the
ice margin is

7/3 7/3
2 3 hp,™ —h,'”4
— —sgn — 1] A 03 —n
5 g (Sn, Sn, 1) (plg) (7) rn,—r,,r_l

7/3

hn,—l

~

In, —Tn,—1

2 3\°
= 5 sgn (Sn, - Sn,-—l) A (pig)3 (?)

(B13)

since h,, = 0. But from Eq. (B12) the asymptotic analytic
ice velocity (when n = 3) is

2 3\°
= (Pi8)3(7) (ra, — )7 3¢,"

5 27 (h()73\°
A (pig) 343( r)

(B14)

by Eg. (18). Hence the numerical approximation to the ice
velocity has the same asymptotic behaviour as the asymp-
totic analytic ice velocity with n = 3. The result also holds
for general creep exponent n.

www.the-cryosphere.net/10/1/2016/



B. Bonan et al.: Moving-point approach to model shallow ice sheets in radially symmetrical cases 13

Acknowledgements. This research was funded in part by the
Natural Environmental Research Council National Centre for Earth
Observation (NCEO) and the European Space Agency (ESA).

Edited by: F. Pattyn

References

Baines, M. J., Hubbard, M. E., and Jimack, P. K.: A mov-
ing mesh finite element algorithm for the adaptive solu-
tion of time-dependent partial differential equations with
moving boundaries, Appl. Numer. Math., 54, 450-469,
doi:10.1016/j.apnum.2004.09.013, 2005.

Baines, M. J., Hubbard, M. E., and Jimack, P. K.: \Velocity-
based moving mesh methods for nonlinear partial differ-
ential equations, Commun. Comput. Phys., 10, 509-576,
doi:10.4208/cicp.201010.040511a, 2011.

Blake, K. W.: Moving Mesh Methods for Non-Linear Parabolic
Partial Differential Equations, PhD thesis, available at: http:
/Iwww.reading.ac.uk/web/FILES/maths/Kw_blake.pdf (last ac-
cess: 4 August 2015), University of Reading, Reading, Berks,
UK, 2001.

Budd, C. J., Huang, W., and Russell, R. D.: Adaptiv-
ity with moving grids, Acta Numerica, 18, 111-241,
doi:10.1017/S0962492906400015, 2009.

Bueler, E., Lingle, C. S., Kallen-Brown, J. A., Covey, D. N., and
Bowman, L. N.: Exact solutions and verification of numeri-
cal models for isothermal ice sheets, J. Glaciol., 51, 291-306,
doi:10.3189/172756505781829449, 2005.

Calvo, N., Diaz, J. I, Durany, J., Schiavi, E., and Vazquez, C.:
On a doubly nonlinear parabolic obstacle problem modelling
ice sheet dynamics, SIAM J. Appl. Math., 63, 683-707,
doi:10.1137/S0036139901385345, 2002.

Cao, W., Huang, W., and Russell, R. D.: Approaches for generat-
ing moving adaptive meshes: location versus velocity, Appl. Nu-
mer. Math., 47, 121-138, d0i:10.1016/S0168-9274(03)00061-8,
2003.

Cornford, S. L., Martin, D. F., Graves, D. T., Ranken, D. F,
Le Brocq, A. M., Gladstone, R. M., Payne, A. J., Ng, E. G.,
and Lipscomb, W. H.: Adaptive mesh, finite volume model-
ing of marine ice sheets, J. Comput. Phys., 232, 529-549,
doi:10.1016/j.jcp.2012.08.037, 2013.

Cuffey, K. M. and Paterson, W. S. B.: The Physics of Glaciers
(fourth edition), Butterworth-Heinemann/Elsevier, Burlington,
MA, USA and Oxford, UK, 54-78, 2010.

Dodd, J.: A Moving Mesh Approach to Modelling the Ground-
ing Line in Glaciology, Master’s thesis, available at: http://www.
reading.ac.uk/web/FILES/maths/Dissertation_Dodd.pdf (last ac-
cess: 19 November 2015), University of Reading, Reading,
Berks, UK, 2013.

Donea, J., Huerta, A., Ponthot, J.-P., and Rodriguez-Ferran, A.: Ar-
bitrary Lagrangian-Eulerian Methods, in: Encyclopedia of Com-
putational Mechanics, Volume 1: Fundamentals, Chapter 14,
edited by: Stein, E., de Borst, R., and Hughes, T. J. R., John Wi-
ley & Sons Ltd., Chichester, UK, 1-25, 2004.

Durand, G., Gagliardini, O., Zwinger, T., Le Meur, E., and
Hindmarsh, R. C. A.: Full Stokes modeling of marine ice

www.the-cryosphere.net/10/1/2016/

sheets: influence of the grid size, Ann. Glaciol., 50, 109-114,
doi:10.3189/172756409789624283, 20009.

Fowler, A. C.: Modelling ice sheet dynamics, Geophys. Astro.
Fluid, 63, 29-65, doi:10.1080/03091929208228277, 1992.

Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier,
L., de Fleurian, B., Greve, R., Malinen, M., Martin, C., Raback,
P., Ruokolainen, J., Sacchettini, M., Schéfer, M., Seddik, H.,
and Thies, J.: Capabilities and performance of Elmer/Ice, a new-
generation ice sheet model, Geosci. Model Dev., 6, 1299-1318,
doi:10.5194/gmd-6-1299-2013, 2013.

Gladstone, R. M. and Lee, V., and Vieli, A. and Payne, A. J.:
Grounding line migration in an adaptive mesh ice sheet model, J.
Geophys. Res., 115, F04014, doi:10.1029/2009JF001615, 2010.

Glen, J. W.: The creep of polycrystalline ice, P. Roy. Soc. A.-Math.
Phy., 228, 519-538, 1955.

Goldberg, D., Holland, D. M., and Schoof, C.: Grounding line
movement and ice shelf buttressing in marine ice sheets, J. Geo-
phys. Res., 114, F04026, doi:10.1029/2008JF001227, 2009.

Gudmundsson, G. H., Krug, J., Durand, G., Favier, L., and Gagliar-
dini, O.: The stability of grounding lines on retrograde slopes,
The Cryosphere, 6, 1497-1505, doi:10.5194/tc-6-1497-2012,
2012.

Halfar, P.: On the dynamics of the ice sheets, J. Geophys.
Res.-Oceans, 86, 11065-11072, doi:10.1029/JC086iC11p11065,
1981.

Halfar, P.: On the dynamics of the ice sheets 2, J. Geophys. Res.,
88, 6043-6051, doi:10.1029/JC088iC10p06043, 1983.

Hindmarsh, R. C. A.: Qualitative dynamics of marine ice sheets,
in: Ice in the Climate System, Springer, Berlin, Heidelberg, Ger-
many, 67-99, 1993.

Hindmarsh, R. C. A. and Le Meur, E.: Dynamical processes in-
volved in the retreat of marine ice sheets, J. Glaciol., 47, 271—
282, doi:10.3189/172756501781832269, 2001.

Hindmarsh, R. C. A. and Payne, A. J.: Time-step limits for stable so-
lutions of the ice-sheet equation, Ann. Glaciol., 23, 74-85, 1996.

Hutter, K.: Theoretical Glaciology, D. Reidel, Dordrecht, the
Netherlands, 1983.

Huybrechts, P., Payne, A. J., and The EISMINT Intercomparison
Group: The EISMINT benchmarks for testing ice-sheet models,
Ann. Glaciol., 23, 1-12, 1996.

Jouvet, G. and Gréser, C.: An adaptive Newton multigrid method
for a model of marine ice sheets, J. Comput. Phys., 252, 419-
437, d0i:10.1016/j.jcp.2013.06.032, 2013.

Lee, T. E., Baines, M. J.,, and Langdon, S.: A finite differ-
ence moving mesh method based on conservation for mov-
ing boundary problems, J. Comput. Appl. Math., 288, 1-17,
doi:10.1016/j.cam.2015.03.032, 2015.

Leysinger Vieli, G. J. and Gudmundsson, G. H.: On estimating
length fluctuations of glaciers caused by changes in climatic forc-
ing, J. Geophys. Res., 109, F01007, doi:10.1029/2003JF000027,
2004.

Partridge, D.: Numerical Modelling of Glaciers: Moving Meshes
and Data Assimilation, PhD thesis, available at: http://
www.reading.ac.uk/web/FILES/maths/DP_PhDThesis.pdf (last
access: 4 August 2015), University of Reading, Reading, Berks,
UK, 2013.

Pattyn, F., Schoof, C., Perichon, L., Hindmarsh, R. C. A., Bueler,
E., de Fleurian, B., Durand, G., Gagliardini, O., Gladstone, R.,
Goldberg, D., Gudmundsson, G. H., Huybrechts, P., Lee, V.,

The Cryosphere, 10, 1-14, 2016


http://dx.doi.org/10.1016/j.apnum.2004.09.013
http://dx.doi.org/10.4208/cicp.201010.040511a
http://www.reading.ac.uk/web/FILES/maths/Kw_blake.pdf
http://www.reading.ac.uk/web/FILES/maths/Kw_blake.pdf
http://dx.doi.org/10.1017/S0962492906400015
http://dx.doi.org/10.3189/172756505781829449
http://dx.doi.org/10.1137/S0036139901385345
http://dx.doi.org/10.1016/S0168-9274(03)00061-8
http://dx.doi.org/10.1016/j.jcp.2012.08.037
http://www.reading.ac.uk/web/FILES/maths/Dissertation_Dodd.pdf
http://www.reading.ac.uk/web/FILES/maths/Dissertation_Dodd.pdf
http://dx.doi.org/10.3189/172756409789624283
http://dx.doi.org/10.1080/03091929208228277
http://dx.doi.org/10.5194/gmd-6-1299-2013
http://dx.doi.org/10.1029/2009JF001615
http://dx.doi.org/10.1029/2008JF001227
http://dx.doi.org/10.5194/tc-6-1497-2012
http://dx.doi.org/10.1029/JC086iC11p11065
http://dx.doi.org/10.1029/JC088iC10p06043
http://dx.doi.org/10.3189/172756501781832269
http://dx.doi.org/10.1016/j.jcp.2013.06.032
http://dx.doi.org/10.1016/j.cam.2015.03.032
http://dx.doi.org/10.1029/2003JF000027
http://www.reading.ac.uk/web/FILES/maths/DP_PhDThesis.pdf
http://www.reading.ac.uk/web/FILES/maths/DP_PhDThesis.pdf

14 B. Bonan et al.: Moving-point approach to model shallow ice sheets in radially symmetrical cases

Nick, F. M., Payne, A. J., Pollard, D., Rybak, O., Saito, F., and
Vieli, A.: Results of the Marine Ice Sheet Model Intercomparison
Project, MISMIP, The Cryosphere, 6, 573-588, doi:10.5194/tc-
6-573-2012, 2012.

Pattyn, F., Périchon, L., Durand, G., Favier, L., Gagliardini, O.,
Hindmarsh, R. C. A., Zwinger, T., Albrecht, T., Cornford, S.,
Docquier, D., First, J. J., Goldberg, D., Gudmundsson, G. H.,
Humbert, A., and Hitten, M.: This ice loss modifies the ice
flow but also translates into the retreat of continental margins
(in Greenland) and grounding lines (mainly in Antarctica), edited
by: Huybrechts, P., Jouvet, G., Kleiner, T., Larour, E., Martin, D.,
Morlighem, M., Payne, A. J., Pollard, D., Rickamp, M., Ry-
bak, O., Seroussi, H., Thoma, M., and Wilkens, N.: Grounding-
line migration in plan-view marine ice-sheet models, results of
the ice2sea MISMIP3d intercomparison, J. Glaciol., 59, 410-
422, doi:10.3189/2013J0G12J129, 2013.

Payne, A. J., Huybrechts, P., Abe-Ouchi, A., Calov, R,
Fastook, J. L., Greve, R., Marshall, S. J., Marsiat, I,
Ritz, C., Tarasov, L., and Thomassen, M. P. A.. Re-
sults from the EISMINT model intercomparison: the ef-
fects of thermomechanical coupling, J. Glaciol., 46, 227-238,
doi:10.3189/172756500781832891, 2000.

The Cryosphere, 10, 1-14, 2016

Scherer, G. and Baines, M. J.: Moving mesh finite difference
schemes for the porous medium equation, Mathematics Re-
port Series 1/2012, available at: https://www.reading.ac.uk/web/
FILES/maths/godelareport.pdf (last access: 4 August 2015), De-
partment of Mathematics and Statistics, University of Reading,
Reading, Berks, UK, 2012.

Schoof, C.. Marine ice sheet
case of rapid sliding, J. Fluid Mech.,,
d0i:10.1017/S0022112006003570 , 2007.

Schoof, C.:. Marine ice sheet dynamics, Part 2, A Stokes
flow contact problem, J. Fluid Mech., 679, 122-155,
doi:10.1017/jfm.2011.129, 2011.

Schoof, C. and Hindmarsh, R. C. A.: Thin-film flows with wall slip:
an asymptotic analysis of higher order glacier flow models, Q. J.
Mech. Appl. Math., 63, 73-114, doi:10.1093/gjmam/hbp025,
2010.

Stokes, G. G.: On the theories of internal friction of fluids in motion,
Transactions of the Cambridge Philosophical Society, 8, 287-
305, 1845.

Vieli, A. and Payne, A. J.: Assessing the ability of numerical ice
sheet models to simulate grounding line migration, J. Geophys.
Res., 110, F01003, doi:10.1029/2004JF000202, 2005.

dynamics, Part 1, The
573, 27-55,

www.the-cryosphere.net/10/1/2016/


http://dx.doi.org/10.5194/tc-6-573-2012
http://dx.doi.org/10.5194/tc-6-573-2012
http://dx.doi.org/10.3189/2013JoG12J129
http://dx.doi.org/10.3189/172756500781832891
https://www.reading.ac.uk/web/FILES/maths/godelareport.pdf
https://www.reading.ac.uk/web/FILES/maths/godelareport.pdf
http://dx.doi.org/10.1017/S0022112006003570 
http://dx.doi.org/10.1017/jfm.2011.129 
http://dx.doi.org/10.1093/qjmam/hbp025
http://dx.doi.org/10.1029/2004JF000202

	Abstract
	Introduction
	Ice sheet modelling
	Ice sheet geometry and Shallow Ice Approximation
	Radially symmetrical ice sheets

	A moving-point approach
	Conservation of mass fraction
	Trajectories of moving points
	Determination of the ice thickness profile
	Asymptotic behaviour at the ice sheet margin
	Numerics

	Numerical results
	Verification with steady states on flat bedrock
	Accurate estimation of steady ice thickness profile
	Runs with different initial profiles
	EISMINT moving-margin experiment
	Rates of convergence with EISMINT moving-margin experiment

	Steady states with non-flat bedrock
	Verification with time-dependent solutions
	Similarity solutions
	Results


	Conclusions
	Appendix A: Consistency of the moving-point approach at boundaries
	Appendix B: A finite-difference algorithm
	Appendix B1: Initialisation
	Appendix B2: Ice velocities
	Appendix B3: Approximate nodal velocities
	Appendix B4: Time stepping
	Appendix B5: Approximate  ice thickness
	Appendix B6: Behaviour of the approximate ice velocity at the ice margin

	Acknowledgements
	References

