Articles | Volume 9, issue 4
https://doi.org/10.5194/tc-9-1735-2015
https://doi.org/10.5194/tc-9-1735-2015
Research article
 | 
31 Aug 2015
Research article |  | 31 Aug 2015

Improving Arctic sea ice edge forecasts by assimilating high horizontal resolution sea ice concentration data into the US Navy's ice forecast systems

P. G. Posey, E. J. Metzger, A. J. Wallcraft, D. A. Hebert, R. A. Allard, O. M. Smedstad, M. W. Phelps, F. Fetterer, J. S. Stewart, W. N. Meier, and S. R. Helfrich

Related authors

CICE on a C-grid: new momentum, stress, and transport schemes for CICEv6.5
Jean-François Lemieux, William H. Lipscomb, Anthony Craig, David A. Bailey, Elizabeth C. Hunke, Philippe Blain, Till A. S. Rasmussen, Mats Bentsen, Frédéric Dupont, David Hebert, and Richard Allard
Geosci. Model Dev., 17, 6703–6724, https://doi.org/10.5194/gmd-17-6703-2024,https://doi.org/10.5194/gmd-17-6703-2024, 2024
Short summary
An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC)
Mark A. Tschudi, Walter N. Meier, and J. Scott Stewart
The Cryosphere, 14, 1519–1536, https://doi.org/10.5194/tc-14-1519-2020,https://doi.org/10.5194/tc-14-1519-2020, 2020
Short summary
Benchmark seasonal prediction skill estimates based on regional indices
John E. Walsh, J. Scott Stewart, and Florence Fetterer
The Cryosphere, 13, 1073–1088, https://doi.org/10.5194/tc-13-1073-2019,https://doi.org/10.5194/tc-13-1073-2019, 2019
Short summary
The Arctic sea ice cover of 2016: a year of record-low highs and higher-than-expected lows
Alek A. Petty, Julienne C. Stroeve, Paul R. Holland, Linette N. Boisvert, Angela C. Bliss, Noriaki Kimura, and Walter N. Meier
The Cryosphere, 12, 433–452, https://doi.org/10.5194/tc-12-433-2018,https://doi.org/10.5194/tc-12-433-2018, 2018
Short summary
An undercurrent off the east coast of Sri Lanka
Arachaporn Anutaliya, Uwe Send, Julie L. McClean, Janet Sprintall, Luc Rainville, Craig M. Lee, S. U. Priyantha Jinadasa, Alan J. Wallcraft, and E. Joseph Metzger
Ocean Sci., 13, 1035–1044, https://doi.org/10.5194/os-13-1035-2017,https://doi.org/10.5194/os-13-1035-2017, 2017
Short summary

Related subject area

Sea Ice
Suitability of the CICE sea ice model for seasonal prediction and positive impact of CryoSat-2 ice thickness initialization
Shan Sun and Amy Solomon
The Cryosphere, 18, 3033–3048, https://doi.org/10.5194/tc-18-3033-2024,https://doi.org/10.5194/tc-18-3033-2024, 2024
Short summary
A large-scale high-resolution numerical model for sea-ice fragmentation dynamics
Jan Åström, Fredrik Robertsen, Jari Haapala, Arttu Polojärvi, Rivo Uiboupin, and Ilja Maljutenko
The Cryosphere, 18, 2429–2442, https://doi.org/10.5194/tc-18-2429-2024,https://doi.org/10.5194/tc-18-2429-2024, 2024
Short summary
Experimental modelling of the growth of tubular ice brinicles from brine flows under sea ice
Sergio Testón-Martínez, Laura M. Barge, Jan Eichler, C. Ignacio Sainz-Díaz, and Julyan H. E. Cartwright
The Cryosphere, 18, 2195–2205, https://doi.org/10.5194/tc-18-2195-2024,https://doi.org/10.5194/tc-18-2195-2024, 2024
Short summary
Why is summertime Arctic sea ice drift speed projected to decrease?
Jamie L. Ward and Neil F. Tandon
The Cryosphere, 18, 995–1012, https://doi.org/10.5194/tc-18-995-2024,https://doi.org/10.5194/tc-18-995-2024, 2024
Short summary
Seasonal Evolution of the Sea Ice Floe Size Distribution from Two Decades of MODIS Data
Ellen Margaret Buckley, Leela Cañuelas, Mary-Louise Timmermans, and Monica Martinez Wilhelmus
EGUsphere, https://doi.org/10.5194/egusphere-2024-89,https://doi.org/10.5194/egusphere-2024-89, 2024
Short summary

Cited articles

Beitsch, A., Kaleschke, L., and Kern, S.: Investigating high-resolution AMSR2 sea ice concentrations during the February 2013 fracture event in the Beaufort Sea, Remote Sensing, 6, 3841–3856, 2014.
Campbell, W. J., Ramseier, R. O., Zwally, H. J., and Gloersen, P.: Arctic sea ice variations from time-lapse passive microwave imagery, Bound.-Lay. Meteorol., 13, 99–106, 1980.
Cavalieri, D. J., Burns, B. A., and Onstott, R. G.: Investigation of the effects of summer melt on the calculation of sea ice concentration using active and passive microwave data, J. Geophys. Res., 95, 5359–5369, 1990.
Comiso, J. C. and Nishio, F.: Trends in the sea ice cover using enhanced and compatible AMSR-E, SSMI/S, and SMMR data, J. Geophys. Res., 113, C02S07, https://doi.org/10.1029/2007JC004257, 2008.
Cummings, J. A. and Smedstad, O. M.: Ocean data impacts in global HYCOM, J. Atmos. Ocean. Tech., 31, 1771–1791, https://doi.org/10.1175/JTECH-D-14-00011.1, 2014.
Download
Short summary
This study presents the improvement in the US Navy's operational sea ice forecast systems gained by assimilating high horizontal resolution satellite-derived ice concentration products. A method of blending ice concentration observations from AMSR2 along with a sea ice mask has been developed, resulting in an ice concentration product with high spatial resolution. A significant improvement in the ice edge location has been shown in the operational system assimilating this new product.