Articles | Volume 9, issue 4
https://doi.org/10.5194/tc-9-1523-2015
https://doi.org/10.5194/tc-9-1523-2015
Research article
 | 
07 Aug 2015
Research article |  | 07 Aug 2015

Meteorological, elevation, and slope effects on surface hoar formation

S. Horton, M. Schirmer, and B. Jamieson

Related authors

A quantitative module of avalanche hazard—comparing forecaster assessments of storm and persistent slab avalanche problems with information derived from distributed snowpack simulations
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
EGUsphere, https://doi.org/10.5194/egusphere-2024-871,https://doi.org/10.5194/egusphere-2024-871, 2024
Short summary
A Large-scale Validation of Snowpack Simulations in Support of Avalanche Forecasting Focusing on Critical Layers
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
EGUsphere, https://doi.org/10.5194/egusphere-2023-420,https://doi.org/10.5194/egusphere-2023-420, 2023
Short summary
Using snow depth observations to provide insight into the quality of snowpack simulations for regional-scale avalanche forecasting
Simon Horton and Pascal Haegeli
The Cryosphere, 16, 3393–3411, https://doi.org/10.5194/tc-16-3393-2022,https://doi.org/10.5194/tc-16-3393-2022, 2022
Short summary
Snow profile alignment and similarity assessment for aggregating, clustering, and evaluating snowpack model output for avalanche forecasting
Florian Herla, Simon Horton, Patrick Mair, and Pascal Haegeli
Geosci. Model Dev., 14, 239–258, https://doi.org/10.5194/gmd-14-239-2021,https://doi.org/10.5194/gmd-14-239-2021, 2021
Short summary
Examining the operational use of avalanche problems with decision trees and model-generated weather and snowpack variables
Simon Horton, Moses Towell, and Pascal Haegeli
Nat. Hazards Earth Syst. Sci., 20, 3551–3576, https://doi.org/10.5194/nhess-20-3551-2020,https://doi.org/10.5194/nhess-20-3551-2020, 2020
Short summary

Related subject area

Mountain Processes
Rapid warming and degradation of mountain permafrost in Norway and Iceland
Bernd Etzelmüller, Ketil Isaksen, Justyna Czekirda, Sebastian Westermann, Christin Hilbich, and Christian Hauck
The Cryosphere, 17, 5477–5497, https://doi.org/10.5194/tc-17-5477-2023,https://doi.org/10.5194/tc-17-5477-2023, 2023
Short summary
Improving climate model skill over High Mountain Asia by adapting snow cover parameterization to complex-topography areas
Mickaël Lalande, Martin Ménégoz, Gerhard Krinner, Catherine Ottlé, and Frédérique Cheruy
The Cryosphere, 17, 5095–5130, https://doi.org/10.5194/tc-17-5095-2023,https://doi.org/10.5194/tc-17-5095-2023, 2023
Short summary
Brief communication: How deep is the snow on Mount Everest?
Wei Yang, Huabiao Zhao, Baiqing Xu, Jiule Li, Weicai Wang, Guangjian Wu, Zhongyan Wang, and Tandong Yao
The Cryosphere, 17, 2625–2628, https://doi.org/10.5194/tc-17-2625-2023,https://doi.org/10.5194/tc-17-2625-2023, 2023
Short summary
Subgridding High Resolution Numerical Weather Forecast in the Canadian Selkirk range for local snow modelling in a remote sensing perspective
Paul Billecocq, Alexandre Langlois, and Benoit Montpetit
EGUsphere, https://doi.org/10.5194/egusphere-2023-1152,https://doi.org/10.5194/egusphere-2023-1152, 2023
Short summary
Snow sensitivity to temperature and precipitation change during compound cold–hot and wet–dry seasons in the Pyrenees
Josep Bonsoms, Juan Ignacio López-Moreno, and Esteban Alonso-González
The Cryosphere, 17, 1307–1326, https://doi.org/10.5194/tc-17-1307-2023,https://doi.org/10.5194/tc-17-1307-2023, 2023
Short summary

Cited articles

Bellaire, S. and Jamieson, B.: Forecasting the formation of critical snow layers using a coupled snow cover and weather model, Cold Reg. Sci. Technol., 94, 37–44, 2013.
Bellaire, S. and Schweizer, J.: Measuring spatial variations of weak layer and slab properties with regard to snow slope stability, Cold Reg. Sci. Technol., 65, 234–241, 2011.
Bellaire, S., Jamieson, J. B., and Fierz, C.: Forcing the snow-cover model SNOWPACK with forecasted weather data, The Cryosphere, 5, 1115–1125, https://doi.org/10.5194/tc-5-1115-2011, 2011.
Bellaire, S., Jamieson, J. B., and Fierz, C.: Corrigendum to "Forcing the snow-cover model SNOWPACK with forecasted weather data" published in The Cryosphere, 5, 1115–1125, 2011, The Cryosphere, 7, 511–513, https://doi.org/10.5194/tc-7-511-2013, 2013.
Birkeland, K.: Terminology and predominant processes associated with the formation of weak layers of near-surface faceted crystals in the mountain snowpack, Arct. Alp. Res., 30, 1–12, 1998.
Download
Short summary
We investigate how various meteorological and terrain factors affect surface hoar formation in complex terrain. We modelled the distribution of three surface hoar layers with a coupled NWP - snow cover model, and verified the model with field studies. The layers developed in regions and elevation bands with warm moist air, light winds, and cold snow surfaces. Possible avalanche forecasting applications are discussed.