Articles | Volume 19, issue 12
https://doi.org/10.5194/tc-19-6403-2025
https://doi.org/10.5194/tc-19-6403-2025
Research article
 | 
02 Dec 2025
Research article |  | 02 Dec 2025

Investigating the multi-millennial evolution and stability of the Greenland ice sheet using remapped surface mass balance forcing

Charlotte Rahlves, Heiko Goelzer, Andreas Born, and Petra M. Langebroek

Related authors

Extending the range and reach of physically-based Greenland ice sheet sea-level projections
Heiko Goelzer, Constantijn J. Berends, Fredrik Boberg, Gael Durand, Tamsin Edwards, Xavier Fettweis, Fabien Gillet-Chaulet, Quentin Glaude, Philippe Huybrechts, Sébastien Le clec'h, Ruth Mottram, Brice Noël, Martin Olesen, Charlotte Rahlves, Jeremy Rohmer, Michiel van den Broeke, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2025-3098,https://doi.org/10.5194/egusphere-2025-3098, 2025
Short summary
Historically consistent mass loss projections of the Greenland ice sheet
Charlotte Rahlves, Heiko Goelzer, Andreas Born, and Petra M. Langebroek
The Cryosphere, 19, 1205–1220, https://doi.org/10.5194/tc-19-1205-2025,https://doi.org/10.5194/tc-19-1205-2025, 2025
Short summary
Scan strategies for wind profiling with Doppler lidar – an large-eddy simulation (LES)-based evaluation
Charlotte Rahlves, Frank Beyrich, and Siegfried Raasch
Atmos. Meas. Tech., 15, 2839–2856, https://doi.org/10.5194/amt-15-2839-2022,https://doi.org/10.5194/amt-15-2839-2022, 2022
Short summary

Cited articles

Ađalgeirsdóttir, G., Aschwanden, A., Khroulev, C., Boberg, F., Mottram, R., Lucas-Picher, P., and Christensen, J.: Role of model initialization for projections of 21st-century Greenland ice sheet mass loss, Journal of Glaciology, 60, 782–794, https://doi.org/10.3189/2014jog13j202, 2014. a
Andernach, M., Kapsch, M.-L., and Mikolajewicz, U.: Impact of Greenland Ice Sheet disintegration on atmosphere and ocean disentangled, Earth Syst. Dynam., 16, 451–474, https://doi.org/10.5194/esd-16-451-2025, 2025. a
Aschwanden, A., Fahnestock, M. A., Truffer, M., Brinkerhoff, D. J., Hock, R., Khroulev, C., Mottram, R., and Khan, S. A.: Contribution of the Greenland Ice Sheet to sea level over the next millennium, Science Advances, 5, https://doi.org/10.1126/sciadv.aav9396, 2019. a
Berends, C. J., van de Wal, R. S. W., van den Akker, T., and Lipscomb, W. H.: Compensating errors in inversions for subglacial bed roughness: same steady state, different dynamic response, The Cryosphere, 17, 1585–1600, https://doi.org/10.5194/tc-17-1585-2023, 2023. a
Bindschadler, R. A., Nowicki, S., Abe-Ouchi, A., Aschwanden, A., Choi, H., Fastook, J., Granzow, G., Greve, R., Gutowski, G., Herzfeld, U., Jackson, C., Johnson, J., Khroulev, C., Levermann, A., Lipscomb, W. H., Martin, M. A., Morlighem, M., Parizek, B. R., Pollard, D., Price, S. F., Ren, D., Saito, F., Sato, T., Seddik, H., Seroussi, H., Takahashi, K., Walker, R., and Wang, W. L.: Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project), Journal of Glaciology, 59, 195–224, https://doi.org/10.3189/2013jog12j125, 2013. a
Download
Short summary
We present a method to better simulate how Greenland’s ice sheet may change over thousands of years in response to climate change. Using a stand-alone ice sheet model, we adjust snowfall and melting patterns based on changes in the ice sheet’s shape. This approach avoids complex coupled models and enables faster testing of many future scenarios to understand the long-term stability of Greenland’s ice.
Share