Articles | Volume 19, issue 12
https://doi.org/10.5194/tc-19-6381-2025
https://doi.org/10.5194/tc-19-6381-2025
Research article
 | 
01 Dec 2025
Research article |  | 01 Dec 2025

Extended seasonal prediction of Antarctic sea ice concentration using ANTSIC-UNet

Ziying Yang, Jiping Liu, Mirong Song, Yongyun Hu, Qinghua Yang, Ke Fan, Rune Grand Graversen, and Lu Zhou

Related authors

MErSiM v1.0: Resolving Biases in Global Silicate Weathering Model with A Data-Driven Surface Erosion Module
Jiaxi Zhao, Yonggang Liu, and Yongyun Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-5624,https://doi.org/10.5194/egusphere-2025-5624, 2026
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
The coupled Southern Ocean–Sea ice–Ice shelf Model (SOSIM v1.0): configuration and evaluation
Chengyan Liu, Zhaomin Wang, Dake Chen, Xianxian Han, Hengling Leng, Xi Liang, Liangjun Yan, Xiang Li, Craig Stevens, Andrew Hogg, Kazuya Kusahara, Kaihe Yamazaki, Kay Ohshima, Meng Zhou, Xiao Cheng, Dongxiao Wang, Changming Dong, Jiping Liu, Qinghua Yang, Xichen Li, Ruibo Lei, Minghu Ding, Zhaoru Zhang, Dujuan Kang, Di Qi, Tongya Liu, Jihai Dong, Lu An, Ru Chen, Tong Zhang, Xiaoming Hu, Bo Han, Haibo Bi, Qi Shu, Longjiang Mu, Shiming Xu, Hu Yang, Hailong Liu, Tingfeng Dou, Zhixuan Feng, Lei Zheng, Xueyuan Tang, Guitao Shi, Yongqing Cai, Bingrui Li, Yang Wu, Xia Lin, Wenjin Sun, Yu Liu, Kai Yu, Yu Zhang, Weizeng Shao, Xiaoyu Wang, Shaojun Zheng, Chengyi Yuan, Chunxia Zhou, Jian Liu, Yang Liu, Yue Xia, Xiaoyu Pan, Jiabao Zeng, Kechen Liu, Jiahao Fan, Chen Cheng, and Qi Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-6487,https://doi.org/10.5194/egusphere-2025-6487, 2026
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Review article: Weddell Sea Polynya formation, cessation and climatic impacts
Lu Zhou, Holly Ayres, Birte Gülk, Aditya Narayanan, Casimir de Lavergne, Malin Ödalen, Alessandro Silvano, Xingchi Wang, Margaret Lindeman, and Nadine Steiger
The Cryosphere, 20, 285–308, https://doi.org/10.5194/tc-20-285-2026,https://doi.org/10.5194/tc-20-285-2026, 2026
Short summary
A six-year circum-Antarctic icebergs dataset (2018–2023)
Zilong Chen, Xuying Liu, Zhenfu Guan, Teng Li, Xiao Cheng, Tian Li, Yan Liu, Qi Liang, Lei Zheng, and Jiping Liu
Earth Syst. Sci. Data, 18, 147–166, https://doi.org/10.5194/essd-18-147-2026,https://doi.org/10.5194/essd-18-147-2026, 2026
Short summary
Sub-kilometer Scale Snow Depth Distribution on Sea Ice of Different Ages and Thickness
Lanqing Huang, Julienne Stroeve, Thomas Newman, Robbie Mallett, Rosemary Willatt, Lu Zhou, Malin Johansson, Carmen Nab, and Alicia Fallows
EGUsphere, https://doi.org/10.5194/egusphere-2025-5158,https://doi.org/10.5194/egusphere-2025-5158, 2025
Short summary

Cited articles

Abernathey, R. P., Cerovecki, I., Holland, P. R., Newsom, E., Mazloff, M., and Talley, L. D.: Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning, Nat. Geosci., 9, 596–601, https://doi.org/10.1038/ngeo2749, 2016. 
Bianco, E., Iovino, D., Masina, S., Materia, S., and Ruggieri, P.: The role of upper-ocean heat content in the regional variability of Arctic sea ice at sub-seasonal timescales, The Cryosphere, 18, 2357–2379, https://doi.org/10.5194/tc-18-2357-2024, 2024. 
Bintanja, R., van Oldenborgh, G. J., Drijfhout, S. S., Wouters, B., and Katsman, C. A.: Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion, Nat. Geosci., 6, 376–379, https://doi.org/10.1038/ngeo1767, 2013. 
Bourassa, M. A., Gille, S. T., Bitz, C., Carlson, D., Cerovecki, I., Clayson, C. A., Cronin, M. F., Drennan, W. M., Fairall, C. W., Hoffman, R. N., Magnusdottir, G., Pinker, R. T., Renfrew, I. A., Serreze, M., Speer, K., Talley, L. D., and Wick, G. A.: High-Latitude Ocean and Sea Ice Surface Fluxes: Challenges for Climate Research, Bulletin of the American Meteorological Society, 94, 403–423, https://doi.org/10.1175/BAMS-D-11-00244.1, 2013. 
Download
Short summary
Antarctic sea ice has changed rapidly in recent years. Here we developed a deep learning model trained by multiple climate variables for extended seasonal Antarctic sea ice prediction. Our model shows high predictive skills up to 6 months in advance, particularly in predicting extreme events. It also shows skillful predictions at the sea ice edge and year-to-year sea ice changes. Variable importance analyses suggest what variables are more important for prediction at different lead times.
Share