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Abstract. Antarctic sea ice has experienced rapid change in
recent years, with the total sea ice extent abruptly decreasing
after a period of gradual increase from the late 1970s un-
til 2014. Accurate long-term predictions of Antarctic sea ice
concentration by dynamical or machine learning models are
crucial for supporting the expanding activities in the South-
ern Ocean, related to for instance scientific research, tourism
and fisheries. However, dynamical models often face difficul-
ties in accurately predicting Antarctic sea ice due to limited
representations of air-ice-sea interactions, especially on sea-
sonal timescales and during the summer months. In addition,
existing deep learning approaches typically rely on historical
sea ice data, neglecting the complex interactions between sea
ice and other climate variables, and lack interpretability of
the underlying physical processes. Moreover, little attention
has been paid to extended seasonal forecasts, and system-
atic evaluations of the predictive skill during extreme years
remain scarce. To address these challenges and gaps, we
here develop a deep learning model (named ANTSIC-UNet),
trained by multiple climate variables, and evaluate its skill
for extended up-to-six-months seasonal prediction of Antarc-
tic sea ice concentration. We compare the predictive skill
of ANTSIC-UNet in the Pan- and regional Antarctic with
two benchmark models (a linear trend and an anomaly per-
sistence model) and a dynamical model (SEAS5). In terms
of root-mean-square error (RMSE) of sea ice concentration
and integrated ice-edge error (IIEE), ANTSIC-UNet shows

much better skills relative to the other models for the ex-
tended seasonal prediction, especially for the extreme events
in recent years. Sea ice prediction errors increase with lead
time, and are smaller during autumn and winter than in sum-
mer. The Pacific and Indian Oceans show accurate predic-
tion performance at the sea ice edge during summer, and
ANTSIC-UNet provides high predictive skill in capturing the
interannual variability of Pan-Antarctic and regional sea ice
extent anomalies. In addition, we quantify the importance
of variables through a post-hoc interpretation method. This
analysis suggests that the ANTSIC-UNet prediction at short
lead times is sensitive to sea surface temperature, radiative
flux, and atmospheric circulation in addition to sea ice con-
ditions. At longer lead times, zonal wind in the stratosphere
appears to be an important influencing factor for the predic-
tion. Building on these findings, we further demonstrate that
incorporating physical constraints into deep learning models
potentially leads to a gain in the accuracy of the Antarctic sea
ice edge prediction on extended seasonal timescales.

1 Introduction

Sea ice affects the climate system through modulating the
exchange of radiation, heat, momentum, moisture and gases
between the atmosphere and ocean. Antarctic sea ice is an es-
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sential component of the climate system. It strongly affects
the local atmosphere and ocean and the extrapolar South-
ern Hemisphere through dynamical and thermodynamic pro-
cesses, particularly in a warming climate (Massom and Stam-
merjohn, 2010; Kidston et al., 2011; Abernathey et al., 2016;
Zhu et al., 2023). The summer total Antarctic sea ice extent
(SIE) has gradually increased until 2014 since the late 1970s
and then abruptly decreased (Turner et al., 2013; Hobbs et
al., 2016; Comiso et al., 2017; Fogt et al., 2022; Liu et al.,
2023). Antarctic SIE shows large seasonal and interannual
variability, with trends that are spatially heterogeneous (Liu
et al., 2004; Raphael and Hobbs, 2014; Libera et al., 2022).
Sea ice in different regions exhibits complex spatial patterns
of change in growth, retreat, and duration (Liang et al., 2023).
The Southern Ocean sea ice region is divided into five sec-
tors: the Weddell Sea, Indian Ocean, Pacific Ocean, Amund-
sen and Bellingshausen Seas, and Ross Sea. These regions
are characterised by their unique climatic, oceanographic,
and geographical characteristics (Zwally et al., 2002; Grieger
et al., 2018; Josey et al., 2024). This division has been widely
used in studying the regional dynamics and prediction of
Antarctic sea ice (e.g., Eayrs et al., 2019; Bushuk et al., 2021;
Liang et al., 2023).

Compared to the Arctic, the prediction of Antarctic sea
ice has received much less attention. Yet subseasonal to ex-
tended seasonal Antarctic sea ice predictions are increasingly
demanded due to the expanding range of activities in the
Southern Ocean (Zampieri et al., 2019; Bushuk et al., 2021;
Libera et al., 2022). Accurate sea ice concentration predic-
tions can provide early warnings about sea ice changes and
related hazards. This is particularly important for managing
the risks of shipping activities in the Southern Ocean. For
example, two polar vessels, Akademik Shokalskiy and Xue-
long became trapped in rapidly formed sea ice in the Antarc-
tic coastal region (Wang et al., 2014). Commercial fishing
and tourism operations mostly use ice-strengthened vessels
rather than icebreakers, which are vulnerable to sea ice haz-
ards. Improved predictions will support ecosystem manage-
ment and inform policy decisions, since the seasonal varia-
tions in Antarctic sea ice have a profound influence on ma-
rine productivity and fisheries (Libera et al., 2022).

Statistical models, such as the Markov model (e.g., Chen
and Yuan, 2004; Pei, 2021) and the Koopman mode decom-
position model (Hogg et al., 2020), have been employed to
forecast seasonal Antarctic sea ice concentration. However,
these statistical models were inferior to the anomaly per-
sistence model for some seasons and regions. Additionally,
there have been limited efforts to forecast seasonal Antarctic
sea ice using dynamical models due to the challenges asso-
ciated with faithfully simulating complex air-ice-sea interac-
tion processes in the Southern Ocean (Morioka et al., 2019;
Bushuk et al., 2021). Dynamically, sea ice movement and
deformation are driven by wind and ocean currents. Thermo-
dynamically, sea ice melting and formation are influenced by
convection associated with ocean vertical mixing, heat ex-

change driven by surface radiation budget and turbulence,
and heat advection through horizontal transport of air and
water masses. However, most dynamical forecast systems
overestimate the extent of the Antarctic sea ice edge at the
sub-seasonal scale with their predictive skill falling below
climatological benchmarks (Zampieri et al., 2019). Starting
in 2017, the Sea Ice Prediction Network South (SIPN South)
has coordinated the evaluation of forecasting methods and
systems used to predict summer Antarctic sea ice (Masson-
net et al., 2023). The evaluation reveals that both statistical
and dynamical models have substantial biases and ensemble
spread.

In recent years, deep learning (DL) methods have been
widely used for Arctic sea ice prediction at various tempo-
ral scales (e.g., Chi and Kim, 2017; Fritzner et al., 2020;
Kim et al., 2020; Ren and Li, 2021). Andersson et al. (2021)
introduced IceNet to predict probabilities of Arctic sea ice
edge with uncertainty quantification. Ren and Li (2023) de-
veloped a DL method with a physically constrained loss
function to improve Arctic sea ice predictions at lead times
of 90 d. However, very limited effort has been made to ap-
ply DL methods to Antarctic sea ice prediction and asso-
ciated assessments are still at an early stage. For the SIPN
South summer Antarctic sea ice extent forecast (Masson-
net et al., 2023), one contributor provided the prediction us-
ing a k-nearest neighbors (KNN) method. Recently, Wang et
al. (2023) developed a SIPNet model with encoder-decoder
structure for subseasonal Antarctic sea ice concentration pre-
diction, which outperforms some dynamical models and ad-
vanced linear statistical models at lead times of 1–8 weeks.
Dong et al. (2024) employed a convolutional long short-term
memory (ConvLSTM) network to predict Antarctic SIC up
to 60 d ahead, which shows skillful predictions within 30 d
and accurately forecasts annual maximum and minimum sea
ice extents from 2017 to 2022. However, ConvLSTM de-
mands significant computational resources during training,
and relies on iterative forecasting which leads to error accu-
mulation over time and requires a trade-off between accuracy
and prediction length. Lin et al. (2025) proposed Ice-KNN-
South, a lightweight machine learning model for predicting
daily Antarctic SIC at lead times of 1–90 d. While these stud-
ies have made significant contributions, they primarily rely
on historical SIC data without considering underlying phys-
ical processes governing the variation of Antarctic sea ice.
Furthermore, they focus on shorter prediction horizons, and
their skillfulness in extended seasonal forecasting remains
unknown.

The purposes of this study are to (1) develop a DL model,
named ANTSIC-UNet, to achieve extended seasonal predic-
tion of Antarctic sea ice concentration by considering not
only the sea ice itself but also a wealth of variables asso-
ciated with ocean-ice-atmosphere interactions, (2) assess the
predictive skill of ANTSIC-UNet for both Pan- and regional
Antarctic sea ice, especially for recent extreme years, (3) ap-
ply a post-hoc interpretation method to quantify the variable
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importance that affects sea ice predictability, and (4) explore
the incorporation of physical constraints into the DL model
to improve the accuracy of Antarctic sea ice edge predictions.

2 Data and Method

2.1 Data

In this study, monthly Antarctic sea ice concentration (SIC)
data obtained from the National Snow and Ice Data Center
(NSIDC) (https://nsidc.org/data/nsidc-0079/versions/3, last
access: 8 April 2025) are used as the input of ANTSIC-UNet,
and are derived from brightness temperature of the Scanning
Multichannel Microwave Radiometer (SMMR), the Special
Sensor Microwave/Imager (SSM/I) sensors, and the Spe-
cial Sensor Microwave Imager/Sounder (SSMIS). SIC is re-
trieved using the Bootstrap algorithm, which utilizes bright-
ness temperature (Tb) observations from the 37H, 37V, and
19V channels to estimate sea ice concentration (Comiso et
al., 1997; Comiso and Nishio, 2008). The SIC data have
a size of 332× 316 grid points with a spatial resolution of
25km, spanning from 1979 to 2023.

Long-term observations are scarce in the Antarctic, which
cannot provide the comprehensive and consistent three-
dimensional and time-evolving gridded field of atmosphere
and ocean parameters necessary to understand sea ice
changes. Reanalysis datasets, which assimilate observations
and satellite data, are valuable tools for investigating climate
changes in polar regions, offering multivariate descriptions
of atmospheric and oceanic conditions. ECWMF Reanalysis
v5 (ERA5, Hersbach et al., 2020) provides high-resolution
and three-dimensional gridded data of comprehensive atmo-
spheric variables from 1940 to the present. ERA5 and its
predecessor ERA-Interim are widely regarded as the best-
performing reanalysis datasets in polar regions, with partic-
ularly reliable analyses over the Southern Ocean compared
with surface and upper-level observations (Bracegirdle and
Marshall, 2012; Bromwich et al., 2011). Ocean Reanaly-
sis System 5 (ORAS5, Zuo et al., 2019) is a global eddy-
permitting ocean and sea-ice ensemble reanalysis which pro-
vides historical ocean and sea-ice conditions from 1979 to
the present, and is based on the assimilation of the same
sea surface temperature observations as is the case of ERA5.
Sea ice changes are strongly influenced by the atmosphere
above and the ocean below through dynamical and thermo-
dynamic processes. Therefore, the relevant atmospheric vari-
ables selected from ERA5 and oceanic variables obtained
from ORAS5 are also used as inputs by ANTSIC-UNet to
investigate the key factors contributing to sea ice predictions
in the complex interaction between sea ice, ocean and atmo-
sphere. These variables are listed in Table 1 and include 2 m
air temperature (T2), 500 hPa air temperature (T500), sea
surface temperature (SST), ocean temperature (PT), ocean
heat content for the upper 300 m (OHC300), downwelling

solar radiation (DSR), upwelling solar radiation (USR), sea
level pressure (SLP), 500 hPa geopotential height (H500),
250 hPa geopotential height (H250), 10 m u-component of
wind (U10), 10 m v-component of wind (V10), and 10 hPa
zonal wind (U10 hPa). The averaged ocean temperature at
different depths in the upper Southern Ocean, 50–100 m
(PT50) and 100–150 m (PT100), has been calculated. Before
integrating into ANTSIC-UNet, these variables are bilinearly
interpolated to the NSIDC sea ice polar stereographic grid
and normalised. Additionally, a land mask obtained from the
NSIDC is used for the consistency of SIC and other variables.

The input vector is a 3-dimensional matrix with the size of
332× 316× 57. The dimension with 57 elements represents
all variables mentioned above, including sea ice concentra-
tion for the past 12 months, the linear trend prediction of sea
ice concentration for the following 6 months, 12 climate vari-
ables for the past 3 months, 2 climate variables for the past
1 month, and the land mask. All variable fields are mapped
on 332× 316 grids (see Table 1 for the details of all input
variables). The final output provides the 6-month forecast of
monthly Antarctic sea ice concentration.

2.2 ANTSIC-UNet model

In this study, we construct an ensemble deep learning model,
aiming at providing seasonal six-months Antarctic sea ice
concentration prediction. The ANTSIC-UNet consists of 20
members possessing the encoder and decoder structure as-
sociated with a fully convolutional network (Fig. 1). A U-
shaped architecture based on convolutional neural networks
is widely used for many applications, i.e., remote sensing
image segmentation tasks (Marmanis et al., 2016; Wang et
al., 2023). Recently, Andersson et al. (2021) employed the
U-Net for three-class predictions of Arctic sea ice concen-
tration. For accurate forecasts of Antarctic sea ice concen-
tration, we made necessary modifications to the original ar-
chitecture of U-Net and turned it into single value regression
rather than the classification. The ANTSIC-UNet’s inputs are
feature maps of high-resolution sea ice concentration and
other multiple climate variables related to sea ice changes
over different lead/lag months and a land mask. The outputs
are high-resolution sea ice concentration maps for the future
months. To avoid deformation, we resize the spatial shape to
a 336× 320 grid, by applying the nearest neighbor method,
before input to the encoder, and we adopt a padding tech-
nique to avoid too much data reduction. The inputs are pro-
cessed into a large number of feature maps with decreased
dimensionality by the encoder part of ANTSIC-UNet. Such
deep layers and large-scale features allow the model to cap-
ture complex nonlinear relationships and provide an inter-
pretation of the inputs. The decoder then upscales the feature
maps extracted by the encoder into upsampled features and
uses four skip connections to combine them with multi-scale
features from different scale levels of the encoder. This pro-
cess results in high-resolution output maps that align with
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Table 1. The information of all input variables for ANTSIC-UNet.

Input variables Variable long name Source Lead or
lag (months)

SIC sea ice concentration NSIDC 1 to 12
SIC trend linear trend forecast for sea ice concentration NSIDC 1 to 6
T2A 2 m air temperature anomaly ERA5 1 to 3
T500A 500 hPa air temperature anomaly ERA5 1 to 3
SSTA sea surface temperature anomaly ERA5 1 to 3
PT50A ocean temperature anomaly averaged over 50-100 m ORAS5 1 to 3
PT100A ocean temperature anomaly averaged over 100-150m ORAS5 1 to 3
OHC300A ocean heat content anomaly for the upper 300 m ORAS5 1 to 3
DSRA surface downward solar radiation ERA5 1 to 3
USRA surface upward solar radiation ERA5 1 to 3
SLPA sea level pressure anomaly ERA5 1 to 3
H500A 500 hPa geopotential height anomaly ERA5 1 to 3
H250A 250 hPa geopotential height anomaly ERA5 1 to 3
U10hPa 10 hPa zonal wind ERA5 1 to 3
U10 10 m zonal wind ERA5 1
V10 10 m meridional wind ERA5 1
landmask Southern Hemisphere land mask NSIDC n/a∗

∗ n/a: not applicable.

the spatial dimensions of the input data. Finally, sigmoid ac-
tivation functions are used in the last six convolutional lay-
ers, and the output module extracts slices with dimensions
of 332× 316× 6, which generate the regression predictions
for Antarctic sea ice concentration maps over a six-month
period.

We divide the data into three groups: the training data from
1979 to 2011, the validation data from 2012 to 2019 (with
exclusion years 2014 and 2017), and testing data in 2017,
from 2020 to 2023 (anomalously low extent period) and 2014
(record high) for independent evaluation. An early stopping
strategy is adopted to avoid overfitting when the performance
on the validation data does not improve after 10 epochs as
suggested by Prechelt (2012). The testing data do not par-
ticipate in the training process so that the performance of the
testing data provides an independent assessment of ANTSIC-
UNet’ ability to generalize to new data. Here, we use typical
hyperparameters for the deep learning model. The kernel size
for the convolutional layers is set to (3,3). Due to memory
constraints, we set the batch size to 2. The loss function ap-
plied is mean squared error (MSE), with a learning rate of
0.0001 and a weight decay of 0. The Adam optimizer is used
for training.

2.3 Benchmark models

In this study, the linear trend and anomaly persistence pre-
dictions are used as benchmarks to assess the predictive skill
of ANTSIC-UNet. The linear trend model involves fitting a
linear least-squares trend to observed SIC over the past 30
years at each grid cell for each calendar month. This trend
is then used to predict SIC values for the corresponding cal-

endar month in the following year. Additionally, these SIC
predictions from this linear trend model are also used as the
input to ANTSIC-UNet.

The anomaly persistence prediction is calculated as fol-
lows:

SICpred (t + τ)= SICclim (t + τ)+SICanom ( t) (1)

where SICpred is the target month predicted ice concentration
at the lead time τ , SICclim is the climatogy ice concentration
at the target month, and SICanom is the observed ice concen-
tation anomaly relative to the climatology at the initial time.
The climatology for each month is computed for the period
of the training data (1979–2011). The anomaly persistence
works by preserving the deviations from the climatological
anomalies and assuming these anomalies will persist into the
future. For example, if a particular region currently has more
sea ice than average, this positive anomaly will continue as
time progresses. This statistical method has been widely used
as a benchmark for predicting sea ice concentration on sea-
sonal timescales, since sea ice conditions often change grad-
ually rather than abruptly (Wayand et al., 2019; Bushuk et
al., 2021; Niraula and Goessling, 2021). While this method is
effective for short-term forecasts, its accuracy declines over
longer lead times as the influence of initial anomalies weak-
ens.

To further assess the Antarctic sea ice predictive skill of
ANTSIC-UNet against other prediction efforts, we included
a dynamical model’s monthly mean Antarctic sea ice con-
centration predictions calculated by the ensemble mean of
51 members of SEAS5, provided by the Copernicus Cli-
mate Change Service (C3S) Prediction project (Thépaut et
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Figure 1. Configuration of ANTSIC-UNet model used for extended seasonal Antarctic sea ice prediction. Inputs are sea ice concentration,
other climate variables related to sea ice changes over different lead/lag months and a land mask. The U-shaped architecture includes the
encoder, decoder and four skip connections. Sigmoid activation functions (fs) are used in the final six convolutional layers to generate
regression predictions of Antarctic sea ice concentration maps for six months.

al., 2018). SEAS5, ECMWF’s fifth-generation seasonal fore-
cast system, is recognized for its state-of-the-art predictive
skill among the dynamical models which provides Antarctic
sea ice concentration prediction for up to six months (John-
son et al., 2019).

2.4 Evaluation metrics

We quantify the predictive skill of both the Pan- and regional
Antarctic sea ice using four metrics: (1) root-mean-square
error (RMSE), (2) anomaly correlation coefficient (ACC),
(3) mean squared error skill score (MSSS), and (4) integrated
ice-edge error (IIEE). RMSE reflects the proximity between
the prediction and observation. ACC is a measure of the ac-
curacy of the prediction anomalies based on the relationship
between the predicted and observed deviation from their re-
spective climatologies (Wang et al., 2016). MSSS is a skill
score based on a comparison between the model predictions
and climatology which are considered as a reference forecast.

The value of MSSS varies from negative infinity to 1, with
a negative value indicating no predictive skill and below the
reference forecast (due to deviations from observations being
larger than observed annual fluctuations), and 1 indicating a
perfect forecast (Murphy, 1988). Here we use ACC= 0.5 and
MSSS= 0.0 as the lowest limit for predictive skill, which is
widely used in previous research (e.g., Goddard et al., 2012;
Choi et al., 2016; Bushuk et al., 2021). The integrated ice-
edge error (IIEE) is a verification metric for sea ice forecasts
representing the sum of overestimated and underestimated
sea ice extent where sea ice concentration> 15 % (Goessling
et al., 2016). These metrics are calculated as follows:
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RMSE=
√

MSE=
√

mean((p− o)2), (2)

ACC=
∑
(p−p)(o− o)√∑

(p−p)
2√∑

(o− o)2
, (3)

MSSS= 1−
MSEpred

MSEclim
= 1−

∑
(p− o)2∑
(o− o)2

, (4)

IIEE= SIEp ∪SIEo−SIEp ∩SIEo, (5)

where p is the predicted ice concentration or sea ice extent
by ANTSIC-UNet and o is the observed ice concentration
or ice extent; p and o are the mean of the prediction and
observation.

2.5 Variable importance analysis

We use the permutation feature importance approach to de-
termine which variables are important for Antarctic sea ice
prediction in ANTSIC-UNet. This method was introduced
by Breiman (2001) and Fisher et al. (2019) to interpret the
model’s decisions. Specifically, when a particular variable is
selected, the original input feature matrix is Xorig and the per-
mutation feature matrix is Xperm. The evaluation metric ei,j
used is the root-mean-square error (RMSE) between the out-
put fi,j (the predicted SIC by the trained model for the target
month at the lead time ranging from 1 to 6 months) and the
target Yi (observed SIC) for a given month. Thus, the feature
importance value FIi,j is defined as the accuracy change of
the evaluation metric where i refers to the target month to be
predicted and j refers to the lead month.

FIi,j = e
perm
i,j − e

orig
i,j , (6)

where

e
orig
i,j = RMSE

(
Yi;fi, j

(
Xorig

))
, (7)

e
perm
i,j = RMSE

(
Yi;fi, j

(
Xperm

))
, (8)

The importance of each particular variable is measured by
(1) randomly shuffling the variable across spatial grids and
replacing it in the original input vector to generate a new
input vector, and (2) calculating the error of the evaluation
metric after permuting the variable. The positive increase of
FIi,j means that the variable is important, and no change
and decrease of FIi,j indicates that the variable plays little
role. Here we iteratively shuffle each input variable and com-
pare the performance, and repeat the procedure 10 times. The
mean feature importance value is calculated with the testing
data for the period of 2020–2023.

3 Results

3.1 Pan-Antarctic and regional predictive skill

Pan-Antarctic sea ice concentration predictions from
ANTSIC-UNet, statistical models (linear trend and anomaly

persistence models) and dynamical model (SEAS5) for the
testing years averaged for all lead times are shown in Table 2.
Overall, ANTSIC-UNet has the smallest SIC RMSE and sig-
nificantly reduced IIEE compared to other models. In order to
consider the variations of the metrics results with lead times
and different regions, we compare the three models for lead
times ranging from 1 to 6 months for the Pan-Antarctic and
five sub-regions (Fig. 2). For ANTSIC-UNet, SEAS5 and
anomaly persistence model, both RMSE and IIEE grow with
increasing lead time, reflecting a decrease of predictive skill
for the extended seasonal forecast. Compared to the SEAS5
and anomaly persistence model, ANTSIC-UNet exhibits sig-
nificantly lower RMSE over the entire Antarctic and all sub-
regions for all lead times, except for the Indian Ocean, where
its error is slightly higher than that of anomaly persistence
model for lead time exceeding 3 months. In addition, RMSE
of ANTSIC-UNet also exceeds the linear trend model when
the lead time exceeds 3 months, which is due to the reduced
predictive skill in the Indian Ocean, Pacific Ocean, Amund-
sen and Bellingshausen Seas. Encouragingly, the IIEE of
ANTSIC-UNet is consistently smaller than that of the two
benchmark models and SEAS5 for the Pan-Antarctic, though
it is comparable to the linear trend model for lead times
exceeding 3 months in the Amundsen and Bellingshausen
Seas. SEAS5 shows the smallest IIEE in the Ross, Amund-
sen and Bellingshausen Seas at 1-month lead, but the er-
rors grow substantially with lead time and exceed those of
ANTSIC-UNet. The superior skills in sea ice edge predic-
tions of ANTSIC-UNet become more pronounced as the lead
time increases. Overall, ANTSIC-UNet shows high predic-
tive skill in the Weddell and Ross Seas, outperforming the
two benchmark models and SEAS5.

Figure 3 shows the spatial distribution of February and
September SIC. In February (seasonal minimum), the linear
trend model overestimates SIC in the Ross Sea and west-
ern and central Weddell Sea and underestimates SIC in the
Amundsen and Bellingshausen Seas. Compared to the linear
trend model, the anomaly persistence model has relatively
small biases at 1-month lead. However, the magnitude and
coverage of the biases become larger as the lead time in-
creases and are large positive (negative) biases in parts of
the eastern Pacific sector (the Indian sector) at 5-month lead.
Moreover, the anomaly persistence model leads to an unreal-
istic northward expansion of the biases, as the initial spring
months cover a broader area of sea ice than the target month.
SEAS5 underestimates SIC, and the negative biases increase
with lead time, particularly in the western Weddell Sea and
the Pacific Ocean. By contrast, the ANTSIC-UNet predic-
tion shows the smallest biases (mostly negative across much
of the Antarctic) at 1-month lead. As the lead time increases,
the magnitude of the biases gradually increases, except that
the negative bias in the Ross Sea changes to become posi-
tive. In September (seasonal maximum), the linear trend and
anomaly persistence (at 1-month lead) models tend to have
alternating negative and positive biases near the sea ice edge.
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Table 2. The averaged predictive skill of Antarctic sea ice for ANTSIC-UNet, statistical models (linear trend and anomaly persistence
models) and SEAS5 for all testing years (RMSE: root-mean-square error; IIEE: integrated ice-edge error).

ANTSIC-UNet Linear trend Anomaly persistence SEAS5

RMSE 0.21 0.22 0.23 0.29
IIEE 1.68 2.13 2.47 2.28

Figure 2. (a) Domian of sub-regions: 60° W–20° E (Weddell Sea),
20–90° E (Indian Ocean), 90–160° E (Pacific Ocean), 160° E–
130° W (Ross Sea), and 130–60° W (Amundsen and Bellingshausen
Seas). (b) and (c) the averaged predictive skill of Pan- and regional
Antarctic sea ice for ANTSIC-UNet, linear trend model, anomaly
persistence model and SEAS5 predictions. (b) SIC RMSE and (c)
IIEE. Note that the prediction with the linear-trend model is based
on the same calendar month one year before and is hence indepen-
dent of lead time.

SEAS5 shows large negative biases over the entire Antarctic
sea ice region, with alternating positive and negative biases
emerging at the sea ice edge zone as lead time increases.
By contrast, the ANTSIC-UNet prediction has smaller and
mostly negative biases across much of the Antarctic at 1-
month lead. As the lead time increases, both the ANTSIC-
UNet and anomaly persistence models show biases becom-
ing larger in the sea ice edge zone. Moreover, large biases
also appear in the compact ice zone for the anomaly persis-
tence model.

To further evaluate the spatial performance of ANTSIC-
UNet, Fig. 4 shows the averaged SIC RMSE and IIEE be-
tween the ANTSIC-UNet predictions and observations for
each target month and different lead times. In terms of
RMSE, Pan-Antarctic exhibits low values from autumn to
spring (from April to November), though there is an increase
in RMSE during summer months (from December to March)
as the lead time exceeds 2 months. In terms of IIEE, Pan-
Antarctic has small values at 1-month lead, which extend to
2–3 month lead in February and March. In general, the val-
ues of IIEE increase as lead times increase, and large values
occur from November to January as the lead time exceeds
2–3 months. As shown in Fig. 4b1–f1, the large values of
RMSE are also found in summer for all sub-regions, but rel-
atively small values are found in the Weddell Sea. For IIEE
in Fig. 4b2–f2, all sub-regions show similar distributions, ex-
cept that the low IIEE in the Indian and Pacific Oceans have
broader coverage. Increased IIEEs are found in the Weddell
Sea (Ross Sea) from November to January (from December
to March) as the lead time exceeds 2–3 months. Overall, the
Pacific and Indian Oceans show better predictive skills at the
sea ice edge zone in summer relative to other regions.

3.2 Predictive skill for interannual variability

We assess the performance of the predicted year-to-year vari-
ability of Pan-Antarctic and regional sea ice extent (SIE)
anomalies (Fig. 5). For the Pan-Antarctic, the observed ice
extent anomaly shifts from the positive phase to the neg-
ative phase around 2016 (Fig. 5a). The statistical and dy-
namical model cannot capture the observed shift after 2016,
and the anomaly persistence model shows much larger pos-
itive anomalies and variability compared to the observation.
SEAS5 struggles to capture the interannual variability of the
Pan-Antarctic SIE, significantly overestimating anomalies in
the Weddell Sea and Indian Ocean while underestimating
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Figure 3. The monthly mean sea ice concentration of the NSIDC observations for (a) February and (f) September, and the errors in predicting
by ANTSIC-UNet (b1–b3, g1–g3), the linear trend model (c, h), anomaly persistence model (d1–d3, i1–i3) and SEAS5 (e1–e3, j1–j3) at
lead time of 1, 3, and 5 months for February (upper panel) and September (lower panel) during the testing years.

anomalies in the Pacific Ocean. By contrast, ANTSIC-UNet
reproduces the observed shift during 2014–2017 and the pre-
dicted interannual variability is well correlated with the ob-
servation (R = 0.76). Moreover, the majority of the observed
ice extent anomalies fall within the spread of the ANTSIC-
UNet prediction, which is also true for most sub-regions
(Fig. 5b–f). The highest correlation is found in the Weddell

Sea (R = 0.79), followed by the Indian Ocean (R = 0.63)
and Ross Sea (R = 0.59). The Pacific Ocean, Amundsen
and Bellingshausen Seas have relatively low correlations.
Thus ANTSIC-UNet outperforms the statistical and dynam-
ical models from the perspective of the SIE interannual vari-
ability prediction.
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Figure 4. The predictive skill of sea ice concentration (spatially and temporally averaged during the testing years) in terms of RMSE and
IIEE (units: million square kilometers) between the ANTSIC-UNet predictions and NSIDC observations for different target months and
forecast lead times. “A and B” in (f1) and (f2) refer to the Amundsen Sea and Bellingshausen Sea, repsectively.

Figure 6 further shows the evaluation metrics (ACC and
MSSS) between the observed and predicted interannual sea
ice extent. For the Pan-Antarctic, high values of ACC are
found from January to September at 1–3 months lead, which
decrease as the lead times increase (Fig. 6a). Reduced val-
ues of ACC are found from October to December as the lead
time exceeds 2 months. MSSS exhibits a similar pattern as

that of ACC (Fig. 6b). All sub-regions show similar distri-
butions, high values of ACC and MSSS at 1-month lead and
slowly decreasing with increasing lead times. Low values of
ACC and MSSS occur in the Indian Ocean from Januray to
March, the Pacific Ocean from November to January, and the
Amundsen and Bellingshausen Seas from September to Oc-
tober, which limit the interannual predictive skill of the Pan-
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Figure 5. Sea ice extent anomalies from 2012 to 2023 (including both validation and testing years) for Pan- and regional Antarctic for NSIDC
observations (black), the linear trend model (grey), the anomaly persistence model (blue), SEAS5 (green) and ANTSIC-UNet model (red).
The shading represents the ensemble spread of anomaly persistence model (blue), SEAS5 (green) and ANTSIC-UNet (red) at different lead
times up to 6 months, while the solid lines corresponding to the ensemble means. (units: million square kilometers).

Antarctic. Overall, the Weddell and Ross Seas have broad
coverage of high ACC and MSSS which suggests the possi-
bility of long-lead extended seasonal predictions there.

3.3 Extreme cases

The past three extremely low Antarctic summer SIE events
(Table 3) have been linked to key climate drivers and un-
derlying mechanisms. For example, the anomalous sea ice
melting during the summer of 2017 might be associated
with early spring atmospheric conditions over the Southern
Ocean being primarily influenced by a positive phase of the
zonal wave 3 (ZW3) pattern, followed by a near-record neg-
ative Southern Annular Mode (SAM) (Turner et al., 2017;
Schlosser et al., 2018). The significant weakening of the po-

lar stratospheric vortex was identified as a key driver of the
SAM changes (Wang et al., 2019). The extremely low sea
ice events in the summer of 2022 and 2023 occurred with
the deepening of the Amundsen Sea Low (ASL), triggering
feedbacks that played a crucial role in the reduction of sum-
mer sea ice (Turner et al., 2022; Wang et al., 2022). A few
studies have emphasized that the influence of a warm sub-
surface ocean is a contributor to the recent record-low sum-
mer sea ice events (Liu et al., 2023; Purich and Doddridge,
2023). Different large-scale atmospheric circulation patterns
may also lead to similar regional prevailing winds, driving
the negative Antarctic sea ice extent anomalies (Mezzina et
al., 2024).

To our knowledge, little research has focused on the pre-
dictability of Antarctic sea ice extent in extreme years.
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Figure 6. The ACC (a1–f1) and MSSS (a2–f2) between the observed and ANTSIC-UNet predicted regional SIE anomalies for different
target months and forecast lead times during 1981–2023.

Therefore, we evaluate to what extent the ANTSIC-UNet
prediction can capture extreme years. The average predic-
tive skills for the three extremely low sea ice extent years
averaged for all lead times are shown in Table 3. During all
extreme years, ANTSIC-UNet exhibits the smallest RMSEs

and improves sea ice edge predictions with notably reduced
IIEE, compared to the statistical and dynamical models. The
spatial distribution of February and September SIC of 2023
(record low) is shown in Fig. 7. In February, the linear trend
model overestimates sea ice concentration for much of the
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Antarctic. The anomaly persistence model shows clusters of
large positive biases near the coastal area and extended north-
ward coverage of negative biases at 1-month lead, and both
magnitude and coverage of the biases increase dramatically
as the lead time increases. SEAS5 underestimates SIC, and
the negative biases increase with lead time, particularly in
the Weddell Sea. ANTSIC-UNet exhibits better performance
than the other models with smaller sea ice edge error for all
lead times, though as lead time increases, the positive bi-
ases in the Amundsen and Ross Seas gradually increase. In
September, the ANTSIC-UNet prediction shows smaller bi-
ases at sea ice edge in the entire Antarcic at 1-month lead
compared to the other models, and still outperforms in most
regions as the lead time increases. By comparison, SEAS5
shows substantial negative biases across the interior regions,
in addition to significant biases at the sea ice edge. Though
there are different spatial distributions of SIC errors for 2017
and 2022, ANTSIC-UNet also shows superior predictive skill
(Figs. S1 and S2).

The models’ predictive skill of seasonality errors of ex-
tremely low sea ice extent of 2023 are further accessed
against the NSIDC observations (Fig. 8). Both the linear
trend and anomaly persistence prediction models excessively
overestimate the SIE in the Pan-Antarctic and all sub-regions
for nearly all months, except for the Amundsen and Belling-
shausen Seas. SEAS5 underestimates the SIE in the Pan-
Antarctic and all sub-regions in summer. And it signifi-
cantly overestimates the SIE during the sea ice expansion
season, with positive biases in the Weddell Sea and Indian
Ocean exceeding those of the linear trend model. In contrast,
these positive SIE errors have been greatly reduced in the
ANTSIC-UNet predictions. ANTSIC-UNet outperforms the
linear trend model throughout the year for all the lead times
and most regions, except for the Amundsen and Belling-
shausen Seas. This is also true for 2017 and 2022 (Figs. S3
and S4). Therefore, ANTSIC-UNet has excellent predictive
skills for extreme events in recent years.

We further compared the ANTSIC-UNet’s accuracy per-
formance on sea ice edge predictions for the extreme sum-
mer years, relative to linear trend predictions and SEAS5.
As shown in Fig. 9, both ANTSIC-UNet and SEAS5 have
increasing sea ice edge errors as lead time increases. Note
again that the linear trend predictions are independent of
lead time. ANTSIC-UNet outperforms SEAS5 and linear
trend predictions at sea ice edge error in all extreme summer
years. At short lead times, ANTSIC-UNet has substantial im-
provement relative to the linear trend predictions and moder-
ate improvement compared to SEAS5. At long lead times,
ANTSIC-UNet’s improvements relative to SEAS5 become
more significant. These results suggest that ANTSIC-UNet
has high predictive skills for extended seasonal predictions
of Antarctic sea ice concentration, especially for extreme
events, compared to other statistical and dynamical models.

3.4 Variable importance

In this study, 14 atmospheric and oceanic variables from
ERA5 and ORAS5 are selected to capture the key physi-
cal mechanisms influencing sea ice variation. Variables such
as sea surface temperature, 2 m air temperature, and radia-
tion impact heat flux exchanges at the air-ice-sea interface
(Bourassa et al., 2013). Near surface winds drive sea ice
movement and large-scale tropospheric circulation impacts
sea ice through its effects on winds, temperature, precip-
itation, and cloud cover (Raphael and Hobbs, 2014). The
10 hPa zonal wind represents stratospheric zonal circulation,
which impacts surface circulation through downward propa-
gation, influencing sea ice dynamics (Cordero et al., 2023).
Sea temperature anomalies and the upper-ocean heat con-
tent anomaly for the upper 300 m taken from ORAS5 play
a crucial role in the heat energy exchange at the ocean–ice
interface (Purich and Doddridge, 2023; Bianco et al., 2024).
The upwelling of warmer subsurface water can further influ-
ence sea ice formation and melting in the high latitude of the
Southern Ocean (Cai et al., 2023). As discussed, ANTSIC-
UNet shows better performance compared to the linear trend
and anomaly persistence models. This implies that ANTSIC-
UNet has learned to predict extended seasonal Antarctic sea
ice based on the physical relationships of the input variables.

Previous studies suggested that the evaluation metrics of
model’s predictive skill, especially for models with strong
generalization ability, correlate closely with feature impor-
tance (FI) (Andersson et al., 2021; Molnar, 2019). The per-
mutation feature importance method based on testing vari-
ables can reveal the model-dependence variables and indicate
the contribution extent of the variables to the performance
of the model on unseen data. Here we use the permutation
feature-importance method to explain model variance based
on the testing data from 2020–2023. The variable importance
is Pan-Antarctic averaged for all calendar months (Fig. 10),
and indicates that ANTSIC-UNet is gaining skills from some
important variables, including sea ice conditions, sea surface
temperature, radiative flux, and stratospheric wind. ANTSIC-
UNet also ignores some peripheral variables, such as sea
level pressure and subsurface ocean temperature. At short
lead times, on timescales of up to two months, ANTSIC-
UNet relies more on the initial sea ice state and linear trend
prediction, as well as the surface upward shortwave radia-
tion, sea surface temperature, atmospheric conditions in the
troposphere, and 10 hPa zonal wind in the stratosphere. This
implies that ANTSIC-UNet has learned the dynamic and
thermodynamic physical mechanisms directly forcing sea ice
variations (Son et al., 2009; Turner et al., 2016). At longer
lead times, in addition to historical SIC conditions and linear
trend predictions of SIC at the target month, the 10 hPa zonal
wind stands out as an important influencing factor which
manifests the lagged response in Antarctic sea ice to changes
in stratospheric circulation (Raphael and Hobbs, 2014; Wang
et al., 2021).
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Table 3. The averaged predictive skill of ANTSIC-UNet, statistical models (linear trend and anomaly persistence models) and SEAS5 for
the extreme summer years of Antarctic sea ice. Here, observed SIEA represents February monthly anomalies of sea ice extent from NSIDC
observations for these extreme years, calculated by subtracting the February average sea ice extent for the period 1981–2011 (units: million
square kilometers). RMSE: root-mean-square error; IIEE: integrated ice-edge error.

Observed SIEA Metrics ANTSIC-UNet Linear trend Anomaly persistence SEAS5

2017 −0.76
RMSE 0.21 0.25 0.24 0.29
IIEE 1.80 2.56 2.52 2.26

2022 −0.84
RMSE 0.21 0.22 0.23 0.28
IIEE 1.68 2.24 2.45 2.26

2023 −1.14
RMSE 0.24 0.27 0.31 0.30
IIEE 2.00 3.05 3.11 2.50

When a variable shows minimal or even negative impor-
tance, it suggests that the ANTSIC-UNet might be overlook-
ing that feature or has not yet fully captured the intrinsic rela-
tionships involving that variable. It may also be related to the
accuracy of the reanalysis data used as input. For example,
the lack of predictive importance for downward solar radia-
tion could be due to this variable being poorly represented in
the Southern Ocean within the reanalysis as discussed above.
Thus, it is crucial to consider the accuracy of input variables
chosen from reanalysis data for Antarctic sea ice predictions.

3.5 Phyical constraints

The ANTSIC-UNet model is trained based on minimizing
the loss function which measures the difference between the
output and the desired targets. We optimize ANTSIC-UNet
using the mean square error (MSE) of SIC as its original loss
function. However, the pronounced prediction errors often
occur in the vicinity of the sea ice edge, likely associated with
oceanic influence and wind dynamics. Interestingly, Ren and
Li (2023) suggested that the normalized integrated ice-edge
error loss might be suitable for long sequence SIC predic-
tions. The question is whether a physically constrained loss
function in deep learning models can improve the extended
seasonal forecast of Antarctic sea ice. Here we test a hybrid
loss function combining MSE and IIEE to optimize spatial
predictions and minimize sea ice edge errors. IIEE loss is
calculated by dividing the difference between the predicted
and observed sea ice extent by the sum of SIE where SIC
> 0.15 % in both the prediction and observation. We assign
a weight of 0.05 to the IIEE components for values balance
in the hybrid loss expression (Eq. 10). Hence, the two loss
functions are calculated as:

Original Loss=MSE=mean(
∑

(p− o)2), (9)

Hybrid Loss=MSE+ 0.05
IIEE

SIEp ∪SIEo
, (10)

where p (SIEp) is the predicted sea ice concentration (ice
extent) by ANTSIC-UNet and o (SIEo) is the observed ice

concentration (ice extent). For clarity, we denote the original
loss (hybrid loss) as subscripts “o” (“h”) for distinguish be-
tween the ANTSIC-UNet models trained with two different
loss functions.

Our results show similar distributions of sea ice edge er-
rors predicted by two ANTSIC-UNet models (Figs. 4a2–f2
and 11a1–f1) with small values of IIEE at 1-month lead and
large values from November to January as the lead time ex-
ceeds 2–4 months. ANTSIC-UNet_h trained with the hybrid
loss slightly reduces the IIEE for the Pan-Antarctic com-
pared to ANTSIC-UNet_o, especially in Weddell Ocean,
Ross Amundsen and Bellingshausen Seas (∼ 0.02–0.05 mil-
lion km2).However increased errors occur in these regions as
lead time exceeds 3–4 months (Fig. 11a2–f2).

4 Discussion and conclusion

Antarctic sea ice extent exhibits significant variability driven
by the complex air-ice-sea interactions that are not yet fully
understood. Sea ice concentration is the essential variable
for investigating the variation of sea ice (i.e., extent) and
the satellite observations provide long-term reliable records
of the data since the late 1970s. However, the accurate pre-
diction of Antarctic sea ice, especially for extended seasonal
timescales, remains a challenge due to the difficulty in fully
capturing these complex interactions within existing models.
In addition, there has been limited focus on systematic eval-
uation of model performance during extreme years. In this
study, we have introduced a deep learning model, ANTSIC-
UNet, to predict the extended seasonal Antarctic monthly-
mean sea ice concentration. Considering the complex phys-
ical processes influencing Antarctic sea ice variability, at-
mospheric and oceanic variables, in addition to sea ice it-
self, are used for ANTSIC-UNet’s forecasts. We compare
the deep learning predictions against statistical models (the
linear trend and anomaly persistence models) and a dynam-
ical model (SEAS5), to evaluate the predictive skill of both
Pan- and regional Antarctic sea ice. ANTSIC-UNet exhibits
superior predictive skill for Antarctic sea ice for at least 6
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Figure 7. February and September 2023 SIC of NSIDC observations (a, e) and errors predicted by ANTSIC-UNet (b1–b3, g1–g3), the linear
trend model (c, h), anomaly persistence model (d1–d3, i1–i3) and SEAS5 (e1–e3, j1–j3) at lead time of 1, 3 and 5 months (lowest sea ice
extent on record).

months lead, and provides particularly improved predictions
of extreme low sea ice events in recent years. The predic-
tion performance of ANTSIC-UNet shows pronounced sea-
sonality and regional dependence, which affects the predic-
tive skill of the Pan-Antarctic. Specifically, during the au-
tumn to spring, low RMSE is observed for most sub-regions.

However, increased RMSE is evident in summer for lead
time exceeding 2 months indicating decreased model per-
formance in that season. Small values of integrated ice-edge
error (IIEE) are found in summer at 1–3 months lead, but
large errors occur from November to January as the lead time
exceeds 2–4 months. Low RMSE and broader coverage of
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Figure 8. Seasonality errors of the Pan- and regional Antarctic monthly mean SIE (SIC> 15 %) between NSIDC observations and ANTSIC-
UNet (a1–f1), anomaly persistence model (a2–f2) and SEAS5 (a3–f3) predictions at different lead times for 2023 (lowest sea ice extent on
record in Feburary). The black lines show the seasonality SIE errors between observations and linear trend model. (units: million square
kilometers).

Figure 9. Integrated ice-edge error (IIEE) of ANTSIC-UNet, the linear trend forecast and SEAS5 for February forecasts at lead time of 1, 3,
and 5 months for the extreme summer years. (a) 2017, (b) 2022 and (c) 2023.
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Figure 10. The results of variable importance analysis for Pan-Antarctic based on the permutation feature importance measurement (see
Table 1 for full name of the variables).

small IIEE suggest superior predictive skills in the Pacific
and Indian Oceans at the sea ice edge zone in summer. Our
findings are consistent with those of Marchi et al. (2019) and
Bushuk et al. (2021) that sea ice concentration prediction
tends to be more accurate in the winter months but less so
in the summer due to rapid and irregular changes in the ice

edge during that season. Inspiringly, ANTSIC-UNet shows
lower summer sea ice edge error and SIC RMSE compared
to both the two benchmark models and the dynamical model,
especially during extreme years. The differences in model
performance across regions could be attributed to regional
variability due to oceanographic conditions, sea ice dynam-
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Figure 11. The IIEE of ANTSIC-UNet_h (a1–f1) and difference (b2–f2) between the two ANTSIC-UNet models trained with different loss
functions for different target months and forecast lead times spatially and temporally averaged during the testing years (units: million square
kilometers).

ics, and the influence of atmospheric and oceanic circula-
tion patterns. Regional seas in the West Antarctic, includ-
ing the Ross Sea, Amundsen Sea, Bellingshausen Sea, and
Weddell Sea, exhibit larger interannual variability in sea ice
concentration compared to the East Antarctic (Cavalieri and
Parkinson, 2008). These regions are influenced by the Cir-
cumpolar Deep Water (CDW), with warm-shelf regions such
as the Amundsen and Bellingshausen Seas being particularly
sensitive to climate changes, with sea ice concentration and

the position of the ice edge strongly driven by wind forc-
ing (Stammerjohn et al., 2003; Saenz et al., 2023). The ice
flux driven by wind in the Weddell Sea along the Antarc-
tic Peninsula and the Pacific Ocean plays a crucial role in
modulating sea ice dynamics, with the dynamical influence
being more pronounced in the Pacific sector (Holland and
Kwok, 2012). The sea ice increase (decrease) in the Ross
Sea (Bellingshausen Sea) is linked to the Amundsen Sea Low
(ASL) which is a key climate feature of these regions (Hosk-
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ing et al., 2013; Turner et al., 2016). In contrast to other re-
gions of Antarctica, sea ice expansion in the Indian Ocean
sector is significant throughout all seasons and is associated
with surface cooling and ocean renewal processes that stabi-
lize the ocean and limit the intrusion of warmer subsurface
waters into the surface layer (Bintanja et al., 2013; Purich et
al., 2018). Additionally, seasonal variability in sea ice in the
Indian Ocean sector is closely linked to the Southern Annular
Mode (SAM) (Yadav et al., 2022).

We further assess the prediction performance for year-to-
year variability: ANTSIC-UNet shows good predictive skill
in capturing the interannual variability of Pan-Antarctic and
regional sea ice extent anomalies. Consistently high values of
ACC and MSSS, as revealed for the Weddell and Ross Seas,
encouragingly suggest the possibility of performing long-
lead extended seasonal predictions. Moreover, the results
from the variable importance analysis, computed by a post-
hoc interpretation method, suggest that ANTSIC-UNet has
learned the important relationship between the sea ice and
other climate variables having varying impacts across dif-
ferent lead times. Specifically, at short lead times, ANTSIC-
UNet predictions are sensitive to initial conditions and lin-
ear trend predictions of SIC, sea surface temperature, radia-
tive flux and vertical atmospheric circulation conditions. At
longer lead times, predictions are dependent on historical
conditions and linear trend predictions of SIC, and strato-
spheric circulation patterns. The issue that Amundsen and
Bellingshausen Seas have the lowest predictive skill might be
associated with ANTSIC-UNet ignoring the sea level pres-
sure and hence the tropical teleconnection relationship asso-
ciated with the strengthening of Amundsen Sea Low (ASL)
in recent decades (Li et al., 2021; Cai et al., 2023). Our fea-
ture importance findings can be associated with recent work
by Uebbing et al. (2025) investigating the impact of fea-
ture reduction on seasonal Arctic sea ice forecasting by us-
ing the state-of-the-art IceNet model (Andersson et al., 2021)
combined with explainable AI (XAI) techniques. Their study
showed that using only a subset of key features (such as his-
torical sea ice concentration, linear trend forecasts, and sea-
sonal encoding), high predictive accuracy under general sce-
narios was still obtained. However, their research also high-
lighted that for extreme events, such as anomalous sea ice ex-
tents, models incorporating additional climate variables per-
form better. This suggests that further studies might benefit
from exploring different XAI methods for estimating feature
importance and investigating the extent to which the reduc-
tion of the number of features affects deep learning model
predictions for Antarctic sea ice.

Finally, our findings suggest that incorporating physi-
cal constraints into ANTSIC-UNet could further improve
the model’s performance at the sea ice edge of the Pan-
Antarctic for extended seasonal predictions. Thus ANTSIC-
UNet provides a useful tool for extended seasonal prediction
of Antarctic sea ice concentration and extent, and for analyz-
ing physical processes important for sea ice variations in dif-

ferent regions. The results from variable importance analysis
show evidence that ANTSIC-UNet successfully extracts key
information from the complex ocean-ice-atmosphere inter-
actions to predict sea ice concentration and capture seasonal
variations through different climate variables. This approach
could be effectively extended to other sea ice variables once
the relevant long-term data becomes available (i.e., sea ice
thickness). Existing data on Antarctic sea ice thickness, de-
rived from satellite altimetry missions including the ICESat
data (from 2003–2008), ICESat-2 data (from late 2018 on-
ward) and CryoSat-2 data (from 2010 onward) remain lim-
ited in terms of confidence and temporal coverage and yet are
not suitable for direct deep learning applications (Hendricks
et al., 2018; Kacimi and Kwok, 2020; Fons et al., 2023). Ad-
ditional efforts are needed for refining and integrating these
datasets into predictive models. The Polar Pathfinder product
(Tschudi et al. 2019) provides daily sea ice motion vectors at
a spatial resolution of 25 km, which are valuable for investi-
gating sea ice movement patterns under the influence of wind
and ocean currents. Future research will explore whether in-
corporating dynamic factors such as ice drift can enhance the
accuracy of sea ice predictions. An important direction for
future work will be to systematically compare model forecast
performance across different Antarctic regions and during
extreme events, using alternative ML approaches, including
generative models. In addition, further investigation based on
physically enriched deep learning models is also needed to
explore more thoroughly the physical mechanisms between
SIC and other climate variables with long-term memory, such
as sea ice thickness and ocean heat content (Marchi et al.,
2019; Bushuk et al., 2021; Libera et al., 2022).
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