Articles | Volume 19, issue 1
https://doi.org/10.5194/tc-19-485-2025
https://doi.org/10.5194/tc-19-485-2025
Research article
 | 
29 Jan 2025
Research article |  | 29 Jan 2025

Pressurised water flow in fractured permafrost rocks revealed by borehole temperature, electrical resistivity tomography, and piezometric pressure

Maike Offer, Samuel Weber, Michael Krautblatter, Ingo Hartmeyer, and Markus Keuschnig

Related authors

Decadal in situ hydrological observations and empirical modeling of pressure head in a high-alpine, fractured calcareous rock slope
Riccardo Scandroglio, Samuel Weber, Till Rehm, and Michael Krautblatter
Earth Surf. Dynam., 13, 295–314, https://doi.org/10.5194/esurf-13-295-2025,https://doi.org/10.5194/esurf-13-295-2025, 2025
Short summary
Progressive destabilization of a freestanding rock pillar in permafrost on the Matterhorn (Swiss Alps): Field observations, laboratory experiments and mechanical modeling
Samuel Weber, Jan Beutel, Michael Dietze, Alexander Bast, Robert Kenner, Marcia Phillips, Johannes Leinauer, Simon Mühlbauer, Felix Pfluger, and Michael Krautblatter
EGUsphere, https://doi.org/10.5194/egusphere-2025-1151,https://doi.org/10.5194/egusphere-2025-1151, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Massive permafrost rock slide under a warming polythermal glacier deciphered through mechanical modeling (Bliggspitze, Austria)
Felix Pfluger, Samuel Weber, Joseph Steinhauser, Christian Zangerl, Christine Fey, Johannes Fürst, and Michael Krautblatter
Earth Surf. Dynam., 13, 41–70, https://doi.org/10.5194/esurf-13-41-2025,https://doi.org/10.5194/esurf-13-41-2025, 2025
Short summary
Thermal diffusivity of permafrost in the Swiss Alps determined from borehole temperature data
Samuel Weber and Alessandro Cicoira
EGUsphere, https://doi.org/10.5194/egusphere-2024-2652,https://doi.org/10.5194/egusphere-2024-2652, 2024
Short summary
How water, temperature, and seismicity control the preconditioning of massive rock slope failure (Hochvogel)
Johannes Leinauer, Michael Dietze, Sibylle Knapp, Riccardo Scandroglio, Maximilian Jokel, and Michael Krautblatter
Earth Surf. Dynam., 12, 1027–1048, https://doi.org/10.5194/esurf-12-1027-2024,https://doi.org/10.5194/esurf-12-1027-2024, 2024
Short summary

Related subject area

Discipline: Frozen ground | Subject: Mountain Processes
Quantifying frost-weathering-induced damage in alpine rocks
Till Mayer, Maxim Deprez, Laurenz Schröer, Veerle Cnudde, and Daniel Draebing
The Cryosphere, 18, 2847–2864, https://doi.org/10.5194/tc-18-2847-2024,https://doi.org/10.5194/tc-18-2847-2024, 2024
Short summary
Rapid warming and degradation of mountain permafrost in Norway and Iceland
Bernd Etzelmüller, Ketil Isaksen, Justyna Czekirda, Sebastian Westermann, Christin Hilbich, and Christian Hauck
The Cryosphere, 17, 5477–5497, https://doi.org/10.5194/tc-17-5477-2023,https://doi.org/10.5194/tc-17-5477-2023, 2023
Short summary
Mountain permafrost in the Central Pyrenees: insights from the Devaux ice cave
Miguel Bartolomé, Gérard Cazenave, Marc Luetscher, Christoph Spötl, Fernando Gázquez, Ánchel Belmonte, Alexandra V. Turchyn, Juan Ignacio López-Moreno, and Ana Moreno
The Cryosphere, 17, 477–497, https://doi.org/10.5194/tc-17-477-2023,https://doi.org/10.5194/tc-17-477-2023, 2023
Short summary
Glacier–permafrost relations in a high-mountain environment: 5 decades of kinematic monitoring at the Gruben site, Swiss Alps
Isabelle Gärtner-Roer, Nina Brunner, Reynald Delaloye, Wilfried Haeberli, Andreas Kääb, and Patrick Thee
The Cryosphere, 16, 2083–2101, https://doi.org/10.5194/tc-16-2083-2022,https://doi.org/10.5194/tc-16-2083-2022, 2022
Short summary
Brief communication: The influence of mica-rich rocks on the shear strength of ice-filled discontinuities
Philipp Mamot, Samuel Weber, Maximilian Lanz, and Michael Krautblatter
The Cryosphere, 14, 1849–1855, https://doi.org/10.5194/tc-14-1849-2020,https://doi.org/10.5194/tc-14-1849-2020, 2020
Short summary

Cited articles

Archie, G. E.: The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. AIME 146, 54–62, https://doi.org/10.2118/942054-G, 1942. a
Arenson, L. U., Harrington, J. S., Koenig, C. E. M., and Wainstein, P. A.: Mountain permafrost hydrology – A practical review following studies from the Andes, Geosciences, 12, 48, https://doi.org/10.3390/geosciences12020048, 2022. a
Bast, A., Kenner, R., and Phillips, M.: Short-term cooling, drying, and deceleration of an ice-rich rock glacier, The Cryosphere, 18, 3141–3158, https://doi.org/10.5194/tc-18-3141-2024, 2024. a
Ben-Asher, M., Magnin, F., Westermann, S., Bock, J., Malet, E., Berthet, J., Ravanel, L., and Deline, P.: Estimating surface water availability in high mountain rock slopes using a numerical energy balance model, Earth Surf. Dynam., 11, 899–915, https://doi.org/10.5194/esurf-11-899-2023, 2023. a
Buckel, J., Mudler, J., Gardeweg, R., Hauck, C., Hilbich, C., Frauenfelder, R., Kneisel, C., Buchelt, S., Blöthe, J. H., Hördt, A., and Bücker, M.: Identifying mountain permafrost degradation by repeating historical electrical resistivity tomography (ERT) measurements, The Cryosphere, 17, 2919–2940, https://doi.org/10.5194/tc-17-2919-2023, 2023. a
Download
Short summary
We present a unique long-term dataset of measurements of borehole temperature, repeated electrical resistivity tomography, and piezometric pressure to investigate the complex seasonal water flow in permafrost rockwalls. Our joint analysis shows that permafrost rocks are subjected to enhanced pressurised water flow during the thaw period, resulting in push-like warming events and long-lasting rock temperature regime changes.  
Share